
Espresso

 i

Espresso

 i

About the Tutorial

Espresso is an open source android user interface (UI) testing framework developed by

Google. The term Espresso is of Italian origin, meaning Coffee. Espresso is a simple,

efficient and flexible testing framework. This tutorial walks you through the basics of

Espresso framework, how to setup Espresso framework in a project, work flow of the

framework and finding, automating & asserting user interface components in the testing

environment with simple android application.

Audience

This tutorial is prepared for professionals who are aspiring to make a career in the field of

android mobile application as well as android automated testing. This tutorial is intended

to make you comfortable in getting started with the Espresso testing framework concepts.

Prerequisites

Before proceeding with the various types of concepts given in this tutorial, we assume that

the readers have the basic knowhow of android mobile programming. In addition to this,

it will be very helpful, if the readers have a sound knowledge on Java.

Copyright & Disclaimer

 Copyright 2019 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

Espresso

 ii

Table of Contents

About the Tutorial .. i

Audience .. i

Prerequisites .. i

Copyright & Disclaimer ... i

Table of Contents .. ii

1. Espresso – Introduction .. 1

Features of Espresso .. 1

Advantages of Espresso ... 1

2. Espresso — Setup Instructions .. 2

Prerequisites ... 2

Configure Espresso Testing Framework .. 2

Device Settings .. 9

3. Espresso — Running Tests In Android Studio .. 10

4. Espresso — Overview of JUnit ... 15

Write a Simple Unit Test .. 15

Annotations ... 16

Order of Execution .. 21

Assertion ... 21

5. Espresso — Architecture of Espresso Testing Framework ... 22

Overview ... 22

ViewMatchers ... 23

ViewActions .. 23

ViewAssertions .. 23

Workflow of Espresso Testing Framework .. 23

Example – view assertion ... 25

6. View Matchers .. 28

Espresso

 iii

Hamcrest Library ... 28

Matchers ... 30

7. Espresso — Custom View Matchers .. 38

8. Espresso — View Assertions ... 41

9. Espresso — View Actions .. 45

10. Espresso — Testing AdapterView .. 49

Methods .. 49

Write a Sample Application.. 50

11. Espresso — Testing WebView ... 54

Write a Sample Application.. 55

12. Espresso — Testing Asynchronous Operations .. 59

User Interface Threading ... 59

Overview ... 59

Sample Application .. 60

13. Espresso — Testing Intents ... 71

Setup... 71

intended() ... 71

intending()... 77

14. Espresso — Testing UI for Multiple Application .. 80

Setup Instruction ... 80

Workflow for Writing Test Case ... 80

15. Espresso — Test Recorder ... 82

16. Espresso — Testing UI Performance .. 89

17. Espresso — Testing Accessibility ... 90

Conclusion ... 90

Espresso

 1

In general, mobile automation testing is a difficult and challenging task. Android

availability for different devices and platforms makes it things tedious for mobile

automation testing. To make it easier, Google took on the challenge and developed

Espresso framework. It provides a very simple, consistent and flexible API to automate

and test the user interfaces in an android application. Espresso tests can be written in both

Java and Kotlin, a modern programming language to develop android application.

The Espresso API is simple and easy to learn. You can easily perform Android UI tests

without the complexity of multi-threaded testing. Google Drive, Maps and some other

applications are currently using Espresso.

Features of Espresso

Some the salient features supported by Espresso are as follow,

 Very simple API and so, easy to learn.

 Highly scalable and flexible.

 Provides separate module to test Android WebView component.

 Provides separate module to validate as well as mock Android Intents.

 Provides automatic synchronization between your application and tests.

Advantages of Espresso

Let us now what the benefits of Espresso are.

 Backward compatibility

 Easy to setup.

 Highly stable test cycle.

 Supports testing activities outside application as well.

 Supports JUnit4

 UI automation suitable for writing black box tests.

1. Espresso – Introduction

Espresso

 2

In this chapter, let us understand how to install espresso framework, configure it to write

espresso tests and execute it in our android application.

Prerequisites

Espresso is a user interface-testing framework for testing android application developed

in Java / Kotlin language using Android SDK. Therefore, espresso’s only requirement is to

develop the application using Android SDK in either Java or Kotlin and it is advised to have

the latest Android Studio.

The list of items to be configured properly before we start working in espresso framework

is as follows:

 Install latest Java JDK and configure JAVA_HOME environment variable.

 Install latest Android Studio (version 3.2. or higher).

 Install latest Android SDK using SDK Manager and configure ANDROID_HOME

environment variable.

 Install latest Gradle Build Tool and configure GRADLE_HOME environment variable.

Configure Espresso Testing Framework

Initially, espresso testing framework is provided as part of the Android Support library.

Later, the Android team provides a new Android library, AndroidX and moves the latest

espresso testing framework development into the library. Latest development (Android

9.0, API level 28 or higher) of espresso testing framework will be done in AndroidX library.

Including espresso testing framework in a project is as simple as setting the espresso

testing framework as a dependency in the application gradle file, app/build.gradle. The

complete configuration is as follow,

Using Android support library,

android {
 defaultConfig {

 testInstrumentationRunner

"android.support.test.runner.AndroidJUnitRunner"
 }

}

dependencies {
 testImplementation 'junit:junit:4.12'

 androidTestImplementation 'com.android.support.test:runner:1.0.2'

 androidTestImplementation 'com.android.support.test.espresso:espresso-
core:3.0.2'

}

2. Espresso — Setup Instructions

Espresso

 3

Using AndroidX library,

android {

 defaultConfig {
 testInstrumentationRunner "androidx.test.runner.AndroidJUnitRunner"

 }

}
dependencies {

 testImplementation 'junit:junit:4.12'

 androidTestImplementation 'com.androidx.test:runner:1.0.2'
 androidTestImplementation 'com.androidx.espresso:espresso-core:3.0.2'

}

testInstrumentationRunner in the android/defaultConfig sets AndroidJUnitRunner class to

run the instrumentation tests. The first line in the dependencies includes the JUnit testing

framework, the second line in the dependencies includes the test runner library to run the

test cases and finally the third line in the dependencies includes the espresso testing

framework.

By default, Android studio sets the espresso testing framework (Android support library)

as a dependency while creating the android project and gradle will download the necessary

library from the Maven repository. Let us create a simple Hello world android application

and check whether the espresso testing framework is configured properly.

The steps to create a new Android application are described below:

 Start Android Studio.

 Select File -> New -> New Project.

 Enter Application Name (HelloWorldApp) and Company domain

(espressosamples.tutorialspoint.com) and then click Next.

Espresso

 4

Espresso

 5

To create Android Project,

 Select minimum API as API 15: Android 4.0.3 (IceCreamSandwich) and then click

Next.

Espresso

 6

To target Android Devices,

 Select Empty Activity and then click Next.

Espresso

 7

To add an activity to Mobile,

 Enter name for main activity and then click Finish.

To configure Activity,

 Once, a new project is created, open the app/build.gradle file and check its content.

The content of the file is specified below,

apply plugin: 'com.android.application'

android {

 compileSdkVersion 28
 defaultConfig {

 applicationId "com.tutorialspoint.espressosamples.helloworldapp"

 minSdkVersion 15
 targetSdkVersion 28

 versionCode 1

 versionName "1.0"
 testInstrumentationRunner

"android.support.test.runner.AndroidJUnitRunner"

 }
 buildTypes {

 release {

 minifyEnabled false
 proguardFiles getDefaultProguardFile('proguard-android.txt'),

'proguard-rules.pro'

Espresso

 8

 }

 }
}

dependencies {
 implementation fileTree(dir: 'libs', include: ['*.jar'])

 implementation 'com.android.support:appcompat-v7:28.0.0'

 implementation 'com.android.support.constraint:constraint-layout:1.1.3'
 testImplementation 'junit:junit:4.12'

 androidTestImplementation 'com.android.support.test:runner:1.0.2'
 androidTestImplementation 'com.android.support.test.espresso:espresso-

core:3.0.2'

}

The last line specifies the espresso testing framework dependency. By default, Android

support library is configured. We can reconfigure the application to use AndroidX library

by clicking Refactor -> Migrate to AndroidX in the menu.

To migrate to Androidx,

 Now, the app/build.gradle changes as specified below,

apply plugin: 'com.android.application'

android {
 compileSdkVersion 28

 defaultConfig {

 applicationId "com.tutorialspoint.espressosamples.helloworldapp"
 minSdkVersion 15

 targetSdkVersion 28

Espresso

 9

 versionCode 1

 versionName "1.0"
 testInstrumentationRunner "androidx.test.runner.AndroidJUnitRunner"

 }

 buildTypes {
 release {

 minifyEnabled false

 proguardFiles getDefaultProguardFile('proguard-android.txt'),
'proguard-rules.pro'

 }
 }

}

dependencies {

 implementation fileTree(dir: 'libs', include: ['*.jar'])

 implementation 'androidx.appcompat:appcompat:1.1.0-alpha01'
 implementation 'androidx.constraintlayout:constraintlayout:2.0.0-alpha3'

 testImplementation 'junit:junit:4.12'

 androidTestImplementation 'androidx.test:runner:1.1.1'
 androidTestImplementation 'androidx.test.espresso:espresso-core:3.1.1'

}

Now, the last line includes espresso testing framework from AndroidX library.

Device Settings

During testing, it is recommended to turn off the animation on the Android device, which

is used for testing. This will reduce the confusions while checking ideling resources.

Let us see how to disable animation on Android devices – (Settings -> Developer options),

 Window animation scale

 Transition animation scale

 Animator duration scale

If Developer options menu is not available in the Settings screen, then click Build Number

available inside the About Phone option several times. This enables the Developer Option

menu.

Espresso

 10

In this chapter, let us see how to run tests using Android studio.

Every android application has two type of tests:

 Functional / Unit tests

 Instrumentation tests

Functional test does not need the actual android application to be installed and launched

in the device or emulator and test the functionality. It can be launched in the console itself

without invoking the actual application. However, instrumentation tests need the actual

application to be launched to test the functionality like user interface and user interaction.

By default, Unit tests are written in src/test/java/ folder and Instrumentation tests are

written in src/androidTest/java/ folder. Android studio provides Run context menu for

the test classes to run the test written in the selected test classes. By default, an Android

application has two classes – ExampleUnitTest in src/test folder and

ExampleInstrumentedTest in src/androidTest folder.

3. Espresso — Running Tests In Android Studio

Espresso

 11

To run the default unit test, select ExampleUnitTest in the Android studio, right-click on it

and then click the Run ‘ExampleUnitTest’ as shown below,

Espresso

 12

Run Unit Test

This will run the unit test and show the result in the console as in the following screenshot:

Espresso

 13

Unit Test Success

To run the default instrumentation test, select ExampleInstrumentationTest in the android

studio, right-click it and then click the Run ‘ExampleInstrumentationTest’ as shown below,

Espresso

 14

Run Instrumentation Test

This will run the unit test by launching the application in either device or emulator and

show the result in the console as in the following screenshot:

The instrumentation test ran successful.

Espresso

 15

In this chapter, let us understand the basics of JUnit, the popular unit-testing framework

developed by the Java community upon which the espresso testing framework is build.

JUnit is the de facto standard for unit testing a Java application. Even though, it is popular

for unit testing, it has complete support and provision for instrumentation testing as well.

Espresso testing library extends the necessary JUnit classes to support the Android based

instrumentation testing.

Write a Simple Unit Test

Let us create a Java class, Computation (Computation.java) and write simple mathematical

operation, Summation and Multiplication. Then, we will write test cases using JUnit and

check it by running the test cases.

 Start Android Studio.

 Open HelloWorldApp created in the previous chapter.

