
Concurrency in Python

 i

Concurrency in Python

 i

About the Tutorial

Concurrency, natural phenomena, is the happening of two or more events at the same

time. It is a challenging task for the professionals to create concurrent applications and

get the most out of computer hardware.

Audience

This tutorial will be useful for graduates, postgraduates, and research students who either

have an interest in this subject or have this subject as a part of their curriculum. The

reader can be a beginner or an advanced learner.

Prerequisites

The reader must have basic knowledge about concepts such as Concurrency,

Multiprocessing, Threads, and Process etc. of Operating System. He/she should also be

aware about basic terminologies used in OS along with Python programming concepts.

Copyright & Disclaimer

 Copyright 2018 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

Concurrency in Python

 ii

Table of Contents

About the Tutorial .. i

Audience ... i

Prerequisites ... i

Copyright & Disclaimer ... i

Table of Contents .. ii

1. Concurrency in Python – Introduction... 1

What is Concurrency?.. 1

Historical Review of Concurrency .. 1

What is thread & multithreading? ... 1

What is process & multiprocessing? ... 2

Limitations of Python in implementing concurrent applications .. 4

2. Concurrency in Python – Concurrency vs Parallelism .. 5

Concurrency in Detail .. 5

Levels of Concurrency ... 5

Properties of Concurrent Systems ... 6

Barriers of Concurrent Systems ... 6

What is Parallelism? .. 8

Necessity of Parallelism ... 9

Understanding of the processors for implementation .. 9

Fetch-Decode-Execute Cycle ... 10

3. Concurrency in Python – System & Memory Architecture .. 11

Computer system architectures supporting concurrency ... 11

Single instruction stream, single data stream (SISD) ... 11

Single instruction stream, multiple data stream (SIMD) ... 12

Multiple Instruction Single Data (MISD) stream .. 12

Multiple Instruction Multiple Data (MIMD) stream .. 13

Concurrency in Python

 iii

Memory architectures supporting concurrency .. 13

4. Concurrency in Python – Threads .. 17

States of Thread .. 17

Types of Thread ... 18

Thread Control Block - TCB .. 20

Relation between process & thread .. 21

Concept of Multithreading .. 22

Pros of Multithreading .. 23

Cons of Multithreading .. 23

5. Concurrency in Python – Implementation of Threads ... 24

Python Module for Thread Implementation ... 24

Additional methods in the <threading> module ... 26

How to create threads using the <threading> module?.. 26

Python Program for Various Thread States ... 28

Starting a thread in Python ... 29

Daemon threads in Python .. 30

6. Concurrency in Python – Synchronizing Threads ... 32

Issues in thread synchronization ... 32

Dealing with race condition using locks .. 34

Deadlocks: The Dining Philosophers problem ... 36

7. Concurrency in Python – Threads Intercommunication ... 40

Python data structures for thread-safe communication ... 40

Types of Queues .. 43

Normal Queues (FIFO, First in First out) .. 43

LIFO, Last in First Out queue.. 45

8. Concurrency in Python – Testing Thread Applications ... 51

Why to Test? .. 51

What to Test? .. 52

Concurrency in Python

 iv

Approaches for testing concurrent software programs .. 52

Testing Strategies .. 52

Unit Testing ... 53

unittest module ... 53

Docktest module ... 56

9. Concurrency in Python – Debugging Thread Applications ... 60

What is Debugging? ... 60

Python Debugger ... 60

10. Concurrency in Python – Benchmarking & Profiling .. 64

What is Benchmarking? ... 64

Writing our own timer using the decorator function .. 65

What is profiling? .. 66

cProfile – the inbuilt module ... 66

11. Concurrency in Python – Pool of Threads .. 69

Python Module – Concurrent.futures ... 69

Executor Class .. 69

12. Concurrency in Python – Pool of Processes ... 73

Python Module – Concurrent.futures ... 73

Executor Class .. 73

13. Concurrency in Python – Multiprocessing ... 79

Eliminating impact of global interpreter lock (GIL) ... 80

Starting Processes in Python ... 80

Creating a process with Spawn.. 81

Creating a process with Forkserver ... 82

Daemon processes in Python .. 82

Terminating processes in Python .. 83

Identifying the current process in Python ... 84

Using a process in subclass .. 85

Concurrency in Python

 v

Python Multiprocessing Module – Pool Class ... 86

14. Concurrency in Python – Processes Intercommunication .. 88

Various Communication Mechanisms ... 88

Ctypes-Array & Value .. 92

Communicating Sequential Processes (CSP) ... 93

Python library – PyCSP .. 93

