
Bokeh

 i

Bokeh

 ii

About the Tutorial

This tutorial will help you in understanding about Bokeh which is a data visualization library

for Python. Here, you will learn about how to use Bokeh to create data applications,

interactive plots and dashboards.

Audience

This tutorial is designed for software programmers who want to learn the basics of Bokeh

and its programming concepts in simple and easy way. This tutorial will give you enough

understanding on various functionalities of Bokeh with illustrative examples.

Prerequisites

Before proceeding, we assume that the reader has basic understanding in programming

language Python and interactive data visualization.

Copyright & Disclaimer

 Copyright 2019 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

Bokeh

 iii

Table of Contents

About the Tutorial ... ii

Audience .. ii

Prerequisites .. ii

Copyright & Disclaimer .. ii

Table of Contents ... iii

1. Bokeh — Introduction ... 1

Features ... 1

2. Bokeh — Environment Setup ... 2

3. Bokeh — Getting Started .. 3

4. Bokeh — Jupyter Notebook .. 5

5. Bokeh — Basic Concepts ... 6

6. Bokeh — Plots with Glyphs ... 7

Types of Plots .. 7

Line plot ... 8

Bar plot .. 9

Patch plot .. 11

Scatter Markers ... 13

7. Bokeh — Area Plots .. 16

varea() ... 16

harea() ... 17

8. Bokeh — Circle Glyphs .. 19

9. Bokeh — Rectangle, Oval and Polygon .. 21

10. Bokeh — Wedges and Arcs ... 22

11. Bokeh — Specialized Curves ... 24

beizer()... 24

quadratic() ... 25

Bokeh

 iv

12. Bokeh — Setting Ranges ... 27

13. Bokeh — Axes ... 28

Categorical Axes .. 28

Log Scale Axes .. 31

Twin Axes ... 33

14. Bokeh — Annotations and Legends... 36

15. Bokeh ― Pandas ... 40

16. Bokeh — ColumnDataSource .. 43

17. Bokeh — Filtering Data ... 46

18. Bokeh ― Layouts .. 50

19. Bokeh — Plot Tools ... 54

20. Bokeh — Styling Visual Attributes ... 56

Line properties... 56

Fill properties ... 56

Text properties .. 56

21. Bokeh — Customising legends .. 58

22. Bokeh ― Adding Widgets ... 60

Button .. 60

Slider .. 63

RadioGroup.. 64

Select ... 65

Tab widget ... 69

23. Bokeh — Server .. 71

24. Bokeh — Using Bokeh Subcommands ... 74

25. Bokeh — Exporting Plots ... 76

26. Bokeh — Embedding Plots and Apps .. 78

27. Bokeh ― Extending Bokeh .. 80

28. Bokeh — WebGL ... 81

Bokeh

 v

29. Bokeh — Developing with JavaScript .. 83

Bokeh

 1

Bokeh is a data visualization library for Python. Unlike Matplotlib and Seaborn, they are

also Python packages for data visualization, Bokeh renders its plots using HTML and

JavaScript. Hence, it proves to be extremely useful for developing web based dashboards.

The Bokeh project is sponsored by NumFocus (https://numfocus.org/). NumFocus also

supports PyData, an educational program, involved in development of other important

tools such as NumPy, Pandas and more. Bokeh can easily connect with these tools and

produce interactive plots, dashboards and data applications.

Features

Bokeh primarily converts the data source into a JSON file which is used as input for

BokehJS, a JavaScript library, which in turn is written in TypeScript and renders the

visualizations in modern browsers.

Some of the important features of Bokeh are as follows:

Flexibility

Bokeh is useful for common plotting requirements as well as custom and complex use-

cases.

Productivity

Bokeh can easily interact with other popular Pydata tools such as Pandas and Jupyter

notebook.

Interactivity

This is an important advantage of Bokeh over Matplotlib and Seaborn, both produce static

plots. Bokeh creates interactive plots that change when the user interacts with them. You

can give your audience a wide range of options and tools for inferring and looking at data

from various angles so that user can perform “what if” analysis.

Powerful

By adding custom JavaScript, it is possible to generate visualizations for specialised use-

cases.

Sharable

Plots can be embedded in output of Flask or Django enabled web applications. They can

also be rendered in Jupyter notebooks.

Open source

Bokeh is an open source project. It is distributed under Berkeley Source Distribution (BSD)

license. Its source code is available on https://github.com/bokeh/bokeh.

1. Bokeh — Introduction

https://numfocus.org/
https://github.com/bokeh/bokeh

Bokeh

 2

Bokeh can be installed on CPython versions 2.7 and 3.5+ only both with Standard

distribution and Anaconda distribution. Current version of Bokeh at the time of writing this

tutorial is ver. 1.3.4. Bokeh package has the following dependencies:

 jinja2 >=2.7

 numpy >=1.7.1

 packaging >=16.8

 pillow >=4.0

 python-dateutil >=2.1

 pyyaml >=3.10

 six >=1.5.2

 tornado >=4.3

Generally, above packages are installed automatically when Bokeh is installed using

Python’s built-in Package manager PIP as shown below:

pip3 install bokeh

If you are using Anaconda distribution, use conda package manager as follows:

conda install bokeh

In addition to the above dependencies, you may require additional packages such as

pandas, psutil, etc., for specific purposes.

To verify if Bokeh has been successfully installed, import bokeh package in Python terminal

and check its version:

>>> import bokeh

>>> bokeh.__version__

'1.3.4'

2. Bokeh — Environment Setup

Bokeh

 3

Creating a simple line plot between two numpy arrays is very simple. To begin with, import

following functions from bokeh.plotting modules:

from bokeh.plotting import figure, output_file, show

The figure() function creates a new figure for plotting.

The output_file() function is used to specify a HTML file to store output.

The show() function displays the Bokeh figure in browser on in notebook.

Next, set up two numpy arrays where second array is sine value of first.

import numpy as np

import math

x=np.arange(0, math.pi*2, 0.05)

y=np.sin(x)

To obtain a Bokeh Figure object, specify the title and x and y axis labels as below:

p = figure(title="sine wave example", x_axis_label='x', y_axis_label='y')

The Figure object contains a line() method that adds a line glyph to the figure. It needs

data series for x and y axes.

p.line(x, y, legend="sine", line_width=2)

Finally, set the output file and call show() function.

output_file("sine.html")

show(p)

This will render the line plot in ‘sine.html’ and will be displayed in browser.

Complete code and its output is as follows:

from bokeh.plotting import figure, output_file, show

import numpy as np

import math

x=np.arange(0, math.pi*2, 0.05)

y=np.sin(x)

output_file("sine.html")

p = figure(title="sine wave example", x_axis_label='x', y_axis_label='y')

3. Bokeh — Getting Started

Bokeh

 4

p.line(x, y, legend="sine", line_width=2)

show(p)

Output on browser

Bokeh

 5

Displaying Bokeh figure in Jupyter notebook is very similar to the above. The only change

you need to make is to import output_notebook instead of output_file from bokeh.plotting

module.

from bokeh.plotting import figure, output_notebook, show

Call to output_notebook() function sets Jupyter notebook’s output cell as the destination

for show() function as shown below:

output_notebook()

show(p)

Enter the code in a notebook cell and run it. The sine wave will be displayed inside the

notebook.

4. Bokeh — Jupyter Notebook

Bokeh

 6

Bokeh package offers two interfaces using which various plotting operations can be

performed.

bokeh.models

This module is a low level interface. It provides great deal of flexibility to the application

developer in developing visualizations. A Bokeh plot results in an object containing visual

and data aspects of a scene which is used by BokehJS library. The low-level objects that

comprise a Bokeh scene graph are called Models.

bokeh.plotting

This is a higher level interface that has functionality for composing visual glyphs. This

module contains definition of Figure class. It actually is a subclass of plot class defined in

bokeh.models module.

Figure class simplifies plot creation. It contains various methods to draw different

vectorized graphical glyphs. Glyphs are the building blocks of Bokeh plot such as lines,

circles, rectangles, and other shapes.

bokeh.application

Bokeh package Application class which is a lightweight factory for creating Bokeh

Documents. A Document is a container for Bokeh Models to be reflected to the client side

BokehJS library.

bokeh.server

It provides customizable Bokeh Server Tornadocore application. Server is used to share

and publish interactive plots and apps to an audience of your choice.