 Create a file, Computation.java in

app/src/main/java/com/tutorialspoint/espressosamples/helloworldapp/ and write

two functions – Sum and Multiply as specified below,

package com.tutorialspoint.espressosamples.helloworldapp;

public class Computation {

 public Computation() {}

 public int Sum(int a, int b)

 {
 return a + b;

 }

 public int Multiply(int a, int b)

 {

 return a * b;
 }

}

 Create a file, ComputationUnitTest.java in

app/src/test/java/com/tutorialspoint/espressosamples/helloworldapp and write unit

test cases to test Sum and Multiply functionality as specified below,

package com.tutorialspoint.espressosamples.helloworldapp;

import org.junit.Test;

import static org.junit.Assert.assertEquals;

4. Espresso — Overview of JUnit

Espresso

 16

public class ComputationUnitTest {

 @Test

 public void sum_isCorrect() {

 Computation computation = new Computation();
 assertEquals(4, computation.Sum(2,2));

 }

 @Test

 public void multiply_isCorrect() {
 Computation computation = new Computation();

 assertEquals(4, computation.Multiply(2,2));

 }
}

Here, we have used two new terms – @Test and assertEquals. In general, JUnit uses Java

annotation to identify the test cases in a class and information on how to execute the test

cases. @Test is one such Java annotation, which specifies that the particular function is a

junit test case. assertEquals is a function to assert that the first argument (expected value)

and the second argument (computed value) are equal and same. JUnit provides a number

of assertion methods for different test scenarios.

 Now, run the ComputationUnitTest in the Android studio by right-clicking the class

and invoking the Run ‘ComputationUnitTest’ option as explained in the previous

chapter. This will run the unit test cases and report success.

Result of computation unit test is as shown below:

Annotations

The JUnit framework uses annotation extensively. Some of the important annotations are

as follows:

 @Test

 @Before

 @After

 @BeforeClass

 @AfterClass

 @Rule

Espresso

 17

@Test annotation

@Test is the very important annotation in the JUnit framework. @Test is used to

differentiate a normal method from the test case method. Once a method is decorated

with @Test annotation, then that particular method is considered as a Test case and will

be run by JUnit Runner. JUnit Runner is a special class, which is used to find and run the

JUnit test cases available inside the java classes. For now, we are using Android Studio’s

build in option to run the unit tests (which in turn run the JUnit Runner). A sample code is

as follows,

package com.tutorialspoint.espressosamples.helloworldapp;

import org.junit.Test;

import static org.junit.Assert.assertEquals;

public class ComputationUnitTest {

 @Test

 public void multiply_isCorrect() {
 Computation computation = new Computation();

 assertEquals(4, computation.Multiply(2,2));
 }

}

@Before

@Before annotation is used to refer a method, which needs to be invoked before running

any test method available in a particular test class. For example in our sample, the

Computation object can be created in a separate method and annotated with @Before so

that it will run before both sum_isCorrect and multiply_isCorrect test case. The complete

code is as follows,

package com.tutorialspoint.espressosamples.helloworldapp;

import org.junit.Before;
import org.junit.Test;

import static org.junit.Assert.assertEquals;

public class ComputationUnitTest {

 Computation computation = null;

 @Before

 public void CreateComputationObject() {
 this.computation = new Computation();

 }

 @Test

 public void sum_isCorrect() {

 assertEquals(4, this.computation.Sum(2,2));
 }

 @Test

 public void multiply_isCorrect() {

Espresso

 18

 assertEquals(4, this.computation.Multiply(2,2));

 }
}

@After

@After is similar to @Before, but the method annotated with @After will be called or

executed after each test case is run. The sample code is as follows,

package com.tutorialspoint.espressosamples.helloworldapp;

import org.junit.After;

import org.junit.Before;
import org.junit.Test;

import static org.junit.Assert.assertEquals;

public class ComputationUnitTest {

 Computation computation = null;

 @Before

 public void CreateComputationObject() {
 this.computation = new Computation();

 }

 @After

 public void DestroyComputationObject() {
 this.computation = null;

 }

 @Test

 public void sum_isCorrect() {

 assertEquals(4, this.computation.Sum(2,2));
 }

 @Test
 public void multiply_isCorrect() {

 assertEquals(4, this.computation.Multiply(2,2));

 }
}

@BeforeClass

@BeforeClass is similar to @Before, but the method annotated with @BeforeClass will be

called or executed only once before running all test cases in a particular class. It is useful

to create resource intensive object like database connection object. This will reduce the

time to execute a collection of test cases. This method needs to be static in order to work

properly. In our sample, we can create the computation object once before running all test

cases as specified below,

package com.tutorialspoint.espressosamples.helloworldapp;

import org.junit.BeforeClass;

Espresso

 19

import org.junit.Test;

import static org.junit.Assert.assertEquals;

public class ComputationUnitTest {

 private static Computation computation = null;

 @BeforeClass
 public static void CreateComputationObject() {

 computation = new Computation();
 }

 @Test
 public void sum_isCorrect() {

 assertEquals(4, computation.Sum(2,2));

 }

 @Test

 public void multiply_isCorrect() {
 assertEquals(4, computation.Multiply(2,2));

 }

}

@AfterClass

@AfterClass is similar to @BeforeClass, but the method annotated with @AfterClass will

be called or executed only once after all test cases in a particular class are run. This method

also needs to be static to work properly. The sample code is as follows:

package com.tutorialspoint.espressosamples.helloworldapp;

import org.junit.AfterClass;

import org.junit.BeforeClass;
import org.junit.Test;

import static org.junit.Assert.assertEquals;

public class ComputationUnitTest {

 private static Computation computation = null;

 @BeforeClass

 public static void CreateComputationObject() {
 computation = new Computation();

 }

 @AfterClass

 public static void DestroyComputationObject() {
 computation = null;

 }

 @Test

 public void sum_isCorrect() {

 assertEquals(4, computation.Sum(2,2));
 }

Espresso

 20

 @Test
 public void multiply_isCorrect() {

 assertEquals(4, computation.Multiply(2,2));

 }
}

@Rule

@Rule annotation is one of the highlights of JUnit. It is used to add behavior to the test

cases. We can only annotate the fields of type TestRule. It actually provides feature set

provided by @Before and @After annotation but in an efficient and reusable way. For

example, we may need a temporary folder to store some data during a test case. Normally,

we need to create a temporary folder before running the test case (using either @Before

or @BeforeClass annotation) and destroy it after the test case is run (using either @After

or @AfterClass annotation). Instead, we can use TemporaryFolder (of type TestRule) class

provided by JUnit framework to create a temporary folder for all our test cases and the

temporary folder will be deleted as and when the test case is run. We need to create a

new variable of type TemporaryFolder and need to annotate with @Rule as specified below,

package com.tutorialspoint.espressosamples.helloworldapp;

import org.junit.AfterClass;

import org.junit.BeforeClass;
import org.junit.Rule;

import org.junit.Test;

import org.junit.rules.TemporaryFolder;

import java.io.File;

import java.io.IOException;

import static junit.framework.TestCase.assertTrue;

import static org.junit.Assert.assertEquals;

public class ComputationUnitTest {

 private static Computation computation = null;

 @Rule
 public TemporaryFolder folder = new TemporaryFolder();

 @Test
 public void file_isCreated() throws IOException {

 folder.newFolder("MyTestFolder");
 File testFile = folder.newFile("MyTestFile.txt");

 assertTrue(testFile.exists());

 }

 @BeforeClass

 public static void CreateComputationObject() {
 computation = new Computation();

 }

Espresso

 21

 @AfterClass

 public static void DestroyComputationObject() {
 computation = null;

 }

 @Test

 public void sum_isCorrect() {

 assertEquals(4, computation.Sum(2,2));
 }

 @Test

 public void multiply_isCorrect() {

 assertEquals(4, computation.Multiply(2,2));
 }

}

Order of Execution

In JUnit, the methods annotated with different annotation will be executed in specific order

as shown below,

 @BeforeClass

 @Rule

 @Before

 @Test

 @After

 @AfterClass

Assertion

Assertion is a way of checking whether the expected value of the test case matches the

actual value of the test case result. JUnit provides assertion for different scenario; a few

important assertions are listed below:

 fail() - To explicitly make a test case fail.

 assertTrue(boolean test_condition) - Checks that the test_condition is true

 assertFalse(boolean test_condition) - Checks that the test_condition is false

 assertEquals(expected, actual) - Checks that both values are equal

 assertNull(object) - Checks that the object is null

 assertNotNull(object) - Checks that the object is not null

 assertSame(expected, actual) - Checks that both refers same object.

 assertNotSame(expected, actual) - Checks that both refers different object.

Espresso

 22

In this chapter, let us learn the terms of espresso testing framework, how to write a simple

espresso test case and the complete workflow or architecture of the espresso testing

framework.

Overview

Espresso provides a large number of classes to test user interface and the user interaction

of an android application. They can be grouped into five categories as specified below:

JUnit runner

Android testing framework provides a runner, AndroidJUnitRunner to run the espresso test

cases written in JUnit3 and JUnit4 style test cases. It is specific to android application and

it transparently handles loading the espresso test cases and the application under test

both in actual device or emulator, execute the test cases and report the result of the test

cases. To use AndroidJUnitRunner in the test case, we need to annotate the test class

using @RunWith annotation and then pass the AndroidJUnitRunner argument as specified

below:

@RunWith(AndroidJUnit4.class)
public class ExampleInstrumentedTest {

}

JUnit rules

Android testing framework provides a rule, ActivityTestRule to launch an android activity

before executing the test cases. It launches the activity before each method annotated

with @Test` and @Before. It will terminate the activity after method annotated with

@After. A sample code is as follows,

@Rule

public ActivityTestRule<MainActivity> mActivityTestRule = new

ActivityTestRule<>(MainActivity.class);

Here, MainActivity is the activity to be launched before running a test case and destroyed

after the particular test case is run.

5. Espresso — Architecture of Espresso Testing
Framework

Espresso

 23

ViewMatchers

Espresso provides large number of view matcher classes (in

androidx.test.espresso.matcher.ViewMatchers package) to match and find UI elements /

views in an android activity screen’s view hierarchy. Espresso’s method onView takes a

single argument of type Matcher (View matchers), finds the corresponding UI view and

returns corresponding ViewInteraction object. ViewInteraction object returned by onView

method can be further used to invoke actions like click on the matched view or can be

used to assert the matched view. A sample code to find the view with text, “Hello World!”

is as follows,

ViewInteraction viewInteraction = Espresso.onView(withText("Hello World!"));

Here, withText is a matcher, which can be used to match UI view having text “Hello World!”

ViewActions

Espresso provides large number of view action classes (in

androidx.test.espresso.action.ViewActions) to invoke the different action on the selected

/ matched view. Once onView matches and returns ViewInteraction object, any action can

be invoked by calling “perform” method of ViewInteraction object and pass it with proper

view actions. A sample code to click the matched view is as follows,

ViewInteraction viewInteraction = Espresso.onView(withText("Hello World!"));

viewInteraction.perform(click());

Here, the click action of the matched view will be invoked.

ViewAssertions

Similar to view matchers and view actions, Espresso provides a large number of view

assertion (in androidx.test.espresso.assertion.ViewAssertions package) to assert the

matched view is what we expected. Once onView matches and returns the ViewInteraction

object, any assert can be checked using check method of ViewInteraction by passing it

with proper view assertion. A sample code to assert that the matched view is as follows,

ViewInteraction viewInteraction = Espresso.onView(withText("Hello World!"));

viewInteraction.check(matches(withId(R.id.text_view)));

Here, matches accept the view matcher and return view assertion, which can be checked

by check method of ViewInteraction.