15. Concurrency in Python – Event-Driven Programming .. 95

Python Module – Asyncio .. 95

16. Concurrency in Python – Reactive Programming ... 101

ReactiveX or RX for reactive programming ... 101

RxPY – Python Module for Reactive Programming ... 101

PyFunctional library for reactive programming ... 102

Concurrency in Python

 1

In this chapter, we will understand the concept of concurrency in Python and learn about

the different threads and processes.

What is Concurrency?

In simple words, concurrency is the occurrence of two or more events at the same time.

Concurrency is a natural phenomenon because many events occur simultaneously at any

given time.

In terms of programming, concurrency is when two tasks overlap in execution. With

concurrent programming, the performance of our applications and software systems can

be improved because we can concurrently deal with the requests rather than waiting for a

previous one to be completed.

Historical Review of Concurrency

Followings points will give us the brief historical review of concurrency:

From the concept of railroads

Concurrency is closely related with the concept of railroads. With the railroads, there was

a need to handle multiple trains on the same railroad system in such a way that every

train would get to its destination safely.

Concurrent computing in academia

The interest in computer science concurrency began with the research paper published by

Edsger W. Dijkstra in 1965. In this paper, he identified and solved the problem of mutual

exclusion, the property of concurrency control.

High-level concurrency primitives

In recent times, programmers are getting improved concurrent solutions because of the

introduction of high-level concurrency primitives.

Improved concurrency with programming languages

Programming languages such as Google’s Golang, Rust and Python have made incredible

developments in areas which help us get better concurrent solutions.

What is thread & multithreading?

Thread is the smallest unit of execution that can be performed in an operating system. It

is not itself a program but runs within a program. In other words, threads are not

1. Concurrency in Python – Introduction

Concurrency in Python

 2

independent of one other. Each thread shares code section, data section, etc. with other

threads. They are also known as lightweight processes.

A thread consists of the following components:

 Program counter which consist of the address of the next executable instruction

 Stack

 Set of registers

 A unique id

Multithreading, on the other hand, is the ability of a CPU to manage the use of operating

system by executing multiple threads concurrently. The main idea of multithreading is to

achieve parallelism by dividing a process into multiple threads. The concept of

multithreading can be understood with the help of the following example.

Example

Suppose we are running a particular process wherein we open MS Word to type content

into it. One thread will be assigned to open MS Word and another thread will be required

to type content in it. And now, if we want to edit the existing then another thread will be

required to do the editing task and so on.

What is process & multiprocessing?

A process is defined as an entity, which represents the basic unit of work to be

implemented in the system. To put it in simple terms, we write our computer programs in

a text file and when we execute this program, it becomes a process that performs all the

tasks mentioned in the program. During the process life cycle, it passes through different

stages – Start, Ready, Running, Waiting and Terminating.

Following diagram shows the different stages of a process:

Concurrency in Python

 3

A process can have only one thread, called primary thread, or multiple threads having

their own set of registers, program counter and stack. Following diagram will show us the

difference:

Multiprocessing, on the other hand, is the use of two or more CPUs units within a single

computer system. Our primary goal is to get the full potential from our hardware. To

achieve this, we need to utilize full number of CPU cores available in our computer system.

Multiprocessing is the best approach to do so.

Python is one of the most popular programming languages. Followings are some reasons

that make it suitable for concurrent applications:

Syntactic sugar

Syntactic sugar is syntax within a programming language that is designed to make things

easier to read or to express. It makes the language “sweeter” for human use: things can

be expressed more clearly, more concisely, or in an alternative style based on preference.