5. Bokeh — Basic Concepts

Bokeh

 7

Any plot is usually made up of one or many geometrical shapes such as line, circle,

rectangle, etc. These shapes have visual information about the corresponding set of data.

In Bokeh terminology, these geometrical shapes are called gylphs. Bokeh plots

constructed using bokeh.plotting interface use a default set of tools and styles.

However, it is possible to customize the styles using available plotting tools.

Types of Plots

Different types of plots created using glyphs are as given below:

Line plot

This type of plot is useful for visualizing the movements of points along the x-and y-axes

in the form of a line. It is used to perform time series analytics.

Bar plot

This is typically useful for indicating the count of each category of a particular column or

field in your dataset.

Patch plot

This plot indicates a region of points in a particular shade of color. This type of plot is used

to distinguish different groups within the same dataset.

Scatter plot

This type of plot is used to visualize relationship between two variables and to indicate the

strength of correlation between them.

Different glyph plots are formed by calling appropriate method of Figure class. The Figure

object is obtained by following constructor:

from bokeh.plotting import figure

figure(**kwargs)

The Figure object can be customised by various keyword arguments.

Title Set the title for the plot

x_axis_label Set title of x axis

y_axis_label Set title for y axis

plot_width Set width of figure

plot_height Set height of figure

6. Bokeh — Plots with Glyphs

Bokeh

 8

Line plot

The line() method of Figure object adds a line glyph to the Bokeh figure. It needs x and

y parameters as data arrays for showing their linear relationship.

from bokeh.plotting import figure, show

fig=figure()

fig.line(x,y)

show(fig)

Following code renders a simple line plot between two sets of values in the form Python

list objects:

from bokeh.plotting import figure, output_file, show

x=[1,2,3,4,5]

y=[2,4,6,8,10]

output_file('line.html')

fig=figure(title='Line Plot example', x_axis_label='x', y_axis_label='y')

fig.line(x,y)

show(fig)

Output

Bokeh

 9

Bar plot

The figure object has two different methods for constructing bar plot

hbar()

The bars are shown horizontally across plot width. The hbar() method has the following

parameters:

y The y coordinates of the centers of the horizontal bars.

height The heights of the vertical bars.

right The x coordinates of the right edges.

left The x coordinates of the left edges.

Following code is an example of horizontal bar using Bokeh.

from bokeh.plotting import figure, output_file, show

fig = figure(plot_width=400, plot_height=200)

Bokeh

 10

fig.hbar(y=[2,4,6], height=1, left=0, right=[1,2,3], color="Cyan")

output_file('bar.html')

show(fig)

Output

vbar()

The bars are shown vertically across plot height. The vbar() method has following

parameters:

x The x-coordinates of the centers of the vertical bars.

width The widths of the vertical bars.

top The y-coordinates of the top edges.

bottom The y-coordinates of the bottom edges.

Following code displays vertical bar plot:

from bokeh.plotting import figure, output_file, show

fig = figure(plot_width=200, plot_height=400)

fig.vbar(x=[1,2,3], width=0.5, bottom=0, top=[2,4,6], color="Cyan")

output_file('bar.html')

show(fig)

Output

Bokeh

 11

Patch plot

A plot which shades a region of space in a specific color to show a region or a group having

similar properties is termed as a patch plot in Bokeh. Figure object has patch() and

patches() methods for this purpose.

patch()

This method adds patch glyph to given figure. The method has the following arguments:

x The x-coordinates for the points of the patch.

y The y-coordinates for the points of the patch.

A simple patch plot is obtained by the following Python code:

from bokeh.plotting import figure, output_file, show

p = figure(plot_width=300, plot_height=300)

p.patch(x=[1, 3,2,4], y=[2,3,5,7], color="green")

output_file('patch.html')

show(p)

Bokeh

 12

Output

patches()

This method is used to draw multiple polygonal patches. It needs following arguments:

xs The x-coordinates for all the patches, given as a “list of lists”.

ys The y-coordinates for all the patches, given as a “list of lists”.

As an example of patches() method, run the following code:

from bokeh.plotting import figure, output_file, show

xs = [[5,3,4], [2,4,3], [2,3,5,4]]

ys = [[6,4,2], [3,6,7], [2,4,7,8]]

fig = figure()

fig.patches(xs, ys, fill_color = ['red', 'blue', 'black'], line_color =

'white')

output_file('patch_plot.html')

show(fig)

Output

Bokeh

 13

Scatter Markers

Scatter plots are very commonly used to determine the bi-variate relationship between

two variables. The enhanced interactivity is added to them using Bokeh. Scatter plot is

obtained by calling scatter() method of Figure object. It uses the following parameters:

x values or field names of center x coordinates

y values or field names of center y coordinates

size values or field names of sizes in screen units

marker values or field names of marker types

color set fill and line color

Following marker type constants are defined in Bokeh:

Bokeh

 14

 Asterisk

 Circle

 CircleCross

 CircleX

 Cross

 Dash

 Diamond

 DiamondCross

 Hex

 InvertedTriangle

 Square

 SquareCross

 SquareX

 Triangle

 X

Following Python code generates scatter plot with circle marks.

from bokeh.plotting import figure, output_file, show

fig = figure()

fig.scatter([1, 4, 3, 2, 5], [6, 5, 2, 4, 7], marker="circle", size=20,

fill_color="grey")

output_file('scatter.html')

show(fig)

Output

Bokeh

 15

Bokeh

 16

Area plots are filled regions between two series that share a common index. Bokeh's Figure

class has two methods as follows:

varea()

Output of the varea() method is a vertical directed area that has one x coordinate array,

and two y coordinate arrays, y1 and y2, which will be filled between.

x The x-coordinates for the points of the area.

y1 The y-coordinates for the points of one side of the area.

y2 The y-coordinates for the points of the other side of the area.

Example

from bokeh.plotting import figure, output_file, show

fig = figure()

x=[1, 2, 3, 4, 5]

y1=[2, 6, 4, 3, 5]

y2=[1, 4, 2, 2, 3]

fig.varea(x=x,y1=y1,y2=y2)

output_file('area.html')

show(fig)

Output

7. Bokeh — Area Plots

Bokeh

 17

harea()

The harea() method on the other hand needs x1, x2 and y parameters.

x1 The x-coordinates for the points of one side of the area.

x2 The x-coordinates for the points of the other side of the area.

y The y-coordinates for the points of the area.

Example

from bokeh.plotting import figure, output_file, show

fig = figure()

y=[1, 2, 3, 4, 5]

Bokeh

 18

x1=[2, 6, 4, 3, 5]

x2=[1, 4, 2, 2, 3]

fig.harea(x1=x1,x2=x2,y=y)

output_file('area.html')

show(fig)

Output

Bokeh

 19

The figure object has many methods using which vectorised glyphs of different shapes

such as circle, rectangle, polygon, etc. can, be drawn.

Following methods are available for drawing circle glyphs:

circle()

The circle() method adds a circle glyph to the figure and needs x and y coordinates of its

center. Additionally, it can be configured with the help of parameters such as fill_color,

line-color, line_width etc.

circle_cross()

The circle_cross() method adds circle glyph with a ‘+’ cross through the center.

circle_x()

The circle_x() method adds circle with an ‘X’ cross through the center.

Following example shows use of various circle glyphs added to Bokeh figure:

from bokeh.plotting import figure, output_file, show

plot = figure(plot_width=300, plot_height=300)

plot.circle(x=[1, 2, 3], y=[3,7,5], size=20, fill_color='red')

plot.circle_cross(x=[2,4,6], y=[5,8,9], size=20,

fill_color='blue',fill_alpha=0.2, line_width=2)

plot.circle_x(x=[5,7,2], y=[2,4,9], size=20, fill_color='green',fill_alpha=0.6,

line_width=2)

show(plot)

Output

8. Bokeh — Circle Glyphs

Bokeh

 20

Bokeh

 21

It is possible to render rectangle, ellipse and polygons in a Bokeh figure. The rect()

method of Figure class adds a rectangle glyph based on x and y coordinates of center,

width and height. The square() method on the other hand has size parameter to decide

dimensions.