Workflow of Espresso Testing Framework

Let us understand how the espresso testing framework works and how it provides options

to do any kind of user interaction in a simple and flexible way. Workflow of an espresso

test case is as described below,

 As we learned earlier, Android JUnit runner, AndroidJUnit4 will run the android test

cases. The espresso test cases need to be marked with

@RunWith(AndroidJUnut.class). First, AndroidJUnit4 will prepare the environment

to run the test cases. It starts either the connected android device or emulator,

Espresso

 24

installs the application and makes sure the application to be tested is in ready state.

It will run the test cases and report the results.

 Espresso needs at least a single JUnit rule of type ActivityTestRule to specify the

activity. Android JUnit runner will start the activity to be launched using

ActivityTestRule.

 Every test case needs a minimum of single onView or onDate (used to find data

based views like AdapterView) method invocation to match and find the desired

view. onView or onData returns ViewInteraction object.

 Once ViewInteraction object is returned, we can either invoke an action of the

selected view or check the view for our expected view using assertion.

 Action can be invoked using perform method of ViewInteraction object by passing

any one of the available view actions.

 Assertion can be invoked using check method of ViewInteraction object by passing

any one of the available view assertions.

Espresso

 25

The diagram representation of the Workflow is as follows,

Example – view assertion

Let us write a simple test case to find the text view having “Hello World!” text in our

“HelloWorldApp” application and then assert it using view assertion. The complete code is

as follows,

package com.tutorialspoint.espressosamples.helloworldapp;

import android.content.Context;
import androidx.test.InstrumentationRegistry;

import androidx.test.rule.ActivityTestRule;

Espresso

 26

import androidx.test.runner.AndroidJUnit4;

import org.junit.Rule;

import org.junit.Test;

import org.junit.runner.RunWith;

import static androidx.test.espresso.Espresso.onView;

import static androidx.test.espresso.matcher.ViewMatchers.withText;;
import static androidx.test.espresso.assertion.ViewAssertions.matches;

import static org.junit.Assert.*;

/**

 * Instrumented test, which will execute on an Android device.
 *

 * @see Testing documentation

 */
@RunWith(AndroidJUnit4.class)

public class ExampleInstrumentedTest {

 @Rule

 public ActivityTestRule<MainActivity> mActivityTestRule = new

ActivityTestRule<>(MainActivity.class);

 @Test

 public void view_isCorrect()
 {

 onView(withText("Hello World!"))

 .check(matches(isDisplayed()));
 }

 @Test

 public void useAppContext() {

 // Context of the app under test.
 Context appContext = InstrumentationRegistry.getTargetContext();

 assertEquals("com.tutorialspoint.espressosamples.helloworldapp",
appContext.getPackageName());

 }

}

Here, we have used withText view matchers to find the text view having “Hello World!”

text and matches view assertion to assert that the text view is properly displayed. Once

the test case is invoked in Android Studio, it will run the test case and report the success

message as below.

view_isCorrect test case

Espresso

 27

Espresso

 28

Espresso framework provides many view matchers. The purpose of the matcher is to

match a view using different attributes of the view like Id, Text, and availability of child

view. Each matcher matches a particular attributes of the view and applies to particular

type of view. For example, withId matcher matches the Id property of the view and applies

to all view, whereas withText matcher matches the Text property of the view and applies

to TextView only.

In this chapter, let us learn the different matchers provided by espresso testing framework

as well as learn the Hamcrest library upon which the espresso matchers are built.

Hamcrest Library

Hamcrest library is an important library in the scope of espresso testing framework.

Hamcrest is itself a framework for writing matcher objects. Espresso framework

extensively uses the Hamcrest library and extend it whenever necessary to provide simple

and extendable matchers.

Hamcrest provides a simple function assertThat and a collection of matchers to assert any

objects. assertThat has three arguments and they are as shown below:

 String (description of the test, optional)

 Object (actual)

 Matcher (expected)

Let us write a simple example to test whether a list object has expected value.

import static org.hamcrest.Matchers.hasItem;
import static org.hamcrest.MatcherAssert.assertThat;

@Test
public void list_hasValue() {

 ArrayList<String> list = new ArrayList<String>();

 list.add("John");
 assertThat("Is list has John?", list, hasItem("John"));

}

Here, hasItem returns a matcher, which checks whether the actual list has specified value

as one of the item.

Hamcrest has a lot of built-in matchers and also options to create new matchers. Some of

the important built-in matchers useful in espresso testing framework are as follows:

anything - always matchers

6. View Matchers

Espresso

 29

Logical based matchers

 allOf - accept any number of matchers and matches only if all matchers are

succeeded.

 anyOf - accept any number of matchers and matches if any one matcher

succeeded.

 not - accept one matcher and matches only if the matcher failed and vice versa.

Text based matchers

 equalToIgnoringCase - used to test whether the actual input equals the expected

string ignoring case.

 equalToIgnoringWhiteSpace - used to test whether the actual input equals the

specified string ignoring case and white spaces.

 containsString - used to test whether the actual input contains specified string.

 endsWith - used to test whether the actual input starts with specified string.

 startsWith - - used to test whether actual the input ends with specified string.

Number based matchers

 closeTo - used to test whether the actual input is close to the expected number.

 greaterThan - used to test whether the actual input is greater than the expected

number.

 greaterThanOrEqualTo - used to test whether the actual input is greater than or

equal to the expected number.

 lessThan - used to test whether the actual input is less than the expected number.

 lessThanOrEqualTo - used to test whether the actual input is less than or equal to

the expected number.

Object based matchers

 equalTo - used to test whether the actual input is equals to the expected object

 hasToString - used to test whether the actual input has toString method.

 instanceOf - used to test whether the actual input is the instance of expected class.

 isCompatibleType - used to test whether the actual input is compatible with the

expected type.

 notNullValue - used to test whether the actual input is not null.

Espresso

 30

 sameInstance - used to test whether the actual input and expected are of same

instance.

 hasProperty - used to test whether the actual input has the expected property

is - Sugar or short cut for equalTo

Matchers

Espresso provides the onView() method to match and find the views. It accepts view

matchers and returns ViewInteraction object to interact with the matched view. The

frequently used list of view matchers are described below:

withId()

withId() accepts an argument of type int and the argument refers the id of the view. It

returns a matcher, which matches the view using the id of the view. The sample code is

as follows,

onView(withId(R.id.testView))

withText()

withText() accepts an argument of type string and the argument refers the value of the

view’s text property. It returns a matcher, which matches the view using the text value of

the view. It applies to TextView only. The sample code is as follows,

onView(withText("Hello World!"))

withContentDescription()

withContentDescription() accepts an argument of type string and the argument refers the

value of the view’s content description property. It returns a matcher, which matches the

view using the description of the view. The sample code is as follows,

onView(withContentDescription("blah"))

We can also pass the resource id of the text value instead of the text itself.

onView(withContentDescription(R.id.res_id_blah))

hasContentDescription()

hasContentDescription() has no argument. It returns a matcher, which matches the view

that has any content description. The sample code is as follows,

onView(allOf(withId(R.id.my_view_id), hasContentDescription()))

Espresso

 31

withTagKey()

withTagKey() accepts an argument of type string and the argument refers the view’s tag

key. It returns a matcher, which matches the view using its tag key. The sample code is

as follows,

onView(withTagKey("blah"))

We can also pass the resource id of the tag name instead of the tag name itself.

onView(withTagKey(R.id.res_id_blah))

withTagValue()

withTagValue() accepts an argument of type Matcher<Object> and the argument refers

the view’s tag value. It returns a matcher, which matches the view using its tag value.

The sample code is as follows,

onView(withTagValue(is((Object) "blah")))

Here, is is Hamcrest matcher.

withClassName()

withClassName() accepts an argument of type Matcher<String> and the argument refers

the view’s class name value. It returns a matcher, which matches the view using its class

name. The sample code is as follows,

onView(withClassName(endsWith("EditText")))

Here, endsWith is Hamcrest matcher and return Matcher<String>

withHint()

withHint() accepts an argument of type Matcher<String> and the argument refers the

view’s hint value. It returns a matcher, which matches the view using the hint of the view.

The sample code is as follows,

onView(withClassName(endsWith("Enter name")))

withInputType()

withInputType() accepts an argument of type int and the argument refers the input type

of the view. It returns a matcher, which matches the view using its input type. The sample

code is as follows,

onView(withInputType(TYPE_CLASS_DATETIME))

Here, TYPE_CLASS_DATETIME refers edit view supporting dates and times.

Espresso

 32

withResourceName()

withResourceName() accepts an argument of type Matcher<String> and the argument

refers the view’s class name value. It returns a matcher, which matches the view using

resource name of the view. The sample code is as follows,

onView(withResourceName(endsWith("res_name")))

It accepts string argument as well. The sample code is as follows,

onView(withResourceName("my_res_name"))

withAlpha()

withAlpha() accepts an argument of type float and the argument refers the alpha value of

the view. It returns a matcher, which matches the view using the alpha value of the view.

The sample code is as follows,

onView(withAlpha(0.8))

withEffectiveVisibility()

withEffectiveVisibility() accepts an argument of type ViewMatchers.Visibility and the

argument refers the effective visibility of the view. It returns a matcher, which matches

the view using the visibility of the view. The sample code is as follows,

onView(withEffectiveVisibility(withEffectiveVisibility.INVISIBLE))

withSpinnerText()

withSpinnerText() accepts an argument of type Matcher<String> and the argument refers

the Spinner’s current selected view’s value. It returns a matcher, which matches the the

spinner based on it’s selected item’s toString value. The sample code is as follows,

onView(withSpinnerText(endsWith("USA")))

It accepts string argument or resource id of the string as well. The sample code is as

follows,

onView(withResourceName("USA"))

onView(withResourceName(R.string.res_usa))

withSubstring()

withSubString() is similar to withText() except it helps to test substring of the text value

of the view.

onView(withSubString("Hello"))

Espresso

 33

hasLinks()

hasLinks() has no arguments and it returns a matcher, which matches the view having

links. It applies to TextView only. The sample code is as follows,

onView(allOf(withSubString("Hello"), hasLinks()))

Here, allOf is a Hamcrest matcher. allOf returns a matcher, which matches all the passed

in matchers and here, it is used to match a view as well as check whether the view has

links in its text value.

hasTextColor()

hasTextColor() accepts a single argument of type int and the argument refers the resource

id of the color. It returns a matcher, which matches the TextView based on its color. It

applies to TextView only. The sample code is as follows,

onView(allOf(withSubString("Hello"), hasTextColor(R.color.Red)))

hasEllipsizedText()

hasEllipsizedText() has no argument. It returns a matcher, which matches the TextView

that has long text and either ellipsized (first.. ten.. last) or cut off (first…). The sample

code is as follows,

onView(allOf(withId(R.id.my_text_view_id), hasEllipsizedText()))

hasMultilineText()

hasMultilineText() has no argument. It returns a matcher, which matches the TextView

that has any multi line text. The sample code is as follows,

onView(allOf(withId(R.id.my_test_view_id), hasMultilineText()))

hasBackground()

hasBackground() accepts a single argument of type int and the argument refers the

resource id of the background resource. It returns a matcher, which matches the view

based on its background resources. The sample code is as follows,

onView(allOf(withId("image"), hasBackground(R.drawable.your_drawable)))

hasErrorText()

hasErrorText() accepts an argument of type Matcher<String> and the argument refers

the view’s (EditText) error string value. It returns a matcher, which matches the view

using error string of the view. This applies to EditText only. The sample code is as follows,

onView(allOf(withId(R.id.editText_name), hasErrorText(is("name is required"))))

It accepts string argument as well. The sample code is as follows,

Espresso

 34

onView(allOf(withId(R.id.editText_name), hasErrorText("name is required")))

hasImeAction()

hasImeAction() accepts an argument of type Matcher<Integer> and the argument refers

the view’s (EditText) supported input methods. It returns a matcher, which matches the

view using supported input method of the view. This applies to EditText only. The sample

code is as follows,

onView(allOf(withId(R.id.editText_name),
hasImeAction(is(EditorInfo.IME_ACTION_GO))))