Python comes with Magic methods, which can be defined to act on objects. These Magic

methods are used as syntactic sugar and bound to more easy-to-understand keywords.

Large Community

CPU

Memory

CPU CPU

Concurrency in Python

 4

Python language has witnessed a massive adoption rate amongst data scientists and

mathematicians, working in the field of AI, machine learning, deep learning and

quantitative analysis.

Useful APIs for concurrent programming

Python 2 and 3 have large number of APIs dedicated for parallel/concurrent programming.

Most popular of them are threading, concurrent.features, multiprocessing, asyncio,

gevent and greenlets, etc.

Limitations of Python in implementing concurrent applications

Python comes with a limitation for concurrent applications. This limitation is called GIL

(Global Interpreter Lock) is present within Python. GIL never allows us to utilize

multiple cores of CPU and hence we can say that there are no true threads in Python. We

can understand the concept of GIL as follows:

GIL (Global Interpreter Lock)

It is one of the most controversial topics in the Python world. In CPython, GIL is the mutex

- the mutual exclusion lock, which makes things thread safe. In other words, we can say

that GIL prevents multiple threads from executing Python code in parallel. The lock can

be held by only one thread at a time and if we want to execute a thread then it must

acquire the lock first. The diagram shown below will help you understand the working of

GIL.

However, there are some libraries and implementations in Python such as Numpy,

Jpython and IronPython. These libraries work without any interaction with GIL.

Concurrency in Python

 5

Both concurrency and parallelism are used in relation to multithreaded programs but there

is a lot of confusion about the similarity and difference between them. The big question in

this regard: is concurrency parallelism or not? Although both the terms appear quite

similar but the answer to the above question is NO, concurrency and parallelism are not

same. Now, if they are not same then what is the basic difference between them?

In simple terms, concurrency deals with managing the access to shared state from

different threads and on the other side, parallelism deals with utilizing multiple CPUs or its

cores to improve the performance of hardware.

Concurrency in Detail

Concurrency is when two tasks overlap in execution. It could be a situation where an

application is progressing on more than one task at the same time. We can understand it

diagrammatically; multiple tasks are making progress at the same time, as follows:

Levels of Concurrency

In this section, we will discuss the three important levels of concurrency in terms of

programming:

Low-Level Concurrency

In this level of concurrency, there is explicit use of atomic operations. We cannot use such

kind of concurrency for application building, as it is very error-prone and difficult to debug.

Even Python does not support such kind of concurrency.

Mid-Level Concurrency

2. Concurrency in Python – Concurrency vs
Parallelism

Concurrency in Python

 6

In this concurrency, there is no use of explicit atomic operations. It uses the explicit locks.

Python and other programming languages support such kind of concurrency. Mostly

application programmers use this concurrency.

High-Level Concurrency

In this concurrency, neither explicit atomic operations nor explicit locks are used. Python

has concurrent.futures module to support such kind of concurrency.

Properties of Concurrent Systems

For a program or concurrent system to be correct, some properties must be satisfied by

it. Properties related to the termination of system are as follows:

Correctness property

The correctness property means that the program or the system must provide the desired

correct answer. To keep it simple, we can say that the system must map the starting

program state to final state correctly.

Safety property

The safety property means that the program or the system must remain in a “good” or

“safe” state and never does anything “bad”.

Liveness property

This property means that a program or system must “make progress” and it would reach

at some desirable state.

Actors of concurrent systems

This is one common property of concurrent system in which there can be multiple

processes and threads, which run at the same time to make progress on their own tasks.

These processes and threads are called actors of the concurrent system.

Resources of Concurrent Systems

The actors must utilize the resources such as memory, disk, printer etc. in order to perform

their tasks.

Certain set of rules

Every concurrent system must possess a set of rules to define the kind of tasks to be

performed by the actors and the timing for each. The tasks could be acquiring of locks,

memory sharing, modifying the state, etc.

