
Apache Bench

i

Apache Bench

i

About the Tutorial
Apache Bench (ab) is a load testing and benchmarking tool for Hypertext Transfer Protocol
(HTTP) server. It can be run from command line and it is very simple to use. A quick load
testing output can be obtained in just one minute. As it does not need too much familiarity
with load and performance testing concepts, therefore it is suitable for beginners and
intermediate users.

To use this tool, no complex setup is required. Moreover, it gets installed automatically
with Apache web server, or it can be installed separately as Apache utility. It does not
have all the features of more popular tools such as jMeter or Grinder, but it is good for a
start.

Audience
This tutorial is designed for Application Developers and System Administrators, who are
willing to learn Apache Bench in simple and easy steps. This tutorial will give you practical
knowledge on Apache Bench, and after completing this tutorial, you will be at an
intermediate level of expertise from where you can take yourself to higher level of
expertise.

Prerequisites
Before proceeding with this tutorial, you should have a basic understanding of command
line interface (CLI), HTTP, text editor and web servers, etc., because you will need these
tools to successfully run Apache Bench for load testing. In addition, it will be good if you
have knowledge of web development and application testing processes.

Copyright & Disclaimer
 Copyright 2017 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)
Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish
any contents or a part of contents of this e-book in any manner without written consent
of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as
possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.
Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our
website or its contents including this tutorial. If you discover any errors on our website or
in this tutorial, please notify us at contact@tutorialspoint.com

https://www.tutorialspoint.com/jmeter/index.htm
http://grinder.sourceforge.net/
mailto:contact@tutorialspoint.com

Apache Bench

ii

Table of Contents
About the Tutorial ..i

Audience ..i

Prerequisites...i

Copyright & Disclaimer ...i

Table of Contents...ii

1. APACHE BENCH – OVERVIEW..1

2. APACHE BENCH ─ ENVIRONMENT SETUP...3

Testing Apache.org Website ..4

Understanding the Output Values..6

Quick Analysis of the Load Testing Output ...7

Plotting the Output of Apache Bench...8

3. APACHE BENCH ─ TESTING OUR SAMPLE APPLICATION ..11

Installing Bottle Framework and Creating a Simple Application..11

Testing the Application with Developmental Web Server...12

Testing the Application with a Multi-Threaded Web Server ...14

4. APACHE BENCH ─ TESTING MULTIPLE URLS CONCURRENTLY ...17

Creating a Simple Shell Script...17

Shell Script to Save the Apache Bench Output to a File...18

Watch-out Situation...19

5. APACHE BENCH ─ PREPARATION FOR TESTING DYNAMIC PAGES21

Concurrency Level and the Total Number of Requests..21

Use of Flags..21

Session Cookie from web2py ...23

Checking Admin Page...26

Apache Bench

iii

Using Timelimit Option ..28

Checklist Before Performing the Load Test ...30

6. APACHE BENCH ─ SEQUENTIAL TEST CASES FOR DYNAMIC PAGES...................................31

1 Concurrent User Doing 100 Page Hits ..31

5 Concurrent Users Each Doing 10 Page Hits ..32

10 Concurrent Users Each Doing 10 Page Hits...33

20 Concurrent Users Each Doing 20 Page Hits...34

30 Concurrent Users Each Doing 30 Page Hits...35

7. APACHE BENCH ─ COMPARISON OF OUTPUTS ..37

Testing our Application without Flags ..37

Testing our Applcation with Flags ..38

Testing Apache Organisation Website without Flags ..39

Testing Apache Organisation Website with Flags ...40

Considering the Apache Bench Results...42

Conclusion ...42

Apache Bench

4

Performance testing has proved itself to be crucial for the success of a business. Not only
does a poor performing site face financial losses, it can also lead to legal repercussions at
times.

No one wants to put up with a slow performing, unreliable site in important online interactions
such as purchasing, online test taking, bill payment, etc. With the Internet being so widely
available, the range of alternatives is immense. It is easier to lose clientele than gain them
and performance is a key game changer.

Need for a Load Testing Tool
If we can understand what is the need for a load testing tool, it will give us the reason and
motivation to use it. Some famous business sites have suffered serious downtimes when they
get large number of visitors. E-commerce websites invest heavily in advertising campaigns,
but not in Load Testing. Therefore, they fail to ensure optimal system performance, when that
marketing brings in traffic.