Here, EditorInfo.IME_ACTION_GO is on of the input methods options. hasImeAction()

accepts integer argument as well. The sample code is as follows,

onView(allOf(withId(R.id.editText_name),

hasImeAction(EditorInfo.IME_ACTION_GO)))

supportsInputMethods()

supportsInputMethods() has no argument. It returns a matcher, which matches the view

if it supports input methods. The sample code is as follows,

onView(allOf(withId(R.id.editText_name), supportsInputMethods()))

isRoot()

isRoot() has no argument. It returns a matcher, which matches the root view. The sample

code is as follows,

onView(allOf(withId(R.id.my_root_id), isRoot()))

isDisplayed()

isDisplayed() has no argument. It returns a matcher, which matches the view that are

currently displayed. The sample code is as follows,

onView(allOf(withId(R.id.my_view_id), isDisplayed()))

isDisplayingAtLeast()

isDisplayingAtLeast() accepts a single argument of type int. It returns a matcher, which

matches the view that are current displayed at least the specified percentage. The sample

code is as follows,

onView(allOf(withId(R.id.my_view_id), isDisplayingAtLeast(75)))

Espresso

 35

isCompletelyDisplayed()

isCompletelyDisplayed() has no argument. It returns a matcher, which matches the view

that are currently displayed completely on the screen. The sample code is as follows,

onView(allOf(withId(R.id.my_view_id), isCompletelyDisplayed()))

isEnabled()

isEnabled() has no argument. It returns a matcher, which matches the view that is

enabled. The sample code is as follows,

onView(allOf(withId(R.id.my_view_id), isEnabled()))

isFocusable()

isFocusable() has no argument. It returns a matcher, which matches the view that has

focus option. The sample code is as follows,

onView(allOf(withId(R.id.my_view_id), isFocusable()))

hasFocus()

hasFocus() has no argument. It returns a matcher, which matches the view that is

currently focused. The sample code is as follows,

onView(allOf(withId(R.id.my_view_id), hasFocus()))

isClickable()

isClickable() has no argument. It returns a matcher, which matches the view that is click

option. The sample code is as follows,

onView(allOf(withId(R.id.my_view_id), isClickable()))

isSelected()

isSelected() has no argument. It returns a matcher, which matches the view that is

currently selected. The sample code is as follows,

onView(allOf(withId(R.id.my_view_id), isSelected()))

isChecked()

isChecked() has no argument. It returns a matcher, which matches the view that is of type

CompoundButton (or subtype of it) and is in checked state. The sample code is as follows,

onView(allOf(withId(R.id.my_view_id), isChecked()))

Espresso

 36

isNotChecked()

isNotChecked() is just opposite to isChecked. The sample code is as *follows,

onView(allOf(withId(R.id.my_view_id), isNotChecked()))

isJavascriptEnabled()

isJavascriptEnabled() has no argument. It returns a matcher, which matches the WebView

that is evaluating JavaScript. The sample code is as follows,

onView(allOf(withId(R.id.my_webview_id), isJavascriptEnabled()))

withParent()

withParent() accepts one argument of type Matcher<View>. The argument refers a view.

It returns a matcher, which matches the view that specified view is parent view. The

sample code is as follows,

onView(allOf(withId(R.id.childView), withParent(withId(R.id.parentView))))

hasSibling()

hasSibling() accepts one argument of type Matcher<View>. The argument refers a view.

It returns a matcher, which matches the view that passed-in view is one of its sibling view.

The sample code is as follows,

onView(hasSibling(withId(R.id.siblingView)))

withChild()

withChild() accepts one argument of type Matcher<View>. The argument refers a view. It

returns a matcher, which matches the view that passed-in view is child view. The sample

code is as follows,

onView(allOf(withId(R.id.parentView), withChild(withId(R.id.childView))))

hasChildCount()

hasChildCount() accepts one argument of type int. The argument refers the child count of

a view. It returns a matcher, which matches the view that has exactly the same number

of child view as specified in the argument. The sample code is as follows,

onView(hasChildCount(4))

hasMinimumChildCount()

hasMinimumChildCount() accepts one argument of type int. The argument refers the child

count of a view. It returns a matcher, which matches the view that has at least the number

of child view as specified in the argument. The sample code is as follows,

Espresso

 37

onView(hasMinimumChildCount(4))

hasDescendant()

hasDescendant() accepts one argument of type Matcher<View>. The argument refers a

view. It returns a matcher, which matches the view that passed-in view is one of the

descendant view in the view hierarchy. The sample code is as follows,

onView(hasDescendant(withId(R.id.descendantView)))

isDescendantOfA()

isDescendantOfA() accepts one argument of type Matcher<View>. The argument refers a

view. It returns a matcher, which matches the view that passed-in view is one of the

ancestor view in the view hierarchy. The sample code is as follows,

onView(allOf(withId(R.id.myView), isDescendantOfA(withId(R.id.parentView))))

Espresso

 38

Espresso provides various options to create our own custom view matchers and it is based

on Hamcrest matchers. Custom matcher is a very powerful concept to extend the

framework and also to customize the framework to our taste. Some of the advantages of

writing custom matchers are as follows,

 To exploit the unique feature of our own custom views

 Custom matcher helps in the AdapterView based test cases to match with the

different type of underlying data.

 To simplify the current matchers by combining features of multiple matcher

We can create new matcher as and when the demand arises and it is quite easy. Let us

create a new custom matcher, which returns a matcher to test both id and text of a

TextView.

Espresso provides the following two classes to write new matchers:

 TypeSafeMatcher

 BoundedMatcher

Both classes are similar in nature except that the BoundedMatcher transparently handles

the casting of the object to correct type without manually checking for the correct type.

We will create a new matcher, withIdAndText using BoundedMatcher class. Let us check

the steps to write new matchers.

 Add the below dependency in the app/build.gradle file and sync it.

dependencies {

 implementation 'androidx.test.espresso:espresso-core:3.1.1'
}

 Create a new class to include our matchers (methods) and mark it as final

public final class MyMatchers {

}

 Declare a static method inside the new class with the necessary arguments and set

Matcher<View> as return type.

public final class MyMatchers {

 @NonNull

 public static Matcher<View> withIdAndText(final Matcher<Integer>

integerMatcher, final Matcher<String> stringMatcher) {

7. Espresso — Custom View Matchers

Espresso

 39

 }

}

 Create a new BoundedMatcher object (return value as well) with the below

signature inside the static method,

public final class MyMatchers {

 @NonNull

 public static Matcher<View> withIdAndText(final Matcher<Integer>

integerMatcher, final Matcher<String> stringMatcher) {
 return new BoundedMatcher<View, TextView>(TextView.class) {

 };
 }

}

 Override describeTo and matchesSafely methods in the BoundedMatcher object.

describeTo has single argument of type Description with no return type and it is

used to error information regarding matchers. matchesSafely has a single

argument of type TextView with return type boolean and it is used to match the

view.

 The final version of the code is as follows,

public final class MyMatchers {

 @NonNull
 public static Matcher<View> withIdAndText(final Matcher<Integer>

integerMatcher, final Matcher<String> stringMatcher) {

 return new BoundedMatcher<View, TextView>(TextView.class) {

 @Override

 public void describeTo(final Description description) {
 description.appendText("error text: ");

 stringMatcher.describeTo(description);
 integerMatcher.describeTo(description);

 }

 @Override

 public boolean matchesSafely(final TextView textView) {

 return stringMatcher.matches(textView.getText().toString()) &&
integerMatcher.matches(textView.getId());

 }

 };
 }

}

 Finally, We can use our mew matcher to write the test case as sown below,

@Test
public void view_customMatcher_isCorrect()

{

Espresso

 40

 onView(withIdAndText(is((Integer) R.id.textView_hello), is((String) "Hello

World!")))
 .check(matches(withText("Hello World!")));

}

Espresso

 41

As discussed earlier, view assertion is used to assert that both the actual view (found using

view matchers) and expected views are the same. A sample code is as follows,

onView(withId(R.id.my_view))

 .check(matches(withText("Hello")))

Here,

 onView() returns ViewInteration object corresponding to matched view.

ViewInteraction is used to interact with matched view.

 withId(R.id.my_view) returns a view matcher that will match with the view (actual)

having id attributes equals to my_view.

 withText(“Hello”) also returns a view matcher that will match with the view

(expected) having text attributes equals to Hello.

 check is a method which accepts an argument of type ViewAssertion and do

assertion using passed in ViewAssertion object.

 matches(withText(“Hello”)) returns a view assertion, which will do the real job of

asserting that both actual view (found using withId) and expected view (found

using withText) are one and the same.

Let us learn some of the methods provided by espresso testing framework to assert view

objects.

doesNotExist()

Returns a view assertion, which ensures that the view matcher does not find any matching

view.

onView(withText("Hello"))
 .check(doesNotExist());

Here, the test case ensures that there is no view with text Hello.

matches()

Accepts a target view matcher and returns a view assertion, which ensures that the view

matcher (actual) exists and matches with the view matched by the target view matcher.

onView(withId(R.id.textView_hello))

 .check(matches(withText("Hello World!")));

Here, the test case ensures that the view having id, R.id.textView_hello exists and matches

with the target view with text Hello World!

8. Espresso — View Assertions

Espresso

 42

isBottomAlignedWith()

Accepts a target view matcher and returns a view assertion, which ensures that the view

matcher (actual) exists and is bottom aligned with the target view matcher.

onView(withId(R.id.view))
 .check(isBottomAlignedWith(withId(R.id.target_view)))

Here, the test case ensures that the view having id, R.id.view exists and is bottom aligned

with view having id, R.id.target_view.

isCompletelyAbove()

Accepts a target view matcher and returns a view assertion, which ensures that the view

matcher (actual) exists and is positioned completely above the target view matcher.

onView(withId(R.id.view))

 .check(isCompletelyAbove(withId(R.id.target_view)))

Here, the test case ensures that the view having id, R.id.view exists and is positioned

completely above the view having id, R.id.target_view

isCompletelyBelow()

Accepts a target view matcher and returns a view assertion, which ensures that the view

matcher (actual) exists and is positioned completely below the target view matcher.

onView(withId(R.id.view))

 .check(isCompletelyBelow(withId(R.id.target_view)))

Here, the test case ensures that the view having id, R.id.view exists and is positioned

completely below the view having id, R.id.target_view.

isCompletelyLeftOf()

Accepts a target view matcher and returns a view assertion, which ensures that the view

matcher (actual) exists and is positioned completely left of the target view matcher.

onView(withId(R.id.view))

 .check(isCompletelyLeftOf(withId(R.id.target_view)))

Here, the test case ensures that the view having id, R.id.view exists and is positioned

completely left of view having id, R.id.target_view

isCompletelyRightOf()

Accepts a target view matcher and returns a view assertion, which ensures that the view

matcher (actual) exists and is positioned completely right of the target view matcher.

onView(withId(R.id.view))

 .check(isCompletelyRightOf(withId(R.id.target_view)))

Espresso

 43

Here, the test case ensures that the view having id, R.id.view exists and is positioned

completely right of the view having id, R.id.target_view.

isLeftAlignedWith()

Accepts a target view matcher and returns a view assertion, which ensures that the view

matcher (actual) exists and is left aligned with the target view matcher.

onView(withId(R.id.view))

 .check(isLeftAlignedWith(withId(R.id.target_view)))

Here, the test case ensures that the view having id, R.id.view exists and is left aligned

with view having id, R.id.target_view

isPartiallyAbove()

Accepts a target view matcher and returns a view assertion, which ensures that the view

matcher (actual) exists and is positioned partially above the target view matcher.

onView(withId(R.id.view))

 .check(isPartiallyAbove(withId(R.id.target_view)))

Here, the test case ensures that the view having id, R.id.view exists and is positioned

partially above the view having id, R.id.target_view

isPartiallyBelow()

Accepts a target view matcher and returns a view assertion, which ensures that the view

matcher (actual) exists and is positioned partially below the target view matcher.

onView(withId(R.id.view))
 .check(isPartiallyBelow(withId(R.id.target_view)))

Here, the test case ensures that the view having id, R.id.view exists and is positioned

partially below the view having id, R.id.target_view.

isPartiallyLeftOf()

Accepts a target view matcher and returns a view assertion, which ensures that the view

matcher (actual) exists and is positioned partially left of the target view matcher.

onView(withId(R.id.view))

 .check(isPartiallyLeftOf(withId(R.id.target_view)))

Here, the test case ensures that the view having id, R.id.view exists and is positioned

partially left of view having id, R.id.target_view.

isPartiallyRightOf()

Accepts a target view matcher and returns a view assertion, which ensures that the view

matcher (actual) exists and is positioned partially right of the target view matcher.