The ellipse() and oval() methods adds an ellipse and oval glyph. They use similar signature

to that of rect() having x, y,w and h parameters. Additionally, angle parameter determines

rotation from horizontal.

Following code shows use of different shape glyph methods:

from bokeh.plotting import figure, output_file, show

fig = figure(plot_width=300, plot_height=300)

fig.rect(x=10,y=10,width=100, height=50, width_units='screen',

height_units='screen')

fig.square(x=2,y=3,size=80, color='red')

fig.ellipse(x=7,y=6, width=30, height=10, fill_color=None, line_width=2)

fig.oval(x=6,y=6,width=2, height=1, angle=-0.4)

show(fig)

Output

9. Bokeh — Rectangle, Oval and Polygon

Bokeh

 22

The arc() method draws a simple line arc based on x and y coordinates, start and end

angles and radius. Angles are given in radians whereas radius may be in screen units or

data units. The wedge is a filled arc.

The wedge() method has same properties as arc() method. Both methods have provision

of optional direction property which may be clock or anticlock that determines the direction

of arc/wedge rendering. The annular_wedge() function renders a filled area between to

arcs of inner and outer radius.

Here is an example of arc and wedge glyphs added to Bokeh figure:

from bokeh.plotting import figure, output_file, show

import math

fig = figure(plot_width=300, plot_height=300)

fig.arc(x=3, y=3, radius=50, radius_units='screen', start_angle=0.0,

end_angle=math.pi/2)

fig.wedge(x=3, y=3, radius=30, radius_units='screen',

 start_angle=0, end_angle=math.pi, direction='clock')

fig.annular_wedge(x=3,y=3, inner_radius=100,

outer_radius=75,outer_radius_units='screen',

 inner_radius_units='screen',start_angle=0.4,

end_angle=4.5,color="green", alpha=0.6)

show(fig)

Output

10. Bokeh — Wedges and Arcs

Bokeh

 23

Bokeh

 24

The bokeh.plotting API supports methods for rendering following specialised curves:

beizer()

This method adds a Bézier curve to the figure object. A Bézier curve is a parametric curve

used in computer graphics. Other uses include the design of computer fonts and animation,

user interface design and for smoothing cursor trajectory.

In vector graphics, Bézier curves are used to model smooth curves that can be scaled

indefinitely. A "Path" is combination of linked Bézier curves.

The beizer() method has following parameters which are defined:

x0 The x-coordinates of the starting points.

y0 The y-coordinates of the starting points.

x1 The x-coordinates of the ending points.

y1 The y-coordinates of the ending points.

cx0 The x-coordinates of first control points.

cy0 The y-coordinates of first control points.

cx1 The x-coordinates of second control points.

cy1 The y-coordinates of second control points.

Default value for all parameters is None.

Following code generates a HTML page showing a Bézier curve and parabola in Bokeh plot:

x=2

y=4

xp02=x+0.4

xp01=x+0.1

xm01=x-0.1

yp01=y+0.2

ym01=y-0.2

fig=figure(plot_width=300, plot_height=300)

fig.bezier(x0=x, y0=y, x1=xp02, y1=y, cx0=xp01, cy0=yp01,

 cx1=xm01, cy1=ym01, line_color="red", line_width=2)

Output

11. Bokeh — Specialized Curves

Bokeh

 25

quadratic()

This method adds a parabola glyph to bokeh figure. The function has same parameters

as beizer(), except cx0 and cx1.

The code given below generates a quadratic curve.

x=2

y=4

xp02=x+0.3

xp01=x+0.2

xm01=x-0.4

yp01=y+0.1

ym01=y-0.2

 x=x,

 y=y,

 xp02=x+0.4,

 xp01=x+0.1,

 yp01=y+0.2,

fig.quadratic(x0=x, y0=y, x1=x+0.4, y1=y+0.01, cx=x+0.1,

 cy=y+0.2, line_color="blue", line_width=3)

Output

Bokeh

 26

Bokeh

 27

Numeric ranges of data axes of a plot are automatically set by Bokeh taking into

consideration the dataset under process. However, sometimes you may want to define the

range of values on x and y axis explicitly. This is done by assigning x_range and y_range

properties to a figure() function.

These ranges are defined with the help of range1d() function.

Example

xrange=range1d(0,10)

To use this range object as x_range property, use the below code:

fig=figure(x,y,x_range=xrange)

12. Bokeh — Setting Ranges

Bokeh

 28

In this chapter, we shall discuss about various types of axes.

Axes Description

Categorical Axes The bokeh plots show numerical data

along both x and y axes. In order to use

categorical data along either of axes, we

need to specify a FactorRange to specify

categorical dimensions for one of them.

Log Scale Axes If there exists a power law relationship

between x and y data series, it is

desirable to use log scales on both axes.

Twin Axes It may be needed to show multiple axes

representing varying ranges on a single

plot figure. The figure object can be so

configured by defining extra_x_range

and extra_y_range properties

Categorical Axes

In the examples so far, the Bokeh plots show numerical data along both x and y axes. In

order to use categorical data along either of axes, we need to specify a FactorRange to

specify categorical dimensions for one of them. For example, to use strings in the given

list for x axis:

langs=['C', 'C++', 'Java', 'Python', 'PHP']

fig=figure(x_range=langs, plot_width=300, plot_height=300)

With following example, a simple bar plot is displayed showing number of students enrolled

for various courses offered.

from bokeh.plotting import figure, output_file, show

langs=['C', 'C++', 'Java', 'Python', 'PHP']

students=[23,17,35,29,12]

fig=figure(x_range=langs, plot_width=300, plot_height=300)

fig.vbar(x=langs, top=students, width=0.5)

show(fig)

Output

13. Bokeh — Axes

Bokeh

 29

To show each bar in different colour, set color property of vbar() function to list of color

values.

cols=['red','green','orange','navy', 'cyan']

fig.vbar(x=langs, top=students, color=cols,width=0.5)

Output

To render a vertical (or horizontal) stacked bar using vbar_stack() or hbar_stack()

function, set stackers property to list of fields to stack successively and source property to

a dict object containing values corresponding to each field.

Bokeh

 30

In following example, sales is a dictionary showing sales figures of three products in three

months.

from bokeh.plotting import figure, output_file, show

products=['computer','mobile','printer']

months=['Jan','Feb','Mar']

sales={'products':products,

 'Jan':[10,40,5],

 'Feb':[8,45,10],

 'Mar':[25,60,22]}

cols=['red','green','blue']#,'navy', 'cyan']

fig=figure(x_range=products, plot_width=300, plot_height=300)

fig.vbar_stack(months, x='products', source=sales, color=cols,width=0.5)

show(fig)

Output

A grouped bar plot is obtained by specifying a visual displacement for the bars with the

help of dodge() function in bokeh.transform module.

The dodge() function introduces a relative offset for each bar plot thereby achieving a

visual impression of group. In following example, vbar() glyph is separated by an offset

of 0.25 for each group of bars for a particular month.

from bokeh.plotting import figure, output_file, show

from bokeh.transform import dodge

products=['computer','mobile','printer']

Bokeh

 31

months=['Jan','Feb','Mar']

sales={'products':products,

 'Jan':[10,40,5],

 'Feb':[8,45,10],

 'Mar':[25,60,22]}

fig=figure(x_range=products, plot_width=300, plot_height=300)

fig.vbar(x=dodge('products', -0.25, range=fig.x_range), top='Jan',

 width=0.2,source=sales, color="red")

fig.vbar(x=dodge('products', 0.0, range=fig.x_range), top='Feb',

 width=0.2, source=sales,color="green")

fig.vbar(x=dodge('products', 0.25, range=fig.x_range), top='Mar',

 width=0.2,source=sales,color="blue")

show(fig)

Output

Log Scale Axes

When values on one of the axes of a plot grow exponentially with linearly increasing values

of another, it is often necessary to have the data on former axis be displayed on a log

Bokeh

 32

scale. For example, if there exists a power law relationship between x and y data series,

it is desirable to use log scales on both axes.