Another familiar example of ignoring load testing is that of “error establishing connection” in
WordPress websites. Therefore, it is a good idea to load test a website or application before
its deployment in production. It is nice to quickly establish a best-case scenario for a project
before running more detailed tests down the road.

What is Apache Bench?
Apache Bench (ab) is a tool from the Apache organization for benchmarking a Hypertext
Transfer Protocol (HTTP) web server. Although it is designed to measure the performance of
Apache web server, yet it can also be used to test any other web server that is equally good.
With this tool, you can quickly know how many requests per second your web server is capable
of serving.

Features of Apache Bench
Let us see the important features and limitations of Apache Bench. The features and
limitations are listed below:

 Being an open source software, it is freely available.

 It is a simple command line computer program.

 It is a platform-independent tool. It means that it can be invoked on Linux/Unix or on
Windows server equally well.

 It can conduct load and performance test for only web server - HTTP or HTTPS.

 It is not extensible.

1. Apache Bench – Overview

Apache Bench

5

Apache Bench uses only one operating system thread irrespective of the concurrency level
(specified by the -c flag). Therefore, when benchmarking high-capacity servers, a single
instance of Apache Bench can itself be a bottleneck. To completely saturate the target URL,
it is better to use additional instances of Apache Bench in parallel, if your server has multiple
processor cores.

Precaution
You need to be aware that there is no directive in the Apache Bench to increase concurrency
in particular intervals while running tests. Therefore, running load tests using ab is equivalent
to a denial-of-service (DOS) attack. It is recommended that you inform and take prior
permission from your VPS service provider if you are going to do heavy load testing for a long
period of time. They will allot you an appropriate time interval or shift your node for the load
testing task.

Second, if you are testing a third person’s website continuously and for a long time just for
learning Apache Bench from your VPS (which becomes the testing node), there is a remote
possibility that your VPS public IP can be blocked by the third person’s website permanently.
In that case, you will not be able to connect to that website with the same IP. But if you really
want to connect to the website in future, the only solution will be to talk to the system
administrator of the target website, or create a new instance of the server with a different IP
with the help of your VPS service provider.

Having warned you, let me assure you that all tests in this tutorial are safe enough and out
of what system administrators generally call "system abuse" practices.

Apache Bench

6

In this chapter, we will guide you how to set up your environment for Apache Bench on your
VPS.

System Requirement
 Memory: 128 MB

 Disk Space: No minimum requirement

 Operating System: No minimum requirement

Installing Apache Bench
Apache Bench is a stand-alone application, and has no dependencies on the Apache web
server installation. The following is a two-step process to install Apache Bench.

Step 1: Update package database.

apt-get update

Please note that symbol # before a terminal command means that root user is issuing that
command.

Step 2: Install apache2 utils package to get access to Apache Bench.

apt-get install apache2-utils

Apache Bench is now installed. If you want to test a web application hosted on the same VPS,
then it is enough to install the Apache web server only:

apt-get install apache2

Being an Apache utility, Apache Bench is automatically installed on installation of the Apache
web server.

Verifying Apache Bench Installation
Let us now see how to verify Apache Bench Installation. The following code will help verify
the installation:

ab -V

Output

2. Apache Bench ─ Environment Setup

Apache Bench

7

This is ApacheBench, Version 2.3 <$Revision: 1604373 $>

Copyright 1996 Adam Twiss, Zeus Technology Ltd, http://www.zeustech.net/

Licensed to The Apache Software Foundation, http://www.apache.org/

When you see the above terminal output, it means you have successfully installed Apache
Bench.

Creating a Privileged Sudo User
From the safety point of view, it is considered a good practice for system administrator to
create a sudo user instead of working as root. We will create a test user, named test, for the
purpose:

useradd -m -d /home/test -g sudo test

Let us set the password for the new user:

passwd test

System will prompt for a new password for the user test. You can enter a simple password as
we are just testing, and not deploying to the production server. Usually the sudo command
will prompt you to provide the sudo user password; it is recommended not to use complicated
password as the process becomes cumbersome.