Espresso

 44

onView(withId(R.id.view))

 .check(isPartiallyRightOf(withId(R.id.target_view)))

Here, the test case ensures that the view having id, R.id.view exists and is positioned

partially right of view having id, R.id.target_view.

isRightAlignedWith()

Accepts a target view matcher and returns a view assertion, which ensures that the view

matcher (actual) exists and is right aligned with the target view matcher.

onView(withId(R.id.view))

 .check(isRightAlignedWith(withId(R.id.target_view)))

Here, the test case ensures that the view having id, R.id.view exists and is right aligned

with view having id, R.id.target_view.

isTopAlignedWith()

Accepts a target view matcher and returns a view assertion, which ensures that the view

matcher (actual) exists and is top aligned with the target view matcher.

onView(withId(R.id.view))

 .check(isTopAlignedWith(withId(R.id.target_view)))

Here, the test case ensures that the view having id, R.id.view exists and is top aligned

with view having id, R.id.target_view

noEllipsizedText()

Returns a view assertion, which ensures that the view hierarchy does not contain ellipsized

or cut off text views.

onView(withId(R.id.view))

 .check(noEllipsizedText());

noMultilineButtons()

Returns a view assertion, which ensures that the view hierarchy does not contain multi

line buttons.

onView(withId(R.id.view))

 .check(noMultilineButtons());

noOverlaps()

Returns a view assertion, which ensures that the descendant object assignable to TextView

or ImageView does not overlap each other. It has another option, which accepts a target

view matcher and returns a view assertion, which ensures that the descendant view

matching the target view do not overlap.

Espresso

 45

As learned earlier, view actions automate all the possible actions performable by users in

an android application. Espresso onView and “onData” provides the perform method, which

accepts view actions and invokes/automates the corresponding user actions in the test

environment. For example, “click()” is a view action, which when passed to the

onView(R.id.myButton).perform(click()) method, will fire the click event of the button

(with id: “myButton”) in the testing environment.

In this chapter, let us learn about the view actions provided by espresso testing

framework.

typeText()

typeText() accepts one argument (text) of type String and returns a view action. The

returned view action types the provided text into the view. Before placing the text, it taps

the view once. The content may be placed at arbitrary position if it contains text already.

onView(withId(R.id.text_view)).perform(typeText("Hello World!"))

typeTextIntoFocusedView()

typeTextIntoFocusedView() is similar to typeText() except that it places the text right next

to the cursor position in the view.

onView(withId(R.id.text_view)).perform(typeTextIntoFocusedView("Hello World!"))

replaceText()

replaceText() is similar to typeText() except that it replaces the content of the view.

onView(withId(R.id.text_view)).perform(typeTextIntoFocusedView("Hello World!"))

clearText()

clearText() has no arguments and returns a view action, which will clear the text in the

view.

onView(withId(R.id.text_view)).perform(clearText())

pressKey()

pressKey() accepts key code (e.g KeyEvent.KEYCODE_ENTER) and returns a view action,

which will press the key corresponds to the key code.

onView(withId(R.id.text_view)).perform(typeText("Hello World!",
pressKey(KeyEvent.KEYCODE_ENTER))

9. Espresso — View Actions

Espresso

 46

pressMenuKey()

pressMenuKey() has no arguments and returns a view action, which will press the

hardware menu key.

onView(withId(R.id.text_view)).perform(typeText("Hello World!",
pressKey(KeyEvent.KEYCODE_ENTER), pressMenuKey())

closeSoftKeyboard()

closeSoftKeyboard() has no arguments and returns a view action, which will close the

keyboard, if one is opened.

onView(withId(R.id.text_view)).perform(typeText("Hello World!",
closeSoftKeyboard())

click()

click() has no arguments and returns a view action, which will invoke the click action of

the view.

onView(withId(R.id.button)).perform(click())

doubleClick()

doubleClick() has no arguments and returns a view action, which will invoke the double

click action of the view.

onView(withId(R.id.button)).perform(doubleClick())

longClick()

longClick() has no arguments and returns a view action, which will invoke the long click

action of the view.

onView(withId(R.id.button)).perform(longClick())

pressBack()

pressBack() has no arguments and returns a view action, which will click the back button.

onView(withId(R.id.button)).perform(pressBack())

pressBackUnconditionally()

pressBackUnconditionally() has no arguments and returns a view action, which will click

the back button and does not throw an exception if the back button action exits the

application itself.

onView(withId(R.id.button)).perform(pressBack())

Espresso

 47

openLink()

openLink() has two arguments. The first argument (link text) is of type Matcher and refers

the text of the HTML anchor tag. The second argument (url) is of the type Matcher and

refers the url of the HTML anchor tag. It is applicable for TextView only. It returns a view

action, which collects all the HTML anchor tags available in the content of the text view,

finds the anchor tag matching the first argument (link text) and the second argument (url)

and finally opens the corresponding url. Let us consider a text view having the content as

-

copyright

Then, the link can be opened and tested using the below test case,

onView(withId(R.id.text_view)).perform(openLink(is("copyright"),
is(Uri.parse("http://www.google.com/"))))

Here, openLink will get the content of the text view, find the link having copyright as text,

http://www.google.com/ as url and open the url in a browser.

openLinkWithText()

openLinkWithText() has one argument, which may be either of type **String* or Matcher.

It is simply a short cut to the openLink *method.

onView(withId(R.id.text_view)).perform(openLinkWithText("copyright"))

openLinkWithUri()

openLinkWithUri() has one argument, which may be either of type String or Matcher. It is

simply a short cut to the openLink* method.

onView(withId(R.id.text_view)).perform(openLinkWithUri("http://www.google.com/"
))

pressImeActionButton()

pressImeActionButton() has no arguments and returns a view action, which will execute

the action set in android:imeOptions configuration. For example, if the android:imeOptions

equals actionNext, this will move the cursor to next possible EditText view in the screen.

onView(withId(R.id.text_view)).perform(pressImeActionButton())

scrollTo()

scrollTo() has no arguments and returns a view action, which will scroll the matched

scrollView on the screen.

onView(withId(R.id.scrollView)).perform(scrollTo())

Espresso

 48

swipeDown()

swipeDown() has no arguments and returns a view action, which will fire swipe down

action on the screen.

onView(withId(R.id.root)).perform(swipeDown())

swipeUp()

swipeUp() has no arguments and returns a view action, which will fire swipe up action on

the screen.

onView(withId(R.id.root)).perform(swipeUp())

swipeRight()

swipeRight() has no arguments and returns a view action, which will fire swipe right action

on the screen.

onView(withId(R.id.root)).perform(swipeRight())

swipeLeft()

swipeLeft() has no arguments and returns a view action, which will fire swipe left action

on the screen.

onView(withId(R.id.root)).perform(swipeLeft())

Espresso

 49

AdapterView is a special kind of view specifically designed to render a collection of similar

information like product list and user contacts fetched from an underlying data source

using Adapter. The data source may be simple list to complex database entries. Some of

the view derived from AdapterView are ListView, GridView and Spinner.

AdapterView renders the user interface dynamically depending on the amount of data

available in the underlying data source. In addition, AdapterView renders only the

minimum necessary data, which can be rendered in the available visible area of the screen.

AdapterView does this to conserve memory and to make the user interface look smooth

even if the underlying data is large.

Upon analysis, the nature of the AdapterView architecture makes the onView option and

its view matchers irrelevant because the particular view to be tested may not be rendered

at all in the first place. Luckily, espresso provides a method, onData(), which accepts

hamcrest matchers (relevant to the data type of the underlying data) to match the

underlying data and returns object of type DataInteraction corresponding to the view of

the matched data. A sample code is as follows,

onData(allOf(is(instanceOf(String.class)), startsWith("Apple")))

 .perform(click())

Here, onData() matches entry “Apple”, if it is available in the underlying data (array list)

and returns DataInteraction object to interact with the matched view (TextView

corresponding to “Apple” entry).

Methods

DataInteraction provides the below methods to interact with the view,

perform()

This accepts view actions and fires the passed in view actions.

onData(allOf(is(instanceOf(String.class)), startsWith("Apple")))

 .perform(click())

check()

This accepts view assertions and checks the passed in view assertions.

onData(allOf(is(instanceOf(String.class)), startsWith("Apple")))
 .check(matches(withText("Apple")))

10. Espresso — Testing AdapterView

Espresso

 50

inAdapterView()

This accepts view matchers. It selects the particular AdapterView based on the passed in

view matchers and returns DataInteraction object to interact with the matched

AdapterView

onData(allOf())

 .inAdapterView(withId(R.id.adapter_view))

 .atPosition(5)
 .perform(click())

atPosition()

This accepts an argument of type integer and refers the position of the item in the

underlying data. It selects the view corresponding to the passed in positional value of the

data and returns DataInteraction object to interact with the matched view. It will be useful,

if we know the correct order of the underlying data.

onData(allOf())

 .inAdapterView(withId(R.id.adapter_view))
 .atPosition(5)

 .perform(click())

onChildView()

This accepts view matchers and matches the view inside the specific child view. For

example, we can interact with specific items like Buy button in a product list based

AdapterView.

onData(allOf(is(instanceOf(String.class)), startsWith("Apple")))

 .onChildView(withId(R.id.buy_button))
 .perform(click())

Write a Sample Application

Follow the steps shown below to write a simple application based on AdapterView and

write a test case using the onData() method.

 Start Android studio.

 Create new project as discussed earlier and name it, MyFruitApp.

 Migrate the application to AndroidX framework using Refactor -> Migrate to

AndroidX option menu.

 Remove default design in the main activity and add ListView. The content of the

activity_main.xml is as follows,

<?xml version="1.0" encoding="utf-8"?>

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

Espresso

 51

 android:layout_width="match_parent"

 android:layout_height="match_parent"
 tools:context=".MainActivity">

 <ListView
 android:id="@+id/listView"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content" />

</RelativeLayout>

 Add new layout resource, item.xml to specify the item template of the list view.