Barriers of Concurrent Systems

While implementing concurrent systems, the programmer must take into consideration

the following two important issues, which can be the barriers of concurrent systems:

Concurrency in Python

 7

Sharing of data

An important issue while implementing the concurrent systems is the sharing of data

among multiple threads or processes. Actually, the programmer must ensure that locks

protect the shared data so that all the accesses to it are serialized and only one thread or

process can access the shared data at a time. In case, when multiple threads or processes

are all trying to access the same shared data then not all but at least one of them would

be blocked and would remain idle. In other words, we can say that we would be able to

use only one process or thread at a time when lock is in force. There can be some simple

solutions to remove the above-mentioned barriers:

Data Sharing Restriction

The simplest solution is not to share any mutable data. In this case, we need not to use

explicit locking and the barrier of concurrency due to mutual data would be solved.

Data Structure Assistance

Many times the concurrent processes need to access the same data at the same time.

Another solution, than using of explicit locks, is to use a data structure that supports

concurrent access. For example, we can use the queue module, which provides thread-

safe queues. We can also use multiprocessing.JoinableQueue classes for

multiprocessing-based concurrency.

Immutable Data Transfer

Sometimes, the data structure that we are using, say concurrency queue, is not suitable

then we can pass the immutable data without locking it.

Mutable Data Transfer

In continuation of the above solution, suppose if it is required to pass only mutable data,

rather than immutable data, then we can pass mutable data that is read only.

Sharing of I/O Resources

Another important issue in implementing concurrent systems is the use of I/O resources

by threads or processes. The problem arises when one thread or process is using the I/O

for such a long time and other is sitting idle. We can see such kind of barrier while working

with an I/O heavy application. It can be understood with the help of an example, the

requesting of pages from web browser. It is a heavy application. Here, if the rate at which

the data is requested is slower than the rate at which it is consumed then we have I/O

barrier in our concurrent system.

The following Python script is for requesting a web page and getting the time our network

took to get the requested page:

import urllib.request

import time

Concurrency in Python

 8

ts = time.time()

req = urllib.request.urlopen('http://www.tutorialspoint.com')

pageHtml = req.read()

te = time.time()

print("Page Fetching Time : {} Seconds".format (te-ts))

After executing the above script, we can get the page fetching time as shown below.

Output

Page Fetching Time: 1.0991398811340332 Seconds

We can see that the time to fetch the page is more than one second. Now what if we want

to fetch thousands of different web pages, you can understand how much time our network

would take.

What is Parallelism?

Parallelism may be defined as the art of splitting the tasks into subtasks that can be

processed simultaneously. It is opposite to the concurrency, as discussed above, in which

two or more events are happening at the same time. We can understand it

diagrammatically; a task is broken into a number of subtasks that can be processed in

parallel, as follows:

To get more idea about the distinction between concurrency and parallelism, consider the

following points:

Concurrent but not parallel

Concurrency in Python

 9

An application can be concurrent but not parallel means that it processes more than one

task at the same time but the tasks are not broken down into subtasks.

Parallel but not concurrent

An application can be parallel but not concurrent means that it only works on one task at

a time and the tasks broken down into subtasks can be processed in parallel.

Neither parallel nor concurrent

An application can be neither parallel nor concurrent. This means that it works on only one

task at a time and the task is never broken into subtasks.

Both parallel and concurrent

An application can be both parallel and concurrent means that it both works on multiple

tasks at a time and the task is broken into subtasks for executing them in parallel.

Necessity of Parallelism

We can achieve parallelism by distributing the subtasks among different cores of single

CPU or among multiple computers connected within a network.

Consider the following important points to understand why it is necessary to achieve

parallelism:

Efficient code execution

With the help of parallelism, we can run our code efficiently. It will save our time because

the same code in parts is running in parallel.

Faster than sequential computing

Sequential computing is constrained by physical and practical factors due to which it is not

possible to get faster computing results. On the other hand, this issue is solved by parallel

computing and gives us faster computing results than sequential computing.