Bokeh.plotting API's figure() function accepts x_axis_type and y_axis_type as arguments

which may be specified as log axis by passing "log" for the value of either of these

parameters.

First figure shows plot between x and 10x on a linear scale. In second figure y_axis_type

is set to 'log'

from bokeh.plotting import figure, output_file, show

x = [0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0]

y = [10**i for i in x]

fig = figure(title='Linear scale example',plot_width=400, plot_height=400)

fig.line(x, y, line_width=2)

show(fig)

Output

Now change figure() function to configure y_axis_type=’log’

fig=figure(title='Linear scale example',plot_width=400, plot_height=400,

y_axis_type="log")

Bokeh

 33

Output

Twin Axes

In certain situations, it may be needed to show multiple axes representing varying ranges

on a single plot figure. The figure object can be so configured by defining extra_x_range

and extra_y_range properties. While adding new glyph to the figure, these named ranges

are used.

We try to display a sine curve and a straight line in same plot. Both glyphs have y axes

with different ranges. The x and y data series for sine curve and line are obtained by the

following:

from numpy import pi, arange, sin, linspace

x = arange(-2*pi, 2*pi, 0.1)

y = sin(x)

y2 = linspace(0, 100, len(y))

Here, plot between x and y represents sine relation and plot between x and y2 is a straight

line. The Figure object is defined with explicit y_range and a line glyph representing sine

curve is added as follows:

fig = figure(title='Twin Axis Example', y_range=(-1.1, 1.1))

fig.line(x, y, color="red")

Bokeh

 34

We need an extra y range. It is defined as:

fig.extra_y_ranges = {"y2": Range1d(start=0, end=100)}

To add additional y axis on right side, use add_layout() method. Add a new line glyph

representing x and y2 to the figure.

fig.add_layout(LinearAxis(y_range_name="y2"), 'right')

fig.line(x, y2, color="blue", y_range_name="y2")

This will result in a plot with twin y axes. Complete code and the output is as follows:

from numpy import pi, arange, sin, linspace

x = arange(-2*pi, 2*pi, 0.1)

y = sin(x)

y2 = linspace(0, 100, len(y))

from bokeh.plotting import output_file, figure, show

from bokeh.models import LinearAxis, Range1d

fig = figure(title='Twin Axis Example', y_range=(-1.1, 1.1))

fig.line(x, y, color="red")

fig.extra_y_ranges = {"y2": Range1d(start=0, end=100)}

fig.add_layout(LinearAxis(y_range_name="y2"), 'right')

fig.line(x, y2, color="blue", y_range_name="y2")

show(fig)

Output

Bokeh

 35

Bokeh

 36

Annotations are pieces of explanatory text added to the diagram. Bokeh plot can be

annotated by way of specifying plot title, labels for x and y axes as well as inserting text

labels anywhere in the plot area.

Plot title as well as x and y axis labels can be provided in the Figure constructor itself.

fig=figure(title, x_axis_label, y_axis_label)

In the following plot, these properties are set as shown below:

from bokeh.plotting import figure, output_file, show

import numpy as np

import math

x=np.arange(0, math.pi*2, 0.05)

y=np.sin(x)

fig = figure(title="sine wave example", x_axis_label='angle',

y_axis_label='sin')

fig.line(x, y,line_width=2)

show(p)

Output

14. Bokeh — Annotations and Legends

Bokeh

 37

The title’s text and axis labels can also be specified by assigning appropriate string values

to corresponding properties of figure object.

fig.title.text="sine wave example"

fig.xaxis.axis_label='angle'

fig.yaxis.axis_label='sin'

It is also possible to specify location, alignment, font and color of title.

fig.title.align = "right"

fig.title.text_color = "orange"

fig.title.text_font_size = "25px"

fig.title.background_fill_color = "blue"

Bokeh

 38

Adding legends to the plot figure is very easy. We have to use legend property of any

glyph method.

Below we have three glyph curves in the plot with three different legends:

from bokeh.plotting import figure, output_file, show

import numpy as np

import math

x=np.arange(0, math.pi*2, 0.05)

fig=figure()

fig.line(x, np.sin(x),line_width=2, line_color='navy', legend='sine')

fig.circle(x,np.cos(x), line_width=2, line_color='orange', legend='cosine')

fig.square(x,-np.sin(x),line_width=2, line_color='grey', legend='-sine')

show(fig)

Output

Bokeh

 39

Bokeh

 40

In all the examples above, the data to be plotted has been provided in the form of Python

lists or numpy arrays. It is also possible to provide the data source in the form of pandas

DataFrame object.

DataFrame is a two-dimensional data structure. Columns in the dataframe can be of

different data types. The Pandas library has functions to create dataframe from various

sources such as CSV file, Excel worksheet, SQL table, etc.

For the purpose of following example, we are using a CSV file consisting of two columns

representing a number x and 10x. The test.csv file is as below:

x,pow

0.0,1.0

0.5263157894736842,3.3598182862837818

1.0526315789473684,11.28837891684689

1.5789473684210527,37.926901907322495

2.1052631578947367,127.42749857031335

2.631578947368421,428.1332398719391

3.1578947368421053,1438.449888287663

3.6842105263157894,4832.930238571752

4.2105263157894735,16237.76739188721

4.7368421052631575,54555.947811685146

We shall read this file in a dataframe object using read_csv() function in pandas.

import pandas as pd

df=pd.read_csv('test.csv')

print (df)

The dataframe appears as below:

x pow

0 0.000000 1.000000

1 0.526316 3.359818

2 1.052632 11.288379

3 1.578947 37.926902

15. Bokeh ― Pandas

Bokeh

 41

4 2.105263 127.427499

5 2.631579 428.133240

6 3.157895 1438.449888

7 3.684211 4832.930239

8 4.210526 16237.767392

9 4.736842 54555.947812

The ‘x’ and ‘pow’ columns are used as data series for line glyph in bokeh plot figure.

from bokeh.plotting import figure, output_file, show

p = figure()

x=df['x']

y=df['pow']

p.line(x,y,line_width=2)

p.circle(x, y,size=20)

show(p)

Output

Bokeh

 42

Bokeh

 43

Most of the plotting methods in Bokeh API are able to receive data source parameters

through ColumnDatasource object. It makes sharing data between plots and ‘DataTables’.

A ColumnDatasource can be considered as a mapping between column name and list of

data. A Python dict object with one or more string keys and lists or numpy arrays as values

is passed to ColumnDataSource constructor.

Below is the example:

from bokeh.models import ColumnDataSource

data={'x':[1, 4, 3, 2, 5],

 'y':[6, 5, 2, 4, 7]}

cds=ColumnDataSource(data=data)

This object is then used as value of source property in a glyph method. Following code

generates a scatter plot using ColumnDataSource.

from bokeh.plotting import figure, output_file, show

from bokeh.models import ColumnDataSource

data={'x':[1, 4, 3, 2, 5],

 'y':[6, 5, 2, 4, 7]}

cds=ColumnDataSource(data=data)

fig = figure()

fig.scatter(x='x', y='y',source=cds, marker="circle", size=20,

fill_color="grey")

show(fig)

Output

16. Bokeh — ColumnDataSource

Bokeh

 44

Instead of assigning a Python dictionary to ColumnDataSource, we can use a Pandas

DataFrame for it.

Let us use ‘test.csv’ (used earlier in this section) to obtain a DataFrame and use it for

getting ColumnDataSource and rendering line plot.

from bokeh.plotting import figure, output_file, show

import pandas as pd

from bokeh.models import ColumnDataSource

df=pd.read_csv('test.csv')

cds=ColumnDataSource(df)

fig = figure(y_axis_type='log')

fig.line(x='x', y='pow',source=cds, line_color="grey")

show(fig)

Bokeh

 45

Output

Bokeh

 46

Often, you may want to obtain a plot pertaining to a part of data that satisfies certain

conditions instead of the entire dataset. Object of the CDSView class defined in

bokeh.models module returns a subset of ColumnDatasource under consideration by

applying one or more filters over it.

IndexFilter is the simplest type of filter. You have to specify indices of only those rows

from the dataset that you want to use while plotting the figure.