The content of the item.xml is as follows,

<?xml version="1.0" encoding="utf-8"?>

<TextView xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/name"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"
 android:padding="8dp"

/>

 Now, create an adapter having fruit array as underlying data and set it to the list

view. This needs to be done in the onCreate() of MainActivity as specified below,

@Override

protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 // Find fruit list view
 final ListView listView = (ListView) findViewById(R.id.listView);

 // Initialize fruit data

 String[] fruits = new String[]{"Apple", "Banana", "Cherry",

 "Dates", "Elderberry", "Fig", "Grapes", "Grapefruit", "Guava",
"Jack fruit", "Lemon",

 "Mango", "Orange", "Papaya", "Pears", "Peaches", "Pineapple",

"Plums", "Raspberry",
 "Strawberry", "Watermelon"};

 // Create array list of fruits
 final ArrayList<String> fruitList = new ArrayList<String>();

 for (int i = 0; i < fruits.length; ++i) {

 fruitList.add(fruits[i]);
 }

 // Create Array adapter
 final ArrayAdapter adapter = new ArrayAdapter(

 this,

 R.layout.item,
 fruitList);

Espresso

 52

 // Set adapter in list view
 listView.setAdapter(adapter);

}

 Now, compile the code and run the application. The screenshot of the My Fruit App

is as follows,

 Now, open ExampleInstrumentedTest.java file and add ActivityTestRule as

specified below,

@Rule
 public ActivityTestRule<MainActivity> mActivityRule =

 new ActivityTestRule<MainActivity>(MainActivity.class);

Also, make sure the test configuration is done in app/build.gradle -

dependencies {
 testImplementation 'junit:junit:4.12'

 androidTestImplementation 'androidx.test:runner:1.1.1'

 androidTestImplementation 'androidx.test:rules:1.1.1'

Espresso

 53

 androidTestImplementation 'androidx.test.espresso:espresso-core:3.1.1'

}

 Add a new test case to test the list view as below,

@Test

public void listView_isCorrect() {

 // check list view is visible

 onView(withId(R.id.listView))

 .check(matches(isDisplayed()));

 onData(allOf(is(instanceOf(String.class)), startsWith("Apple")))

 .perform(click());

 onData(allOf(is(instanceOf(String.class)), startsWith("Apple")))

 .check(matches(withText("Apple")));

 // click a child item

 onData(allOf())
 .inAdapterView(withId(R.id.listView))

 .atPosition(10)
 .perform(click());

}

 Finally, run the test case using android studio’s context menu and check whether

all test cases are succeeding.

Espresso

 54

WebView is a special view provided by android to display web pages inside the application.

WebView does not provide all the features of a full-fledged browser application like chrome

and firefox. However, it provides complete control over the content to be shown and

exposes all the android features to be invoked inside the web pages. It enables WebView

and provides a special environment where the UI can be easily designed using HTML

technology and native features like camera and dial a contact. This feature set enables a

WebView to provide a new kind of application called Hybrid application, where the UI is

done in HTML and business logic is done in either JavaScript or through an external API

endpoint.

Normally, testing a WebView needs to be a challenge because it uses HTML technology for

its user interface elements rather than native user interface/views. Espresso excels in this

area by providing a new set to web matchers and web assertions, which is intentionally

similar to native view matchers and view assertions. At the same time, it provides a well-

balanced approach by including a web technology based testing environment as well.

Espresso web is built upon WebDriver Atom framework, which is used to find and

manipulate web elements. Atom is similar to view actions. Atom will do all the interaction

inside a web page. WebDriver exposes a predefined set of methods, like findElement(),

getElement() to find web elements and returns the corresponding atoms (to do action in

the web page).

A standard web testing statement looks like the below code,

onWebView()

 .withElement(Atom)
 .perform(Atom)

 .check(WebAssertion)

Here,

 onWebView() - Similar to onView(), it exposes a set of API to test a WebView.

 withElement() - One of the several methods used to locate web elements inside a

web page using Atom and returns WebInteration object, which is similar to

ViewInteraction.

 perform() - Executes the action inside a web page using Atom and returns

WebInteraction.

 check() – This does the necessary assertion using WebAssertion.

A sample web testing code is as follows,

onWebView()

 .withElement(findElement(Locator.ID, "apple"))

 .check(webMatches(getText(), containsString("Apple")))

11. Espresso — Testing WebView

Espresso

 55

Here,

 findElement() locate a element and returns an Atom

 webMatches is similar to matches method

Write a Sample Application

Let us write a simple application based on WebView and write a test case using the

onWebView() method. Follow these steps to write a sample application:

 Start Android studio.

 Create new project as discussed earlier and name it, MyWebViewApp.

 Migrate the application to AndroidX framework using Refactor -> Migrate to

AndroidX option menu.

 Add the below configuration option in the AndroidManifest.xml file to give

permission to access Internet.

<uses-permission android:name="android.permission.INTERNET" />

 Espresso web is provided as a separate plugin. So, add the dependency in the

app/build.gradle and sync it.

dependencies {

 androidTestImplementation 'androidx.test:rules:1.1.1'
 androidTestImplementation 'androidx.test.espresso:espresso-web:3.1.1'

}

 Remove default design in the main activity and add WebView. The content of the

activity_main.xml is as follows,

<?xml version="1.0" encoding="utf-8"?>

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"
 tools:context=".MainActivity">

 <WebView
 android:id="@+id/web_view_test"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent" />

</RelativeLayout>

Espresso

 56

 Create a new class, ExtendedWebViewClient extending WebViewClient and override

shouldOverrideUrlLoading method to load link action in the same WebView;

otherwise, it will open a new browser window outside the application. Place it in

MainActivity.java.

private class ExtendedWebViewClient extends WebViewClient {

 @Override
 public boolean shouldOverrideUrlLoading(WebView view, String url) {

 view.loadUrl(url);

 return true;
 }

}

 Now, add the below code in the onCreate method of MainActivity. The purpose of

the code is to find the WebView, properly configure it and then finally load the

target url.

// Find web view

WebView webView = (WebView) findViewById(R.id.web_view_test);

// set web view client

webView.setWebViewClient(new ExtendedWebViewClient());

// Clear cache

webView.clearCache(true);

// load Url

webView.loadUrl("http://<your domain or IP>/index.html");

Here,

 The content of index.html is as follows:

<html>

 <head>

 <title>Android Web View Sample</title>
 </head>

 <body>

 <h1>Fruits</h1>

 Apple
 Banana

 </body>
</html>

 The content of the apple.html file referred in index.html is as follows:

<html>

 <head>

 <title>Android Web View Sample</title>
 </head>

Espresso

 57

 <body>

 <h1>Apple</h1>
 </body>

</html>

 The content of the banana.html file referred in banana.html is as follows,

<html>
 <head>

 <title>Android Web View Sample</title>

 </head>
 <body>

 <h1>Banana</h1>

 </body>
</html>

 Place index.html, apple.html and banana.html in a web server.

 Replace the url in loadUrl method with your configured url.

 Now, run the application and manually check if everything is fine. Below is the

screenshot of the WebView sample application:

Espresso

 58

 Now, open the ExampleInstrumentedTest.java file and add the below rule:

@Rule

public ActivityTestRule<MainActivity> mActivityRule =
 new ActivityTestRule<MainActivity>(MainActivity.class, false, true)

 {

 @Override
 protected void afterActivityLaunched() {

 onWebView(withId(R.id.web_view_test)).forceJavascriptEnabled();

 }
 };

Here, we found the WebView and enabled JavaScript of the WebView because espresso

web testing framework works exclusively through JavaScript engine to identify and

manipulate web element.

 Now, add the test case to test our WebView and its behavior.

@Test

public void webViewTest(){

 onWebView()
 .withElement(findElement(Locator.ID, "apple"))

 .check(webMatches(getText(), containsString("Apple")))

 .perform(webClick())
 .withElement(findElement(Locator.TAG_NAME, "h1"))

 .check(webMatches(getText(), containsString("Apple")));

}

Here, the testing was done in the following order,

o found the link, apple using its id attribute through findElement() method and

Locator.ID enumeration.

o checks the text of the link using webMatches() method

o performs click action on the link. It opens the apple.html page.

o again found the h1 element using findElement() methods and

Locator.TAG_NAME enumeration.

o finally again checks the text of the h1 tag using webMatches() method.

 Finally, run the test case using android studio context menu.

Espresso

 59

In this chapter, we will learn how to test asynchronous operations using Espresso Idling

Resources.

One of the challenges of the modern application is to provide smooth user experience.

Providing smooth user experience involves lot of work in the background to make sure

that the application process does not take longer than few milliseconds. Background task

ranges from the simple one to costly and complex task of fetching data from remote API

/ database. To encounter the challenge in the past, a developer used to write costly and

long running task in a background thread and sync up with the main UIThread once

background thread is completed.

If developing a multi-threaded application is complex, then writing test cases for it is even

more complex. For example, we should not test an AdapterView before the necessary data

is loaded from the database. If fetching the data is done in a separate thread, the test

needs to wait until the thread completes. So, the test environment should be synced

between background thread and UI thread. Espresso provides an excellent support for

testing the multi-threaded application. An application uses thread in the following ways

and espresso supports every scenario.

User Interface Threading

It is internally used by android SDK to provide smooth user experience with complex UI

elements. Espresso supports this scenario transparently and does not need any

configuration and special coding.

Async task

Modern programming languages support async programming to do light weight threading

without the complexity of thread programming. Async task is also supported transparently

by espresso framework.

User thread

A developer may start a new thread to fetch complex or large data from database. To

support this scenario, espresso provides idling resource concept.

Let use learn the concept of idling resource and how to to it in this chapter.

Overview

The concept of idling resource is very simple and intuitive. The basic idea is to create a

variable (boolean value) whenever a long running process is started in a separate thread

to identify whether the process is running or not and register it in the testing environment.

During testing, the test runner will check the registered variable, if any found and then

find its running status. If the running status is true, test runner will wait until the status

become false.

12. Espresso — Testing Asynchronous Operations

Espresso

 60

Espresso provides an interface, IdlingResources for the purpose of maintaining the running

status. The main method to implement is isIdleNow(). If isIdleNow() returns true, espresso

will resume the testing process or else wait until isIdleNow() returns false. We need to

implement IdlingResources and use the derived class. Espresso also provides some of the

built-in IdlingResources implementation to ease our workload. They are as follows,

CountingIdlingResource

This maintains an internal counter of running task. It exposes increment() and

decrement() methods. increment() adds one to the counter and decrement() removes one

from the counter. isIdleNow() returns true only when no task is active.

UriIdlingResource

This is similar to CounintIdlingResource except that the counter needs to be zero for

extended period to take the network latency as well.

IdlingThreadPoolExecutor

This is a custom implementation of ThreadPoolExecutor to maintain the number active

running task in the current thread pool.

IdlingScheduledThreadPoolExecutor

This is similar to IdlingThreadPoolExecutor, but it schedules a task as well and a custom

implementation of ScheduledThreadPoolExecutor.

If any one of the above implementation of IdlingResources or a custom one is used in the

application, we need to register it to the testing environment as well before testing the

application using IdlingRegistry class as below,

IdlingRegistry.getInstance().register(MyIdlingResource.getIdlingResource());

Moreover, it can be removed once testing is completed as below -

IdlingRegistry.getInstance().unregister(MyIdlingResource.getIdlingResource());

Espresso provides this functionality in a separate package, and the package needs to be

configured as below in the app.gradle.

dependencies {

 implementation 'androidx.test.espresso:espresso-idling-resource:3.1.1'

 androidTestImplementation "androidx.test.espresso.idling:idling-

concurrent:3.1.1"
}

Sample Application

Let us create a simple application to list the fruits by fetching it from a web service in a

separate thread and then, test it using idling resource concept.

Espresso

 61

 Start Android studio.

 Create new project as discussed earlier and name it, MyIdlingFruitApp.

 Migrate the application to AndroidX framework using Refactor -> Migrate to

AndroidX option menu.

 Add espresso idling resource library in the app/build.gradle (and sync it) as

specified below,

dependencies {

 implementation 'androidx.test.espresso:espresso-idling-resource:3.1.1'

 androidTestImplementation "androidx.test.espresso.idling:idling-
concurrent:3.1.1"

}

 Remove the default design in the main activity and add ListView. The content of

the activity_main.xml is as follows,

<?xml version="1.0" encoding="utf-8"?>

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"
 tools:context=".MainActivity">

 <ListView

 android:id="@+id/listView"

 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />

</RelativeLayout>

 Add new layout resource, item.xml to specify the item template of the list view.