Output

Enter new UNIX password:

Retype new UNIX password:

passwd: password updated successfully

Testing Apache.org Website
In this section, we will test the Apache.org Website. Let us first switch to the sudo user test:

su test

To begin with, we will test the website of Apache organization, https://www.apache.org/. We
will first run the command, and then understand the output:

$ ab -n 100 -c 10 https://www.apache.org/

Here -n is the number of requests to perform for the benchmarking session. The default is to
just perform a single request which usually leads to non-representative benchmarking results.

And -c is the concurrency and denotes the number of multiple requests to perform at a time.
Default is one request at a time.

Apache Bench

8

So in this test, Apache Bench will make 100 requests with concurrency 10 to the Apache
organization server.

Output

This is ApacheBench, Version 2.3 <$Revision: 1604373 $>

Copyright 1996 Adam Twiss, Zeus Technology Ltd, http://www.zeustech.net/

Licensed to The Apache Software Foundation, http://www.apache.org/

Benchmarking www.apache.org (be patient).....done

Server Software: Apache/2.4.7

Server Hostname: www.apache.org

Server Port: 443

SSL/TLS Protocol: TLSv1.2,ECDHE-RSA-AES256-GCM-SHA384,2048,256

Document Path: /

Document Length: 58769 bytes

Concurrency Level: 10

Time taken for tests: 1.004 seconds

Complete requests: 100

Failed requests: 0

Total transferred: 5911100 bytes

HTML transferred: 5876900 bytes

Requests per second: 99.56 [#/sec] (mean)

Time per request: 100.444 [ms] (mean)

Time per request: 10.044 [ms] (mean, across all concurrent requests)

Transfer rate: 5747.06 [Kbytes/sec] received

Connection Times (ms)

 min mean[+/-sd] median max

Connect: 39 46 30.9 41 263

Processing: 37 40 21.7 38 255

Waiting: 12 15 21.7 13 230

Apache Bench

9

Total: 77 86 37.5 79 301

Percentage of the requests served within a certain time (ms)

 50% 79

 66% 79

 75% 80

 80% 80

 90% 82

 95% 84

 98% 296

 99% 301

 100% 301 (longest request)

Having run our first test, it will be easy to recognize the pattern of use for this command
which is as follows:

ab [options] URL

where,

 ab: Apache Bench command

 options: flags for particular task we want to perform

 URL: path url we want to test

Understanding the Output Values
We need to understand the different metrics to understand the various output values returned
by ab. Here goes the list:

 Server Software ─ It is the name of the web server returned in the HTTP header of
the first successful return.

 Server Hostname ─ It is the DNS or IP address given on the command line.

 Server Port ─ It is the port to which ab is connecting. If no port is given on the
command line, this will default to 80 for http and 443 for https.

 SSL/TLS Protocol ─ This is the protocol parameter negotiated between the client and
server. This will only be printed if SSL is used.

 Document Path ─ This is the request URI parsed from the command line string.

 Document Length ─ It is the size in bytes of the first successfully returned document.
If the document length changes during testing, the response is considered an error.

Apache Bench

10

 Concurrency Level ─ This is the number of concurrent clients (equivalent to web
browsers) used during the test.

 Time Taken for Tests ─ This is the time taken from the moment the first socket
connection is created to the moment the last response is received.

 Complete Requests ─ The number of successful responses received.

 Failed Requests ─ The number of requests that were considered a failure. If the
number is greater than zero, another line will be printed showing the number of
requests that failed due to connecting, reading, incorrect content length, or exceptions.

 Total Transferred ─ The total number of bytes received from the server. This number
is essentially the number of bytes sent over the wire.

 HTML Transferred ─ The total number of document bytes received from the server.
This number excludes bytes received in HTTP headers

 Requests per second ─ This is the number of requests per second. This value is the
result of dividing the number of requests by the total time taken.

 Time per request ─ The average time spent per request. The first value is calculated
with the formula concurrency * timetaken * 1000 / done while the second value is
calculated with the formula timetaken * 1000 / done

 Transfer rate ─ The rate of transfer as calculated by the formula totalread / 1024 /
timetaken.

Quick Analysis of the Load Testing Output
Having learned about the headings of the output values from the ab command, let us try to
analyze and understand the output values for our initial test:

 Apache organisation is using their own web Server Software: Apache (version 2.4.7)

 Server is listening on Port 443 because of https. Had it been http, it would have been
80 (default).

 Total data transferred is 58769 bytes for 100 requests.