Following example demonstrates use of IndexFilter to set up a CDSView. The resultant

figure shows a line glyph between x and y data series of the ColumnDataSource. A view

object is obtained by applying index filter over it. The view is used to plot circle glyph as

a result of IndexFilter.

from bokeh.models import ColumnDataSource, CDSView, IndexFilter

from bokeh.plotting import figure, output_file, show

source = ColumnDataSource(data=dict(x=list(range(1,11)),

y=list(range(2,22,2))))

view = CDSView(source=source, filters=[IndexFilter([0, 2, 4,6])])

fig=figure(title='Line Plot example', x_axis_label='x', y_axis_label='y')

fig.circle(x="x", y="y", size=10, source=source, view=view, legend='filtered')

fig.line(source.data['x'],source.data['y'], legend='unfiltered')

show(fig)

Output

17. Bokeh — Filtering Data

Bokeh

 47

To choose only those rows from the data source, that satisfy a certain Boolean condition,

apply a BooleanFilter.

A typical Bokeh installation consists of a number of sample data sets in sampledata

directory. For following example, we use unemployment1948 dataset provided in the

form of unemployment1948.csv. It stores year wise percentage of unemployment in USA

since 1948. We want to generate a plot only for year 1980 onwards. For that purpose, a

CDSView object is obtained by applying BooleanFilter over the given data source.

from bokeh.models import ColumnDataSource, CDSView, BooleanFilter

from bokeh.plotting import figure, show

from bokeh.sampledata.unemployment1948 import data

source = ColumnDataSource(data)

booleans = [True if int(year) >= 1980 else False for year in

source.data['Year']]

Bokeh

 48

print (booleans)

view1 = CDSView(source=source, filters=[BooleanFilter(booleans)])

p = figure(title="Unemployment data", x_range=(1980,2020), x_axis_label='Year',

y_axis_label='Percentage')

p.line(x='Year', y='Annual', source=source, view=view1, color='red',

line_width=2)

show(p)

Output

To add more flexibility in applying filter, Bokeh provides a CustomJSFilter class with the

help of which the data source can be filtered with a user defined JavaScript function.

Bokeh

 49

The example given below uses the same USA unemployment data. Defining a

CustomJSFilter to plot unemployment figures of year 1980 and after.

from bokeh.models import ColumnDataSource, CDSView, CustomJSFilter

from bokeh.plotting import figure, show

from bokeh.sampledata.unemployment1948 import data

source = ColumnDataSource(data)

custom_filter = CustomJSFilter(code='''

var indices = [];

for (var i = 0; i < source.get_length(); i++){

 if (parseInt(source.data['Year'][i]) >= 1980){

 indices.push(true);

 } else {

 indices.push(false);

 }

}

return indices;

''')

view1 = CDSView(source=source, filters=[custom_filter])

p = figure(title="Unemployment data", x_range=(1980,2020), x_axis_label='Year',

y_axis_label='Percentage')

p.line(x='Year', y='Annual', source=source, view=view1, color='red',

line_width=2)

show(p)

Bokeh

 50

Bokeh visualizations can be suitably arranged in different layout options. These layouts as

well as sizing modes result in plots and widgets resizing automatically as per the size of

browser window. For consistent appearance, all items in a layout must have same sizing

mode. The widgets (buttons, menus, etc.) are kept in a separate widget box and not in

plot figure.

First type of layout is Column layout which displays plot figures vertically. The column()

function is defined in bokeh.layouts module and takes following signature:

from bokeh.layouts import column

col=column(children, sizing_mode)

children: List of plots and/or widgets.

sizing_mode: determines how items in the layout resize. Possible values are "fixed",

"stretch_both", "scale_width", "scale_height", "scale_both". Default is “fixed”.

Following code produces two Bokeh figures and places them in a column layout so that

they are displayed vertically. Line glyphs representing sine and cos relationship between

x and y data series is displayed in Each figure.

from bokeh.plotting import figure, output_file, show

from bokeh.layouts import column

import numpy as np

import math

x=np.arange(0, math.pi*2, 0.05)

y1=np.sin(x)

y2=np.cos(x)

fig1 = figure(plot_width=200, plot_height=200)

fig1.line(x, y1,line_width=2, line_color='blue')

fig2 = figure(plot_width=200, plot_height=200)

fig2.line(x, y2,line_width=2, line_color='red')

c=column(children=[fig1, fig2], sizing_mode='stretch_both')

show(c)

18. Bokeh ― Layouts

Bokeh

 51

Output

Similarly, Row layout arranges plots horizontally, for which row() function as defined in

bokeh.layouts module is used. As you would think, it also takes two arguments (similar to

column() function) – children and sizing_mode.

The sine and cos curves as shown vertically in above diagram are now displayed

horizontally in row layout with following code:

from bokeh.plotting import figure, output_file, show

from bokeh.layouts import row

import numpy as np

import math

x=np.arange(0, math.pi*2, 0.05)

y1=np.sin(x)

y2=np.cos(x)

fig1 = figure(plot_width=200, plot_height=200)

Bokeh

 52

fig1.line(x, y1,line_width=2, line_color='blue')

fig2 = figure(plot_width=200, plot_height=200)

fig2.line(x, y2,line_width=2, line_color='red')

r=row(children=[fig1, fig2], sizing_mode='stretch_both')

show(r)

Output

The Bokeh package also has grid layout. It holds multiple plot figures (as well as widgets)

in a two dimensional grid of rows and columns. The gridplot() function in bokeh.layouts

module returns a grid and a single unified toolbar which may be positioned with the help

of toolbar_location property.

This is unlike row or column layout where each plot shows its own toolbar. The grid()

function too uses children and sizing_mode parameters where children is a list of lists.

Ensure that each sublist is of same dimensions.

In the following code, four different relationships between x and y data series are plotted

in a grid of two rows and two columns.

from bokeh.plotting import figure, output_file, show

from bokeh.layouts import gridplot

import math

x=list(range(1,11))

Bokeh

 53

y1=x

y2=[11-i for i in x]

y3=[i*i for i in x]

y4=[math.log10(i) for i in x]

fig1 = figure(plot_width=200, plot_height=200)

fig1.line(x, y1,line_width=2, line_color='blue')

fig2 = figure(plot_width=200, plot_height=200)

fig2.circle(x, y2,size=10, color='green')

fig3=figure(plot_width=200, plot_height=200)

fig3.circle(x,y3, size=10, color='grey')

fig4=figure(plot_width=200, plot_height=200, y_axis_type='log')

fig4.line(x,y4, line_width=2, line_color='red')

grid = gridplot(children=[[fig1, fig2], [fig3,fig4]],

sizing_mode='stretch_both')

show(grid)

Output

Bokeh

 54

When a Bokeh plot is rendered, normally a tool bar appears on the right side of the figure.

It contains a default set of tools. First of all, the position of toolbar can be configured by

toolbar_location property in figure() function. This property can take one of the following

values:

 "above"

 "below"

 "left"

 "right"

 "None"

For example, following statement will cause toolbar to be displayed below the plot:

Fig=figure(toolbar_location="below")

This toolbar can be configured according to the requirement by adding required from

various tools defined in bokeh.models module. For example:

Fig.add_tools(WheelZoomTool())

The tools can be classified under following categories:

 Pan/Drag Tools

 Click/Tap Tools

 Scroll/Pinch Tools

Tool Description Icon

BoxSelectTool

Name : 'box_select'

allows the user to define a rectangular

selection region by left-dragging a mouse

BoxZoomTool

name: 'box_zoom'

allows the user to define a rectangular region

to zoom the plot bounds too, by left-dragging

a mouse

LassoSelectTool

name: 'lasso_select'

allows the user to define an arbitrary region

for selection by left-dragging a mouse

PanTool

name: 'pan', 'xpan',

'ypan',

allows the user to pan the plot by left-

dragging a mouse

TapTool

name: 'tap

allows the user to select at single points by

clicking a left mouse button

19. Bokeh — Plot Tools

Bokeh

 55

WheelZoomTool

name:

'wheel_zoom',

'xwheel_zoom',

'ywheel_zoom'

zoom the plot in and out, centered on the

current mouse location.