The content of the item.xml is as follows,

<?xml version="1.0" encoding="utf-8"?>

<TextView xmlns:android="http://schemas.android.com/apk/res/android"

 android:id="@+id/name"

 android:layout_width="fill_parent"
 android:layout_height="fill_parent"

 android:padding="8dp"

/>

 Create a new class – MyIdlingResource. MyIdlingResource is used to hold our

IdlingResource in one place and fetch it whenever necessary. We are going to use

CountingIdlingResource in our example.

package com.tutorialspoint.espressosamples.myidlingfruitapp;

Espresso

 62

import androidx.test.espresso.IdlingResource;

import androidx.test.espresso.idling.CountingIdlingResource;

public class MyIdlingResource {

 private static CountingIdlingResource mCountingIdlingResource =
 new CountingIdlingResource("my_idling_resource");

 public static void increment() {
 mCountingIdlingResource.increment();

 }

 public static void decrement() {

 mCountingIdlingResource.decrement();
 }

 public static IdlingResource getIdlingResource() {
 return mCountingIdlingResource;

 }

}

 Declare a global variable, mIdlingResource of type CountingIdlingResource in the

MainActivity class as below,

@Nullable

private CountingIdlingResource mIdlingResource = null;

 Write a private method to fetch fruit list from the web as below,

private ArrayList<String> getFruitList(String data) {
 ArrayList<String> fruits = new ArrayList<String>();

 try {
 // Get url from async task and set it into a local variable

 URL url = new URL(data);
 Log.e("URL", url.toString());

 // Create new HTTP connection
 HttpURLConnection conn = (HttpURLConnection) url.openConnection();

 // Set HTTP connection method as "Get"
 conn.setRequestMethod("GET");

 // Do a http request and get the response code
 int responseCode = conn.getResponseCode();

 // check the response code and if success, get response content
 if (responseCode == HttpURLConnection.HTTP_OK) {

 BufferedReader in = new BufferedReader(new InputStreamReader(

 conn.getInputStream()));

 String line;

 StringBuffer response = new StringBuffer();

Espresso

 63

 while ((line = in.readLine()) != null) {

 response.append(line);
 }

 in.close();

 JSONArray jsonArray = new JSONArray(response.toString());

 Log.e("HTTPResponse", response.toString());

 for(int i = 0; i < jsonArray.length(); i++)
 {

 JSONObject jsonObject = jsonArray.getJSONObject(i);
 String name = String.valueOf(jsonObject.getString("name"));

 fruits.add(name);

 }
 } else {

 throw new IOException("Unable to fetch data from url");

 }

 conn.disconnect();

 } catch (IOException | JSONException e) {
 e.printStackTrace();

 }

 return fruits;

}

 Create a new task in the onCreate() method to fetch the data from the web using

our getFruitList method followed by the creation of a new adapter and setting it out

to list view. Also, decrement the idling resource once our work is completed in the

thread. The code is as follows,

// Get data
class FruitTask implements Runnable {

 ListView listView;
 CountingIdlingResource idlingResource;

 FruitTask(CountingIdlingResource idlingRes, ListView listView) {
 this.listView = listView;

 this.idlingResource = idlingRes;

 }

 public void run() {
 //code to do the HTTP request

 final ArrayList<String> fruitList = getFruitList("http://<your domain

or IP>/fruits.json");

 try {

 synchronized (this){
 runOnUiThread(new Runnable() {

 @Override

 public void run() {
 // Create adapter and set it to list view

 final ArrayAdapter adapter = new

ArrayAdapter(MainActivity.this, R.layout.item, fruitList);

Espresso

 64

 ListView listView = (ListView)
findViewById(R.id.listView);

 listView.setAdapter(adapter);

 }
 });

 }

 } catch (Exception e) {
 e.printStackTrace();

 }

 if (!MyIdlingResource.getIdlingResource().isIdleNow()) {

 MyIdlingResource.decrement(); // Set app as idle.
 }

 }

}

Here, the fruit url is considered as http://<your domain or IP/fruits.json and it is formated

as JSON. The content is as follows,

[

 {
 "name":"Apple"

 },

 {
 "name":"Banana"

 },

 {
 "name":"Cherry"

 },

 {
 "name":"Dates"

 },

 {
 "name":"Elderberry"

 },

 {
 "name":"Fig"

 },

 {
 "name":"Grapes"

 },
 {

 "name":"Grapefruit"

 },
 {

 "name":"Guava"

 },
 {

 "name":"Jack fruit"

 },
 {

 "name":"Lemon"

 },

Espresso

 65

 {

 "name":"Mango"
 },

 {

 "name":"Orange"
 },

 {

 "name":"Papaya"
 },

 {
 "name":"Pears"

 },

 {
 "name":"Peaches"

 },

 {
 "name":"Pineapple"

 },

 {
 "name":"Plums"

 },

 {
 "name":"Raspberry"

 },

 {
 "name":"Strawberry"

 },

 {
 "name":"Watermelon"

 }
]

Note: Place the file in your local web server and use it.

 Now, find the view, create a new thread by passing FruitTask, increment the idling

resource and finally start the task.

// Find list view

ListView listView = (ListView) findViewById(R.id.listView);
Thread fruitTask = new Thread(new FruitTask(this.mIdlingResource, listView));

MyIdlingResource.increment();

fruitTask.start();

 The complete code of MainActivity is as follows,

package com.tutorialspoint.espressosamples.myidlingfruitapp;

import androidx.annotation.NonNull;

import androidx.annotation.Nullable;

import androidx.annotation.VisibleForTesting;
import androidx.appcompat.app.AppCompatActivity;

import androidx.test.espresso.idling.CountingIdlingResource;

Espresso

 66

import android.os.Bundle;
import android.util.Log;

import android.widget.ArrayAdapter;

import android.widget.ListView;

import org.json.JSONArray;

import org.json.JSONException;
import org.json.JSONObject;

import java.io.BufferedReader;

import java.io.IOException;

import java.io.InputStreamReader;
import java.net.HttpURLConnection;

import java.net.URL;

import java.util.ArrayList;

public class MainActivity extends AppCompatActivity {

 @Nullable

 private CountingIdlingResource mIdlingResource = null;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 // Get data
 class FruitTask implements Runnable {

 ListView listView;

 CountingIdlingResource idlingResource;

 FruitTask(CountingIdlingResource idlingRes, ListView listView) {

 this.listView = listView;

 this.idlingResource = idlingRes;
 }

 public void run() {
 //code to do the HTTP request

 final ArrayList<String> fruitList = getFruitList("http://<your

domain or IP>/fruits.json");

 try {

 synchronized (this){
 runOnUiThread(new Runnable() {

 @Override

 public void run() {
 // Create adapter and set it to list view

 final ArrayAdapter adapter = new
ArrayAdapter(MainActivity.this, R.layout.item, fruitList);

 ListView listView = (ListView)
findViewById(R.id.listView);

Espresso

 67

 listView.setAdapter(adapter);

 }
 });

 }

 } catch (Exception e) {
 e.printStackTrace();

 }

 if (!MyIdlingResource.getIdlingResource().isIdleNow()) {

 MyIdlingResource.decrement(); // Set app as idle.
 }

 }

 }

 // Find list view

 ListView listView = (ListView) findViewById(R.id.listView);
 Thread fruitTask = new Thread(new FruitTask(this.mIdlingResource,

listView));

 MyIdlingResource.increment();

 fruitTask.start();

 }

 private ArrayList<String> getFruitList(String data) {

 ArrayList<String> fruits = new ArrayList<String>();

 try {

 // Get url from async task and set it into a local variable
 URL url = new URL(data);

 Log.e("URL", url.toString());

 // Create new HTTP connection

 HttpURLConnection conn = (HttpURLConnection) url.openConnection();

 // Set HTTP connection method as "Get"

 conn.setRequestMethod("GET");

 // Do a http request and get the response code

 int responseCode = conn.getResponseCode();

 // check the response code and if success, get response content

 if (responseCode == HttpURLConnection.HTTP_OK) {
 BufferedReader in = new BufferedReader(new InputStreamReader(

 conn.getInputStream()));

 String line;

 StringBuffer response = new StringBuffer();

 while ((line = in.readLine()) != null) {

 response.append(line);
 }

 in.close();

 JSONArray jsonArray = new JSONArray(response.toString());

Espresso

 68

 Log.e("HTTPResponse", response.toString());

 for(int i = 0; i < jsonArray.length(); i++)
 {

 JSONObject jsonObject = jsonArray.getJSONObject(i);

 String name = String.valueOf(jsonObject.getString("name"));
 fruits.add(name);

 }

 } else {
 throw new IOException("Unable to fetch data from url");

 }

 conn.disconnect();

 } catch (IOException | JSONException e) {
 e.printStackTrace();

 }

 return fruits;

 }

}

 Now, add below configuration in the application manifest file, AndroidManifest.xml

<uses-permission android:name="android.permission.INTERNET" />

Espresso

 69

 Now, compile the above code and run the application. The screenshot of the My

Idling Fruit App is as follows,

 Now, open the ExampleInstrumentedTest.java file and add ActivityTestRule as

specified below,

@Rule
 public ActivityTestRule<MainActivity> mActivityRule =

 new ActivityTestRule<MainActivity>(MainActivity.class);

Also, make sure the test configuration is done in app/build.gradle

dependencies {

 testImplementation 'junit:junit:4.12'

 androidTestImplementation 'androidx.test:runner:1.1.1'
 androidTestImplementation 'androidx.test:rules:1.1.1'

 androidTestImplementation 'androidx.test.espresso:espresso-core:3.1.1'

 implementation 'androidx.test.espresso:espresso-idling-resource:3.1.1'
 androidTestImplementation "androidx.test.espresso.idling:idling-

concurrent:3.1.1"
}

Espresso

 70

 Add a new test case to test the list view as below,

@Before

public void registerIdlingResource() {

IdlingRegistry.getInstance().register(MyIdlingResource.getIdlingResource());

}

@Test

public void contentTest() {
 // click a child item

 onData(allOf())

 .inAdapterView(withId(R.id.listView))
 .atPosition(10)

 .perform(click());

}

@After
public void unregisterIdlingResource() {

IdlingRegistry.getInstance().unregister(MyIdlingResource.getIdlingResource());
}

 Finally, run the test case using android studio’s context menu and check whether

all test cases are succeeding.

Espresso

 71

Android Intent is used to open new activity, either internal (opening a product detail screen

from product list screen) or external (like opening a dialer to make a call). Internal intent

activity is handled transparently by the espresso testing framework and it does not need

any specific work from the user side. However, invoking external activity is really a

challenge because it goes out of our scope, the application under test. Once the user

invokes an external application and goes out of the application under test, then the

chances of user coming back to the application with predefined sequence of action is rather

less. Therefore, we need to assume the user action before testing the application. Espresso

provides two options to handle this situation. They are as follows,

intended

This allows the user to make sure the correct intent is opened from the application under

test.

intending

This allows the user to mock an external activity like take a photo from the camera, dialing

a number from the contact list, etc., and return to the application with predefined set of

values (like predefined image from the camera instead of actual image).

Setup

Espresso supports the intent option through a plugin library and the library needs to be

configured in the application’s gradle file. The configuration option is as follows,

dependencies {

 // ...

 androidTestImplementation 'androidx.test.espresso:espresso-intents:3.1.1'

}

intended()

Espresso intent plugin provides special matchers to check whether the invoked intent is

the expected intent. The provided matchers and the purpose of the matchers are as

follows,

hasAction

This accepts the intent action and returns a matcher, which matches the specified intent.

hasData

This accepts the data and returns a matcher, which matches the data provided to the

intent while invoking it.

13. Espresso — Testing Intents

Espresso

 72

toPackage

This accepts the intent package name and returns a matcher, which matches the package

name of the invoked intent.

Now, let us create a new application and test the application for external activity using

intended() to understand the concept.