Less execution time

Parallel processing reduces the execution time of program code.

If we talk about real life example of parallelism, the graphics card of our computer is the

example that highlights the true power of parallel processing because it has hundreds of

individual processing cores that work independently and can do the execution at the same

time. Due to this reason, we are able to run high-end applications and games as well.

Understanding of the processors for implementation

We know about concurrency, parallelism and the difference between them but what about

the system on which it is to be implemented. It is very necessary to have the

understanding of the system, on which we are going to implement, because it gives us the

Concurrency in Python

 10

benefit to take informed decision while designing the software. We have the following two

kinds of processors:

Single-core processors

Single-core processors are capable of executing one thread at any given time. These

processors use context switching to store all the necessary information for a thread at

a specific time and then restoring the information later. The context switching mechanism

helps us make progress on a number of threads within a given second and it looks as if

the system is working on multiple things.

Single-core processors come with many advantages. These processors require less power

and there is no complex communication protocol between multiple cores. On the other

hand, the speed of single-core processors is limited and it is not suitable for larger

applications.

Multi-core processors

Multi-core processors have multiple independent processing units also called cores.

Such processors do not need context switching mechanism as each core contains

everything it needs to execute a sequence of stored instructions.

Fetch-Decode-Execute Cycle

The cores of multi-core processors follow a cycle for executing. This cycle is called the

Fetch-Decode-Execute cycle. It involves the following steps:

Fetch

This is the first step of cycle, which involves the fetching of instructions from the program

memory.

Decode

Recently fetched instructions would be converted to a series of signals that will trigger

other parts of the CPU.

Execute

It is the final step in which the fetched and the decoded instructions would be executed.

The result of execution will be stored in a CPU register.

One advantage over here is that the execution in multi-core processors are faster than

that of single-core processors. It is suitable for larger applications. On the other hand,

complex communication protocol between multiple cores is an issue. Multiple cores require

more power than single-core processors.

Concurrency in Python

 11

There are different system and memory architecture styles that need to be considered

while designing the program or concurrent system. It is very necessary because one

system & memory style may be suitable for one task but may be error prone to other task.

Computer system architectures supporting concurrency

Michael Flynn in 1972 gave taxonomy for categorizing different styles of computer system

architecture. This taxonomy defines four different styles as follows:

 Single instruction stream, single data stream (SISD)

 Single instruction stream, multiple data stream (SIMD)

 Multiple instruction stream, single data stream (MISD)

 Multiple instruction stream, multiple data stream (MIMD).

Single instruction stream, single data stream (SISD)

As the name suggests, such kind of systems would have one sequential incoming data

stream and one single processing unit to execute the data stream. They are just like

uniprocessor systems having parallel computing architecture. Following is the architecture

of SISD:

Advantages of SISD

The advantages of SISD architecture are as follows:

 It requires less power.

 There is no issue of complex communication protocol between multiple cores.

Disadvantages of SISD

The disadvantages of SISD architecture are as follows:

 The speed of SISD architecture is limited just like single-core processors.

 It is not suitable for larger applications.

3. Concurrency in Python – System & Memory
Architecture

Concurrency in Python

 12

Single instruction stream, multiple data stream (SIMD)

As the name suggests, such kind of systems would have multiple incoming data streams

and number of processing units that can act on a single instruction at any given time. They

are just like multiprocessor systems having parallel computing architecture. Following is

the architecture of SIMD:

The best example for SIMD is the graphics cards. These cards have hundreds of individual

processing units. If we talk about computational difference between SISD and SIMD then

for the adding arrays [5, 15, 20] and [15, 25, 10], SISD architecture would have to

perform three different add operations. On the other hand, with the SIMD architecture,

we can add then in a single add operation.

Advantages of SIMD

The advantages of SIMD architecture are as follows:

 Same operation on multiple elements can be performed using one instruction only.

 Throughput of the system can be increased by increasing the number of cores of

the processor.

 Processing speed is higher than SISD architecture.