WheelPanTool

name: 'xwheel_pan',

'ywheel_pan'

translate the plot window along the specified

dimension without changing the window’s

aspect ratio.

ResetTool

name: 'reset'

restores the plot ranges to their original

values.

SaveTool

name: 'save

allows the user to save a PNG image of the

plot.

ZoomInTool

name: 'zoom_in',

'xzoom_in',

'yzoom_in'

The zoom-in tool will increase the zoom of the

plot in x, y or both coordinates

ZoomOutTool

name: 'zoom_out',

'xzoom_out',

'yzoom_out'

The zoom-out tool will decrease the zoom of

the plot in x, y or both coordinates

CrosshairTool

name: 'crosshair'

draws a crosshair annotation over the plot,

centered on the current mouse position.

Bokeh

 56

The default appearance of a Bokeh plot can be customised by setting various properties

to desired value. These properties are mainly of three types:

Line properties

Following table lists various properties related to line glyph.

line_color color is used to stroke lines with

line_width This is used in units of pixels as line stroke width

line_alpha Between 0 (transparent) and 1 (opaque) this acts as a floating point

line_join how to join together the path segments. Defined values are:

'miter' (miter_join), 'round' (round_join), 'bevel' (bevel_join)

line_cap how to terminate the path segments. Defined values are:

'butt' (butt_cap), 'round' (round_cap), 'square' (square_cap)

line_dash This is used for a line style. Defined values are:

'solid', 'dashed', 'dotted', 'dotdash', 'dashdot'

line_dash_offset The distance into the line_dash in pixels that the pattern should

start from

Fill properties

Various fill properties are listed below:

fill_color This is used to fill paths with

fill_alpha Between 0 (transparent) and 1 (opaque), this acts as a floating

point

Text properties

There are many text related properties as listed in the following table:

text_font font name, e.g., 'times', 'helvetica'

text_font_size font size in px, em, or pt, e.g., '12pt', '1.5em'

20. Bokeh — Styling Visual Attributes

Bokeh

 57

text_font_style font style to use

'normal' 'italic' 'bold'

text_color This is used to render text with

text_alpha Between 0 (transparent) and 1 (opaque), this is a floating point

text_align horizontal anchor point for text - 'left', 'right', 'center'

text_baseline vertical anchor point for text

'top', 'middle', 'bottom', 'alphabetic', 'hanging'

Bokeh

 58

Various glyphs in a plot can be identified by legend property appear as a label by default

at top-right position of the plot area. This legend can be customised by following attributes:

legend.label_text_font change default label font to specified font name

legend.label_text_font_size font size in points

legend.location set the label at specified location.

legend.title set title for legend label

legend.orientation set to horizontal (default) or vertical

legend.clicking_policy specify what should happen when legend is clicked

hide: hides the glyph corresponding to legend

mute: mutes the glyph corresponding to legend

Example code for legend customisation is as follows:

from bokeh.plotting import figure, output_file, show

import math

x2=list(range(1,11))

y4=[math.pow(i,2) for i in x2]

y2=[math.log10(pow(10,i)) for i in x2]

fig = figure(y_axis_type='log')

fig.circle(x2, y2,size=5, color='blue', legend='blue circle')

fig.line(x2,y4, line_width=2, line_color='red', legend='red line')

fig.legend.location='top_left'

fig.legend.title='Legend Title'

fig.legend.title_text_font='Arial'

fig.legend.title_text_font_size='20pt'

show(fig)

Output

21. Bokeh — Customising legends

Bokeh

 59

Bokeh

 60

The bokeh.models.widgets module contains definitions of GUI objects similar to HTML form

elements, such as button, slider, checkbox, radio button, etc. These controls provide

interactive interface to a plot. Invoking processing such as modifying plot data, changing

plot parameters, etc., can be performed by custom JavaScript functions executed on

corresponding events.

Bokeh allows call back functionality to be defined with two methods:

 Use the CustomJS callback so that the interactivity will work in standalone HTML

documents.

 Use Bokeh server and set up event handlers.

In this section, we shall see how to add Bokeh widgets and assign JavaScript callbacks.

Button

This widget is a clickable button generally used to invoke a user defined call back handler.

The constructor takes following parameters:

Button(label, icon, callback)

The label parameter is a string used as button’s caption and callback is the custom

JavaScript function to be called when clicked.

In the following example, a plot and Button widget are displayed in Column layout. The

plot itself renders a line glyph between x and y data series.

A custom JavaScript function named ‘callback’ has been defined using CutomJS()

function. It receives reference to the object that triggered callback (in this case the

button) in the form variable cb_obj.

This function alters the source ColumnDataSource data and finally emits this update in

source data.

from bokeh.layouts import column

from bokeh.models import CustomJS, ColumnDataSource

from bokeh.plotting import Figure, output_file, show

from bokeh.models.widgets import Button

x = [x*0.05 for x in range(0, 200)]

y = x

source = ColumnDataSource(data=dict(x=x, y=y))

22. Bokeh ― Adding Widgets

Bokeh

 61

plot = Figure(plot_width=400, plot_height=400)

plot.line('x', 'y', source=source, line_width=3, line_alpha=0.6)

callback = CustomJS(args=dict(source=source), code="""

 var data = source.data;

 x = data['x']

 y = data['y']

 for (i = 0; i < x.length; i++) {

 y[i] = Math.pow(x[i], 4)

 }

 source.change.emit();

""")

btn = Button(label="click here", callback=callback, name="1")

layout = column(btn , plot)

show(layout)

Output (initial)

Bokeh

 62

Click on the button on top of the plot and see the updated plot figure which looks as

follows:

Output (after click)

Bokeh

 63

Slider

With the help of a slider control it is possible to select a number between start and end

properties assigned to it.

Slider(start, end, step, value)

In the following example, we register a callback function on slider’s on_change event.

Slider’s instantaneous numeric value is available to the handler in the form of cb_obj.value

which is used to modify the ColumnDatasource data. The plot figure continuously updates

as you slide the position.

from bokeh.layouts import column

from bokeh.models import CustomJS, ColumnDataSource

from bokeh.plotting import Figure, output_file, show

from bokeh.models.widgets import Slider

x = [x*0.05 for x in range(0, 200)]

y = x

source = ColumnDataSource(data=dict(x=x, y=y))

Bokeh

 64

plot = Figure(plot_width=400, plot_height=400)

plot.line('x', 'y', source=source, line_width=3, line_alpha=0.6)

handler = CustomJS(args=dict(source=source), code="""

 var data = source.data;

 var f = cb_obj.value

 var x = data['x']

 var y = data['y']

 for (var i = 0; i < x.length; i++) {

 y[i] = Math.pow(x[i], f)

 }

 source.change.emit();

 """)

slider = Slider(start=0.0, end=5, value=1, step=.25, title="Slider Value")

slider.js_on_change('value', handler)

layout = column(slider, plot)

show(layout)

Output

RadioGroup

This widget presents a collection of mutually exclusive toggle buttons showing circular

buttons to the left of caption.

RadioGroup(labels, active)

Bokeh

 65

Where, labels is a list of captions and active is the index of selected option.

Select

This widget is a simple dropdown list of string items, one of which can be selected. Selected

string appears at the top window and it is the value parameter.

Select(options, value)

The list of string elements in the dropdown is given in the form of options list object.