 Test completed in 1.004 seconds. There are no failed requests.

 Requests per seconds: 99.56. This is considered a pretty good number.

 Time per request: 100.444 ms (for 10 concurrent requests). So across all requests, it
is 100.444 ms/10 = 10.044 ms.

 Transfer rate: 1338.39 [Kbytes/sec] received.

 In connection time statistics, you can observe that many requests had to wait for few
seconds. This may be due to apache web server putting requests in wait queue.

Apache Bench

11

In our first test, we had tested an application (i.e., www.apache.org) hosted on a different
server. In the later part of the tutorial, we will be testing our sample web-applications hosted
on the same server from which we will be running the ab tests. This is for the ease of learning
and demonstration purpose. Ideally, the host node and testing node should be different for
accurate measurement.

To better learn ab, you should compare and observe how the output values vary for different
cases as we move forward in this tutorial.

Plotting the Output of Apache Bench
Here we will plot the relevant outcome to see how much time the server takes as the number
of requests increases. For that, we will add the -g option in the previous command followed
by the file name (here out.data) in which the ab output data will be saved:

$ ab -n 100 -c 10 -g out.data https://www.apache.org/

Let us now see the out.data before we create a plot:

$ less out.data

Output

starttime seconds ctime dtime ttime wait

Tue May 30 12:11:37 2017 1496160697 40 38 77 13

Tue May 30 12:11:37 2017 1496160697 42 38 79 13

Tue May 30 12:11:37 2017 1496160697 41 38 80 13

...

Let us now understand the column headers in the out.data file:

 starttime: This is the date and time at which the call started.

 seconds: Same as starttime but in the Unix timestamp format (date -d @1496160697
returns starttime output).

 ctime: This is the Connection Time.

 dtime: This is the Processing Time.

 ttime: This is the Total Time (it is the sum of ctime and dtime, mathematically ttime
= ctime + dtime).

 wait: This is the Waiting Time.

For a pictorial visualization of how these multiple items are related to each other, take a look
at the following image:

Apache Bench

12

If we are working over terminal or where graphics are not available, gnuplot is a great option.
We will quickly understand it by going through the following steps.

Let us install and launch gnuplot:

$ sudo apt-get install gnuplot

$ gnuplot

Output

 G N U P L O T

 Version 4.6 patchlevel 6 last modified September 2014

 Build System: Linux x86_64

 Copyright (C) 1986-1993, 1998, 2004, 2007-2014

 Thomas Williams, Colin Kelley and many others

 gnuplot home: http://www.gnuplot.info

 faq, bugs, etc: type "help FAQ"

 immediate help: type "help" (plot window: hit 'h')

Terminal type set to 'qt'

gnuplot>

As we are working over terminal and supposing that graphics are not available, we can
choose the dumb terminal which will give output in ASCII over the terminal itself. This helps
us get an idea what our plot looks like with this quick tool. Let us now prepare the terminal
for ASCII plot

Apache Bench

13

gnuplot> set terminal dumb

Output

Terminal type set to 'dumb'

Options are 'feed size 79, 24'

As, our gnuplot terminal is now ready for ASCII plot, let us plot the data from the out.data
file:

gnuplot> plot "out.data" using 9 w l

Output

 1400 ++-----+------+-----+------+------+------+------+-----+------+-----++

 + + + + + + +"out.data" using 9 ****** +

 | |

 1200 ++ **

 | ******************* |

 1000 ++ * ++

 | * |

 | * |

 800 ++ * ++

 | * |

 | * |

 600 ++ * ++

 | * |

 | * |

 400 ++ * ++

 | * |

 200 ++ * ++

 | * |

 +**** + + + + + + + + + +

 0 ++-----+------+-----+------+------+------+------+-----+------+-----++

 0 10 20 30 40 50 60 70 80 90 100

We have plotted the ttime, total time (in ms) from column 9, with respect to the number of
requests. We can notice that for the initial ten requests, the total time was in the nearly 100

Apache Bench

14

ms, for next 30 requests (from 10th to 40th), it increased to 1100 ms, and so on. Your plot
must be different depending on your out.data.