Disadvantages of SIMD

The disadvantages of SIMD architecture are as follows:

 There is complex communication between numbers of cores of processor.

 The cost is higher than SISD architecture.

Multiple Instruction Single Data (MISD) stream

Systems with MISD stream have number of processing units performing different

operations by executing different instructions on the same data set. Following is the

architecture of MISD:

Concurrency in Python

 13

The representatives of MISD architecture do not yet exist commercially.

Multiple Instruction Multiple Data (MIMD) stream

In the system using MIMD architecture, each processor in a multiprocessor system can

execute different sets of instructions independently on the different set of data set in

parallel. It is opposite to SIMD architecture in which single operation is executed on

multiple data sets. Following is the architecture of MIMD:

A normal multiprocessor uses the MIMD architecture. These architectures are basically

used in a number of application areas such as computer-aided design/computer-aided

manufacturing, simulation, modeling, communication switches, etc.

Memory architectures supporting concurrency

While working with the concepts like concurrency and parallelism, there is always a need

to speed up the programs. One solution found by computer designers is to create shared-

memory multi-computers, i.e., computers having single physical address space, which is

accessed by all the cores that a processor is having. In this scenario, there can be a

number of different styles of architecture but following are the three important architecture

styles:

UMA (Uniform Memory Access)

In this model, all the processors share the physical memory uniformly. All the processors

have equal access time to all the memory words. Each processor may have a private cache

memory. The peripheral devices follow a set of rules.

Concurrency in Python

 14

When all the processors have equal access to all the peripheral devices, the system is

called a symmetric multiprocessor. When only one or a few processors can access the

peripheral devices, the system is called an asymmetric multiprocessor.

Concurrency in Python

 15

Non-uniform Memory Access (NUMA)

In the NUMA multiprocessor model, the access time varies with the location of the memory

word. Here, the shared memory is physically distributed among all the processors, called

local memories. The collection of all local memories forms a global address space which

can be accessed by all the processors.

Cache Only Memory Architecture (COMA)

The COMA model is a specialized version of the NUMA model. Here, all the distributed main

memories are converted to cache memories.

Concurrency in Python

 16

In general, as we know that thread is a very thin twisted string usually of the cotton or

silk fabric and used for sewing clothes and such. The same term thread is also used in the

world of computer programming. Now, how do we relate the thread used for sewing clothes

and the thread used for computer programming? The roles performed by the two threads

is similar here. In clothes, thread hold the cloth together and on the other side, in computer

programming, thread hold the computer program and allow the program to execute

sequential actions or many actions at once.

Thread is the smallest unit of execution in an operating system. It is not in itself a program

but runs within a program. In other words, threads are not independent of one other and

share code section, data section, etc. with other threads. These threads are also known

as lightweight processes.

States of Thread

To understand the functionality of threads in depth, we need to learn about the lifecycle

of the threads or the different thread states. Typically, a thread can exist in five distinct

states. The different states are shown below:

New Thread

A new thread begins its life cycle in the new state. However, at this stage, it has not yet

started and it has not been allocated any resources. We can say that it is just an instance

of an object.

Runnable

As the newly born thread is started, the thread becomes runnable i.e. waiting to run. In

this state, it has all the resources but still task scheduler have not scheduled it to run.

Running

In this state, the thread makes progress and executes the task, which has been chosen

by task scheduler to run. Now, the thread can go to either the dead state or the non-

runnable/ waiting state.

Non-running/waiting

In this state, the thread is paused because it is either waiting for the response of some

I/O request or waiting for the completion of the execution of other thread.

Dead

A runnable thread enters the terminated state when it completes its task or otherwise

terminates.

4. Concurrency in Python – Threads

Concurrency in Python

 17

The following diagram shows the complete life cycle of a thread:

Types of Thread

In this section, we will see the different types of thread. The types are described below:

User Level Threads

These are user-managed threads.

In this case, the thread management kernel is not aware of the existence of threads. The

thread library contains code for creating and destroying threads, for passing message and

data between threads, for scheduling thread execution and for saving and restoring thread

contexts. The application starts with a single thread.