Following is a combined example of radio button and select widgets, both providing three

different relationships between x and y data series. The RadioGroup and Select widgets

are registered with respective handlers through on_change() method.

from bokeh.layouts import column

from bokeh.models import CustomJS, ColumnDataSource

from bokeh.plotting import Figure, output_file, show

from bokeh.models.widgets import RadioGroup, Select

x = [x*0.05 for x in range(0, 200)]

y = x

source = ColumnDataSource(data=dict(x=x, y=y))

plot = Figure(plot_width=400, plot_height=400)

plot.line('x', 'y', source=source, line_width=3, line_alpha=0.6)

radiohandler = CustomJS(args=dict(source=source), code="""

 var data = source.data;

 console.log('Tap event occurred at x-position: ' + cb_obj.active);

 //plot.title.text=cb_obj.value;

 x = data['x']

 y = data['y']

 if (cb_obj.active==0)

 {

 for (i = 0; i < x.length; i++) {

 y[i] = x[i];

 }

Bokeh

 66

 }

 if (cb_obj.active==1)

 {

 for (i = 0; i < x.length; i++) {

 y[i] = Math.pow(x[i], 2)

 }

 }

 if (cb_obj.active==2)

 {

 for (i = 0; i < x.length; i++) {

 y[i] = Math.pow(x[i], 4)

 }

 }

 source.change.emit();

""")

selecthandler = CustomJS(args=dict(source=source), code="""

 var data = source.data;

 console.log('Tap event occurred at x-position: ' + cb_obj.value);

 //plot.title.text=cb_obj.value;

 x = data['x']

 y = data['y']

 if (cb_obj.value=="line")

 {

 for (i = 0; i < x.length; i++) {

 y[i] = x[i];

 }

 }

 if (cb_obj.value=="SquareCurve")

 {

 for (i = 0; i < x.length; i++) {

 y[i] = Math.pow(x[i], 2)

 }

 }

 if (cb_obj.value=="CubeCurve")

Bokeh

 67

 {

 for (i = 0; i < x.length; i++) {

 y[i] = Math.pow(x[i], 4)

 }

 }

 source.change.emit();

""")

radio = RadioGroup(

 labels=["line", "SqureCurve", "CubeCurve"], active=0)

radio.js_on_change('active', radiohandler)

select = Select(title="Select:", value='line', options=["line", "SquareCurve",

"CubeCurve"])

select.js_on_change('value', selecthandler)

layout = column(radio, select, plot)

show(layout)

Output

Bokeh

 68

Bokeh

 69

Tab widget

Just as in a browser, each tab can show different web page, the Tab widget is Bokeh model

providing different view to each figure. In the following example, two plot figures of sine

and cosine curves are rendered in two different tabs:

from bokeh.plotting import figure, output_file, show

from bokeh.models import Panel, Tabs

import numpy as np

import math

x=np.arange(0, math.pi*2, 0.05)

fig1=figure(plot_width=300, plot_height=300)

fig1.line(x, np.sin(x),line_width=2, line_color='navy')

tab1 = Panel(child=fig1, title="sine")

Bokeh

 70

fig2=figure(plot_width=300, plot_height=300)

fig2.line(x,np.cos(x), line_width=2, line_color='orange')

tab2 = Panel(child=fig2, title="cos")

tabs = Tabs(tabs=[tab1, tab2])

show(tabs)

Output

Bokeh

 71

Bokeh architecture has a decouple design in which objects such as plots and glyphs are

created using Python and converted in JSON to be consumed by BokehJS client library.

However, it is possible to keep the objects in python and in the browser in sync with one

another with the help of Bokeh Server. It enables response to User Interface (UI) events

generated in a browser with the full power of python. It also helps automatically push

server-side updates to the widgets or plots in a browser.

A Bokeh server uses Application code written in Python to create Bokeh Documents. Every

new connection from a client browser results in the Bokeh server creating a new document,

just for that session.

First, we have to develop an application code to be served to client browser. Following

code renders a sine wave line glyph. Along with the plot, a slider control is also rendered

to control the frequency of sine wave. The callback function update_data() updates

ColumnDataSource data taking the instantaneous value of slider as current frequency.

import numpy as np

from bokeh.io import curdoc

from bokeh.layouts import row, column

23. Bokeh — Server

Bokeh

 72

from bokeh.models import ColumnDataSource

from bokeh.models.widgets import Slider, TextInput

from bokeh.plotting import figure

N = 200

x = np.linspace(0, 4*np.pi, N)

y = np.sin(x)

source = ColumnDataSource(data=dict(x=x, y=y))

plot = figure(plot_height=400, plot_width=400, title="sine wave")

plot.line('x', 'y', source=source, line_width=3, line_alpha=0.6)

freq = Slider(title="frequency", value=1.0, start=0.1, end=5.1, step=0.1)

def update_data(attrname, old, new):

 a = 1

 b = 0

 w = 0

 k = freq.value

 x = np.linspace(0, 4*np.pi, N)

 y = a*np.sin(k*x + w) + b

 source.data = dict(x=x, y=y)

freq.on_change('value', update_data)

curdoc().add_root(row(freq, plot, width=500))

curdoc().title = "Sliders"

Next, start Bokeh server by following command line:

Bokeh serve –show sliders.py

Bokeh server starts running and serving the application at localhost:5006/sliders. The

console log shows the following display:

C:\Users\User>bokeh serve --show scripts\sliders.py

2019-09-29 00:21:35,855 Starting Bokeh server version 1.3.4 (running on Tornado

6.0.3)

2019-09-29 00:21:35,875 Bokeh app running at: http://localhost:5006/sliders

Bokeh

 73

2019-09-29 00:21:35,875 Starting Bokeh server with process id: 3776

2019-09-29 00:21:37,330 200 GET /sliders (::1) 699.99ms

2019-09-29 00:21:38,033 101 GET /sliders/ws?bokeh-protocol-version=1.0&bokeh-

session-id=VDxLKOzI5Ppl9kDvEMRzZgDVyqnXzvDWsAO21bRCKRZZ (::1) 4.00ms

2019-09-29 00:21:38,045 WebSocket connection opened

2019-09-29 00:21:38,049 ServerConnection created

Open your favourite browser and enter above address. The Sine wave plot is displayed as

follows:

You can try and change the frequency to 2 by rolling the slider.

Bokeh

 74

The Bokeh application provides a number of subcommands to be executed from command

line. Following table shows the subcommands:

Html Create HTML files for one or more applications

info print information of Bokeh server configuration

json Create JSON files for one or more applications

png Create PNG files for one or more applications

sampledata Download the bokeh sample data sets

secret Create a Bokeh secret key for use with Bokeh server

serve Run a Bokeh server hosting one or more applications

static Serve static assets (JavaScript, CSS, images,

fonts, etc.) used by BokeJS library

svg Create SVG files for one or more applications

Following command generates a HTML file for Python script having a Bokeh figure.

C:\python37>bokeh html -o app.html app.py

Adding show option automatically opens the HTML file in browser. Likewise, Python script

is converted to PNG, SVG, JSON files with corresponding subcommand.

To display information of Bokeh server, use info subcommand as follows:

C:\python37>bokeh info

Python version : 3.7.4 (tags/v3.7.4:e09359112e, Jul 8 2019, 20:34:20)

[MSC v.1916 64 bit (AMD64)]

IPython version : (not installed)

Tornado version : 6.0.3

Bokeh version : 1.3.4

BokehJS static path : c:\python37\lib\site-packages\bokeh\server\static

node.js version : (not installed)

npm version : (not installed)

In order to experiment with various types of plots, Bokeh website

https://bokeh.pydata.org makes available sample datasets. They can be downloaded to

local machine by sampledata subcommand.

C:\python37>bokeh info

Following datasets are downloaded in C:\Users\User\.bokeh\data folder:

24. Bokeh — Using Bokeh Subcommands

https://bokeh.pydata.org/

Bokeh

 75

AAPL.csv airports.csv

airports.json CGM.csv

FB.csv gapminder_fertility.csv

gapminder_life_expectancy.csv gapminder_population.csv

gapminder_regions.csv GOOG.csv

haarcascade_frontalface_default.xml IBM.csv

movies.db MSFT.csv

routes.csv unemployment09.csv

us_cities.json US_Counties.csv

world_cities.csv

WPP2012_SA_DB03_POPULATION_QUINQUENNIAL.csv

The secret subcommand generates a secret key to be used along with serve subcommand

with SECRET_KEY environment variable.

Bokeh

 76

In addition to subcommands described above, Bokeh plots can be exported to PNG and

SVG file format using export() function. For that purpose, local Python installation should

have following dependency libraries.

PhantomJS

PhantomJS is a JavaScript API that enables automated navigation, screenshots, user

behavior and assertions. It is used to run browser-based unit tests. PhantomJS is based

on WebKit providing a similar browsing environment for different browsers and provides

fast and native support for various web standards: DOM handling, CSS selector, JSON,

Canvas, and SVG. In other words, PhantomJS is a web browser without a graphical user

interface.