Apache Bench

15

In the previous chapter, we understood the basic use of the Apache Bench to test a third
party website. In this section, we will use this tool to test a web application on our own server.
To keep the tutorial self-contained to the extent possible, we have chosen to install a python
application for the demonstration purpose; you can choose any other language like PHP or
Ruby depending on your expertise level.

Installing Python
Generally, Python is installed by default on Linux servers.

Installing Bottle Framework and Creating a Simple Application
Bottle is a micro-framework written in python for creating web applications, and pip is a
python package manager. Type the following command in terminal to install Bottle:

$ sudo apt-get install python-pip

$ sudo pip install bottle

Let us now create a small Bottle application. For that, create a directory and move inside it:

$ mkdir webapp

$ cd webapp

We will create a new python script, app.py, inside the webapp directory:

$ vim app.py

Now, write the following code in the app.py file:

from bottle import Bottle, run

app = Bottle()

@app.route('/')

@app.route('/hello')

def hello():

 return "Hello World!"

3. Apache Bench ─ Testing Our Sample
Application

Apache Bench

16

run(app, host='localhost', port=8080)

When you have added the above lines, save and close the file. Having saved the file, we can
run the python script to launch the application:

$ python app.py

Output

Bottle v0.12.7 server starting up (using WSGIRefServer())...

Listening on http://localhost:8080/

Hit Ctrl-C to quit.

This output shows that our application is running on the local machine at the host
http://localhost and listening on the port 8080.

Let us check if our app is responding properly to the HTTP requests. As this terminal cannot
take any input without quitting serving the Bottle application, we need to login to our VPS
with another terminal. After logging into the VPS with another terminal, you can navigate to
your application by typing the following code in the new terminal.

$ lynx http://localhost:8080/

Lynx is a command line browser and is usually installed by default in various Linux
distributions like Debian and Ubuntu. If you see the following output, it means your app is
working fine.

Output

If you see the above output, that means our application is live and ready for testing.

Apache Bench

17

Testing the Application with Developmental Web Server
Please note that there is a bug in ab, and it is not able to test the application on the localhost.
So we will change the host from localhost to 127.0.0.1 in the app.py file. So the file will
change to the following:

from bottle import Bottle, run

app = Bottle()

@app.route('/')

@app.route('/hello')

def hello():

 return "Hello World!"

run(app, host='127.0.0.1', port=8080)

Let us now test our app by typing the following command on the same terminal on which ran
the lynx command:

$ ab -n 100 -c 10 http://127.0.0.1:8080/hello

Output

This is ApacheBench, Version 2.3 <$Revision: 1604373 $>

Copyright 1996 Adam Twiss, Zeus Technology Ltd, http://www.zeustech.net/

Licensed to The Apache Software Foundation, http://www.apache.org/

Benchmarking 127.0.0.1 (be patient).....done

Server Software: WSGIServer/0.1

Server Hostname: 127.0.0.1

Server Port: 8080

Document Path: /hello

Document Length: 12 bytes

Apache Bench

18

Concurrency Level: 10

Time taken for tests: 0.203 seconds

Complete requests: 100

Failed requests: 0

Total transferred: 16500 bytes

HTML transferred: 1200 bytes

Requests per second: 493.78 [#/sec] (mean)

Time per request: 20.252 [ms] (mean)

Time per request: 2.025 [ms] (mean, across all concurrent requests)

Transfer rate: 79.56 [Kbytes/sec] received

Connection Times (ms)

 min mean[+/-sd] median max

Connect: 0 0 0.1 0 0

Processing: 1 6 28.2 2 202

Waiting: 1 6 28.2 2 202

Total: 1 6 28.2 2 202

Percentage of the requests served within a certain time (ms)

 50% 2

 66% 2

 75% 2

 80% 2

 90% 2

 95% 2

 98% 202

 99% 202

 100% 202 (longest request)

While the output on the first terminal will be (100 times) as follows:

...

127.0.0.1 - - [10/Jun/2017 04:30:26] "GET /hello HTTP/1.0" 200 12

127.0.0.1 - - [10/Jun/2017 04:30:26] "GET /hello HTTP/1.0" 200 12

127.0.0.1 - - [10/Jun/2017 04:30:26] "GET /hello HTTP/1.0" 200 12

...

Apache Bench

19

End of ebook preview

If you liked what you saw…

Buy it from our store @ https://store.tutorialspoint.com

https://store.tutorialspoint.com/