The examples of user level threads are:

 Java threads

 POSIX threads

Concurrency in Python

 18

Advantages of User Level Threads

Following are the different advantages of user level threads:

● Thread switching does not require Kernel mode privileges.

● User level thread can run on any operating system.

● Scheduling can be application specific in the user level thread.

● User level threads are fast to create and manage.

Disadvantages of User Level Threads

Following are the different disadvantages of user level threads:

● In a typical operating system, most system calls are blocking.

● Multithreaded application cannot take advantage of multiprocessing.

Kernel Level Threads

Operating System managed threads act on kernel, which is an operating system core.

In this case, the Kernel does thread management. There is no thread management code

in the application area. Kernel threads are supported directly by the operating system.

Any application can be programmed to be multithreaded. All of the threads within an

application are supported within a single process.

The Kernel maintains context information for the process as a whole and for individual

threads within the process. Scheduling by the Kernel is done on a thread basis. The Kernel

performs thread creation, scheduling and management in Kernel space. Kernel threads

are generally slower to create and manage than the user threads. The examples of kernel

level threads are Windows, Solaris.

Advantages of Kernel Level Threads

Following are the different advantages of kernel level threads:

Concurrency in Python

 19

● Kernel can simultaneously schedule multiple threads from the same process on

multiple processes.

● If one thread in a process is blocked, the Kernel can schedule another thread of the

same process.

● Kernel routines themselves can be multithreaded.

Disadvantages of Kernel Level Threads

● Kernel threads are generally slower to create and manage than the user threads.

● Transfer of control from one thread to another within the same process requires a

mode switch to the Kernel.

Thread Control Block - TCB

Thread Control Block (TCB) may be defined as the data structure in the kernel of operating

system that mainly contains information about thread. Thread-specific information stored

in TCB would highlight some important information about each process.

Consider the following points related to the threads contained in TCB:

 Thread identification: It is the unique thread id (tid) assigned to every new

thread.

 Thread state: It contains the information related to the state (Running, Runnable,

Non-Running, Dead) of the thread.

 Program Counter (PC): It points to the current program instruction of the thread.

 Register set: It contains the thread’s register values assigned to them for

computations.

 Stack Pointer: It points to the thread’s stack in the process. It contains the local

variables under thread’s scope.

 Pointer to PCB: It contains the pointer to the process that created that thread.

Thread identification

Thread state

Program Counter (PC)

Register set

Concurrency in Python

 20

Stack Pointer

Pointer to PCB

Relation between process & thread

In multithreading, process and thread are two very closely related terms having the same

goal to make computer able to do more than one thing at a time. A process can contain

one or more threads but on the contrary, thread cannot contain a process. However, they

both remain the two basic units of execution. A program, executing a series of instructions,

initiates process and thread both.

The following table shows the comparison between process and thread:

S.No. Process Thread

1 Process is heavy weight or resource

intensive.

Thread is lightweight which takes

fewer resources than a process.

2 Process switching needs interaction

with operating system.

Thread switching does not need to

interact with operating system.

3 In multiple processing environments,

each process executes the same code

but has its own memory and file

resources.

All threads can share same set of

open files, child processes.

4 If one process is blocked, then no

other process can execute until the

first process is unblocked.

While one thread is blocked and

waiting, a second thread in the same

task can run.

5 Multiple processes without using

threads use more resources.

Multiple threaded processes use

fewer resources.

Concurrency in Python

 21

6 In multiple processes, each process

operates independently of the others.

One thread can read, write or change

another thread's data.

7 If there would be any change in the

parent process then it does not affect

the child processes.

If there would be any change in the

main thread then it may affect the

behavior of other threads of that

process.

8 To communicate with sibling

processes, processes must use inter-

process communication.

Threads can directly communicate

with other threads of that process.

Concurrency in Python

 22

End of ebook preview

If you liked what you saw…

Buy it from our store @ https://store.tutorialspoint.com

https://store.tutorialspoint.com/