Pillow

Pillow, a Python Imaging Library (earlier known as PIL) is a free library for the Python

programming language that provides support for opening, manipulating, and saving many

different image file formats. (including PPM, PNG, JPEG, GIF, TIFF, and BMP.) Some of its

features are per-pixel manipulations, masking and transparency handling, image filtering,

image enhancing, etc.

The export_png() function generates RGBA-format PNG image from layout. This function

uses Webkit headless browser to render the layout in memory and then capture a

screenshot. The generated image will be of the same dimensions as the source layout.

Make sure that the Plot.background_fill_color and Plot.border_fill_color are properties to

None.

from bokeh.io import export_png

export_png(plot, filename="file.png")

It is possible that HTML5 Canvas plot output with a SVG element that can be edited using

programs such as Adobe Illustrator. The SVG objects can also be converted to PDFs. Here,

canvas2svg, a JavaScript library is used to mock the normal Canvas element and its

methods with an SVG element. Like PNGs, in order to create a SVG with a transparent

background,the Plot.background_fill_color and Plot.border_fill_color properties should be

to None.

The SVG backend is first activated by setting the Plot.output_backend attribute to "svg".

plot.output_backend = "svg"

For headless export, Bokeh has a utility function, export_svgs(). This function will

download all of SVG-enabled plots within a layout as distinct SVG files.

from bokeh.io import export_svgs

plot.output_backend = "svg"

25. Bokeh — Exporting Plots

Bokeh

 77

export_svgs(plot, filename="plot.svg")

Bokeh

 78

Plots and data in the form of standalone documents as well as Bokeh applications can be

embedded in HTML documents.

Standalone document is a Bokeh plot or document not backed by Bokeh server. The

interactions in such a plot is purely in the form of custom JS and not Pure Python callbacks.

Bokeh plots and documents backed by Bokeh server can also be embedded. Such

documents contain Python callbacks that run on the server.

In case of standalone documents, a raw HTML code representing a Bokeh plot is obtained

by file_html() function.

from bokeh.plotting import figure

from bokeh.resources import CDN

from bokeh.embed import file_html

fig = figure()

fig.line([1,2,3,4,5], [3,4,5,2,3])

string = file_html(plot, CDN, "my plot")

Return value of file_html() function may be saved as HTML file or may be used to render

through URL routes in Flask app.

In case of standalone document, its JSON representation can be obtained by json_item()

function.

from bokeh.plotting import figure

from bokeh.embed import file_html

import json

fig = figure()

fig.line([1,2,3,4,5], [3,4,5,2,3])

item_text = json.dumps(json_item(fig, "myplot"))

This output can be used by the Bokeh.embed.embed_item function on a webpage:

item = JSON.parse(item_text);

Bokeh.embed.embed_item(item);

Bokeh applications on Bokeh Server may also be embedded so that a new session and

Document is created on every page load so that a specific, existing session is loaded. This

can be accomplished with the server_document() function. It accepts the URL to a Bokeh

26. Bokeh — Embedding Plots and Apps

Bokeh

 79

server application, and returns a script that will embed new sessions from that server any

time the script is executed.

The server_document() function accepts URL parameter. If it is set to ‘default’, the

default URL http://localhost:5006/ will be used.

from bokeh.embed import server_document

script = server_document("http://localhost:5006/sliders")

The server_document() function returns a script tag as follows:

<script

 src="http://localhost:5006/sliders/autoload.js?bokeh-autoload-

element=1000&bokeh-app-path=/sliders&bokeh-absolute-

url=https://localhost:5006/sliders"

 id="1000">

</script>

Bokeh

 80

Bokeh integrates well with a wide variety of other libraries, allowing you to use the most

appropriate tool for each task. The fact that Bokeh generates JavaScript, makes it possible

to combine Bokeh output with a wide variety of JavaScript libraries, such as PhosphorJS.

Datashader (https://github.com/bokeh/datashader) is another library with which Bokeh

output can be extended. It is a Python library that pre-renders large datasets as a large-

sized raster image. This ability overcomes limitation of browser when it comes to very

large data. Datashader includes tools to build interactive Bokeh plots that dynamically re-

render these images when zooming and panning in Bokeh, making it practical to work with

arbitrarily large datasets in a web browser.

Another library is Holoviews (http://holoviews.org/) that provides a concise declarative

interface for building Bokeh plots, especially in Jupyter notebook. It facilitates quick

prototyping of figures for data analysis.

27. Bokeh ― Extending Bokeh

Bokeh

 81

When one has to use large datasets for creating visualizations with the help of Bokeh, the

interaction can be very slow. For that purpose, one can enable Web Graphics Library

(WebGL) support.

WebGL is a JavaScript API that renders content in the browser using GPU (graphics

processing unit). This standardized plugin is available in all modern browsers.

To enable WebGL, all you have to do is set output_backend property of Bokeh Figure

object to ‘webgl’.

fig= figure(output_backend="webgl")

In the following example, we plot a scatter glyph consisting of 10,000 points with the

help of WebGL support.

import numpy as np

from bokeh.plotting import figure, show, output_file

N = 10000

x = np.random.normal(0, np.pi, N)

y = np.sin(x) + np.random.normal(0, 0.2, N)

output_file("scatterWebGL.html")

p = figure(output_backend="webgl")

p.scatter(x, y, alpha=0.1)

show(p)

Output

28. Bokeh — WebGL

Bokeh

 82

Bokeh

 83

The Bokeh Python library, and libraries for Other Languages such as R, Scala, and Julia,

primarily interacts with BokehJS at a high level. A Python programmer does not have to

worry about JavaScript or web development. However, one can use BokehJS API, to do

pure JavaScript development using BokehJS directly.

BokehJS objects such as glyphs and widgets are built more or less similarly as in Bokeh

Python API. Typically, any Python ClassName is available as Bokeh.ClassName from

JavaScript. For example, a Range1d object as obtained in Python.

xrange = Range1d(start=-0.5, end=20.5)

It is equivalently obtained with BokehJS as:

var xrange = new Bokeh.Range1d({ start: -0.5, end: 20.5 });

Following JavaScript code when embedded in a HTML file renders a simple line plot in the

browser.

First include all BokehJS libraries in <head>..</head> secion of web page as below:

<head>

<script type="text/javascript" src="https://cdn.pydata.org/bokeh/release/bokeh-

1.3.4.min.js"></script>

<script type="text/javascript" src="https://cdn.pydata.org/bokeh/release/bokeh-

widgets-1.3.4.min.js"></script>

<script type="text/javascript" src="https://cdn.pydata.org/bokeh/release/bokeh-

tables-1.3.4.min.js"></script>

<script type="text/javascript" src="https://cdn.pydata.org/bokeh/release/bokeh-

gl-1.3.4.min.js"></script>

<script type="text/javascript" src="https://cdn.pydata.org/bokeh/release/bokeh-

api-1.3.4.min.js"></script>

<script type="text/javascript" src="https://cdn.pydata.org/bokeh/release/bokeh-

api-1.3.4.min.js"></script>

</head>

In the body section following snippets of JavaScript construct various parts of a Bokeh

Plot.

<script>

// create some data and a ColumnDataSource

29. Bokeh — Developing with JavaScript

Bokeh

 84

var x = Bokeh.LinAlg.linspace(-0.5, 20.5, 10);

var y = x.map(function (v) { return v * 0.5 + 3.0; });

var source = new Bokeh.ColumnDataSource({ data: { x: x, y: y } });

// make the plot

var plot = new Bokeh.Plot({

 title: "BokehJS Plot",

 plot_width: 400,

 plot_height: 400

});

// add axes to the plot

var xaxis = new Bokeh.LinearAxis({ axis_line_color: null });

var yaxis = new Bokeh.LinearAxis({ axis_line_color: null });

plot.add_layout(xaxis, "below");

plot.add_layout(yaxis, "left");

// add a Line glyph

var line = new Bokeh.Line({

 x: { field: "x" },

 y: { field: "y" },

 line_color: "#666699",

 line_width: 2

});

plot.add_glyph(line, source);

Bokeh.Plotting.show(plot);

</script>

Save above code as a web page and open it in a browser of your choice.

Bokeh

 85