 Start Android studio.

 Create a new project as discussed earlier and name it, IntentSampleApp.

 Migrate the application to AndroidX framework using Refactor -> Migrate to

AndroidX option menu.

 Create a text box, a button to open contact list and another one to dial a call by

changing the activity_main.xml as shown below,

<?xml version="1.0" encoding="utf-8"?>

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"
 tools:context=".MainActivity">

 <EditText
 android:id="@+id/edit_text_phone_number"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"
 android:layout_centerHorizontal="true"

 android:text=""

 android:autofillHints="@string/phone_number"/>

 <Button

 android:id="@+id/call_contact_button"
 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_centerHorizontal="true"
 android:layout_below="@id/edit_text_phone_number"

 android:text="@string/call_contact"/>

 <Button

 android:id="@+id/button"
 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_centerHorizontal="true"
 android:layout_below="@id/call_contact_button"

 android:text="@string/call"/>

</RelativeLayout>

Espresso

 73

 Also, add the below item in strings.xml resource file,

<string name="phone_number">Phone number</string>

<string name="call">Call</string>
<string name="call_contact">Select from contact list</string>

 Now, add the below code in the main activity (MainActivity.java) under the

onCreate method.

public class MainActivity extends AppCompatActivity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {
 // ... code

 // Find call from contact button
 Button contactButton = (Button) findViewById(R.id.call_contact_button);

 contactButton.setOnClickListener(new View.OnClickListener() {

 @Override
 public void onClick(View view) {

 // Uri uri = Uri.parse("content://contacts");

 Intent contactIntent = new Intent(Intent.ACTION_PICK,
ContactsContract.Contacts.CONTENT_URI);

contactIntent.setType(ContactsContract.CommonDataKinds.Phone.CONTENT_TYPE);

 startActivityForResult(contactIntent, REQUEST_CODE);
 }

 });

 // Find edit view

 final EditText phoneNumberEditView = (EditText)
findViewById(R.id.edit_text_phone_number);

 // Find call button
 Button button = (Button) findViewById(R.id.button);

 button.setOnClickListener(new View.OnClickListener() {

 @Override
 public void onClick(View view) {

 if(phoneNumberEditView.getText() != null)

 {
 Uri number = Uri.parse("tel:" +

phoneNumberEditView.getText());

 Intent callIntent = new Intent(Intent.ACTION_DIAL, number);
 startActivity(callIntent);

 }

 }
 });

 }

 // ... code

}

Espresso

 74

Here, we have programmed the button with id, call_contact_button to open the contact

list and button with id, button to dial the call.

 Add a static variable REQUEST_CODE in MainActivity class as shown below,

public class MainActivity extends AppCompatActivity {
 // ...

 private static final int REQUEST_CODE = 1;

 // ...

}

 Now, add the onActivityResult method in the MainActivity class as below,

public class MainActivity extends AppCompatActivity {

 // ...

 @Override

 protected void onActivityResult(int requestCode, int resultCode,

 Intent data) {
 if (requestCode == REQUEST_CODE) {

 if (resultCode == RESULT_OK) {

 // Bundle extras = data.getExtras();
 // String phoneNumber = extras.get("data").toString();

 Uri uri = data.getData();
 Log.e("ACT_RES", uri.toString());

 String[] projection = {
ContactsContract.CommonDataKinds.Phone.NUMBER,

ContactsContract.CommonDataKinds.Phone.DISPLAY_NAME };

 Cursor cursor = getContentResolver().query(uri, projection,

 null, null, null);

 cursor.moveToFirst();

 int numberColumnIndex =

cursor.getColumnIndex(ContactsContract.CommonDataKinds.Phone.NUMBER);
 String number = cursor.getString(numberColumnIndex);

 int nameColumnIndex =
cursor.getColumnIndex(ContactsContract.CommonDataKinds.Phone.DISPLAY_NAME);

 String name = cursor.getString(nameColumnIndex);

 Log.d("MAIN_ACTIVITY", "Selected number : " + number +" , name

: "+name);

 // Find edit view

 final EditText phoneNumberEditView = (EditText)
findViewById(R.id.edit_text_phone_number);

 phoneNumberEditView.setText(number);

 }
 }

 };

Espresso

 75

 // ...
}

Here, onActivityResult will be invoked when a user returns to the application after opening

the contact list using the call_contact_button button and selecting a contact. Once the

onActivityResult method is invoked, it gets the user selected contact, find the contact

number and set it into the text box.

 Run the application and make sure everything is fine. The final look of the Intent

sample Application is as shown below,

 Now, configure the espresso intent in the application’s gradle file as shown below,

dependencies {

 // ...

 androidTestImplementation 'androidx.test.espresso:espresso-intents:3.1.1'

}

Espresso

 76

 Click the Sync Now menu option provided by the Android Studio. This will download

the intent test library and configure it properly.

 Open ExampleInstrumentedTest.java file and add the IntentsTestRule instead of

normally used AndroidTestRule. IntentTestRule is a special rule to handle intent

testing.

public class ExampleInstrumentedTest {

 // ... code
 @Rule

 public IntentsTestRule<MainActivity> mActivityRule =

 new IntentsTestRule<>(MainActivity.class);

 // ... code

}

 Add two local variables to set the test phone number and dialer package name as

below,

public class ExampleInstrumentedTest {

 // ... code

 private static final String PHONE_NUMBER = "1 234-567-890";
 private static final String DIALER_PACKAGE_NAME =

"com.google.android.dialer";

 // ... code

}

 Fix the import issues by using Alt + Enter option provided by android studio or else

include the below import statements,

import android.content.Context;

import android.content.Intent;

import androidx.test.InstrumentationRegistry;

import androidx.test.espresso.intent.rule.IntentsTestRule;
import androidx.test.runner.AndroidJUnit4;

import org.junit.Rule;
import org.junit.Test;

import org.junit.runner.RunWith;

import static androidx.test.espresso.Espresso.onView;

import static androidx.test.espresso.action.ViewActions.click;

import static androidx.test.espresso.action.ViewActions.closeSoftKeyboard;
import static androidx.test.espresso.action.ViewActions.typeText;

import static androidx.test.espresso.intent.Intents.intended;

import static androidx.test.espresso.intent.matcher.IntentMatchers.hasAction;
import static androidx.test.espresso.intent.matcher.IntentMatchers.hasData;

import static androidx.test.espresso.intent.matcher.IntentMatchers.toPackage;

Espresso

 77

import static androidx.test.espresso.matcher.ViewMatchers.withId;

import static org.hamcrest.core.AllOf.allOf;
import static org.junit.Assert.*;

 Add the below test case to test whether the dialer is properly called,

public class ExampleInstrumentedTest {

 // ... code

 @Test
 public void validateIntentTest() {

 onView(withId(R.id.edit_text_phone_number))

 .perform(typeText(PHONE_NUMBER), closeSoftKeyboard());

 onView(withId(R.id.button))

 .perform(click());

 intended(allOf(

 hasAction(Intent.ACTION_DIAL),
 hasData("tel:" + PHONE_NUMBER),

 toPackage(DIALER_PACKAGE_NAME)));
 }

 // ... code
}

Here, hasAction, hasData and toPackage matchers are used along with allOf matcher to

succeed only if all matchers are passed.

 Now, run the ExampleInstrumentedTest through content menu in Android studio.

intending()

Espresso provides a special method – intending() to mock an external intent action.

intending() accept the package name of the intent to be mocked and provides a method

respondWith to set how the mocked intent needs to be responded with as specified below,

intending(toPackage("com.android.contacts")).respondWith(result);

Here, respondWith() accepts intent result of type Instrumentation.ActivityResult. We can

create new stub intent and manually set the result as specified below,

// Stub intent

Intent intent = new Intent();
intent.setData(Uri.parse("content://com.android.contacts/data/1"));

Instrumentation.ActivityResult result =

 new Instrumentation.ActivityResult(Activity.RESULT_OK, intent);

Espresso

 78

The complete code to test whether a contact application is properly opened is as follows,

@Test

public void stubIntentTest() {

 // Stub intent

 Intent intent = new Intent();
 intent.setData(Uri.parse("content://com.android.contacts/data/1"));

 Instrumentation.ActivityResult result =

 new Instrumentation.ActivityResult(Activity.RESULT_OK, intent);
 intending(toPackage("com.android.contacts")).respondWith(result);

 // find the button and perform click action
 onView(withId(R.id.call_contact_button))

 .perform(click());

 // get context

 Context targetContext2 =
InstrumentationRegistry.getInstrumentation().getTargetContext();

 // get phone number
 String[] projection = { ContactsContract.CommonDataKinds.Phone.NUMBER,

ContactsContract.CommonDataKinds.Phone.DISPLAY_NAME };

 Cursor cursor =
targetContext2.getContentResolver().query(Uri.parse("content://com.android.cont

acts/data/1"), projection,

 null, null, null);
 cursor.moveToFirst();

 int numberColumnIndex =

cursor.getColumnIndex(ContactsContract.CommonDataKinds.Phone.NUMBER);
 String number = cursor.getString(numberColumnIndex);

 // now, check the data
 onView(withId(R.id.edit_text_phone_number))

 .check(matches(withText(number)));

}

Here, we have created a new intent and set the return value (when invoking the intent)

as the first entry of the contact list, content://com.android.contacts/data/1. Then we have

set the intending method to mock the newly created intent in place of contact list. It sets

and calls our newly created intent when the package, com.android.contacts is invoked and

the default first entry of the list is returned. Then, we fired the click() action to start the

mock intent and finally checks whether the phone number from invoking the mock intent

and number of the first entry in the contact list are same.

It there is any missing import issue, then fix those import issues by using Alt + Enter

option provided by android studio or else include the below import statements,

import android.app.Activity;
import android.app.Instrumentation;

import android.content.Context;

import android.content.Intent;
import android.database.Cursor;

import android.net.Uri;

Espresso

 79

import android.provider.ContactsContract;

import androidx.test.InstrumentationRegistry;

import androidx.test.espresso.ViewInteraction;

import androidx.test.espresso.intent.rule.IntentsTestRule;
import androidx.test.runner.AndroidJUnit4;

import org.junit.Rule;
import org.junit.Test;

import org.junit.runner.RunWith;

import static androidx.test.espresso.Espresso.onView;

import static androidx.test.espresso.action.ViewActions.click;
import static androidx.test.espresso.action.ViewActions.closeSoftKeyboard;

import static androidx.test.espresso.action.ViewActions.typeText;

import static androidx.test.espresso.assertion.ViewAssertions.matches;
import static androidx.test.espresso.intent.Intents.intended;

import static androidx.test.espresso.intent.Intents.intending;

import static androidx.test.espresso.intent.matcher.IntentMatchers.hasAction;
import static androidx.test.espresso.intent.matcher.IntentMatchers.hasData;

import static androidx.test.espresso.intent.matcher.IntentMatchers.toPackage;

import static androidx.test.espresso.matcher.ViewMatchers.withId;
import static androidx.test.espresso.matcher.ViewMatchers.withText;

import static org.hamcrest.core.AllOf.allOf;

import static org.junit.Assert.*;

Add the below rule in the test class to provide permission to read contact list -

@Rule

public GrantPermissionRule permissionRule =

GrantPermissionRule.grant(Manifest.permission.READ_CONTACTS);

Add the below option in the application manifest file, AndroidManifest.xml -

<uses-permission android:name="android.permission.READ_CONTACTS" />

Now, make sure the contact list has at least one entry and then run the test using context

menu of the Android Studio.

Espresso

 80

Android supports user interface testing that involves more than one application. Let us

consider our application have an option to move from our application to messaging

application to send a message and then comes back to our application. In this scenario,

UI automator testing framework helps us to test the application. UI automator can be

considered as a good companion for espresso testing framework. We can exploit the

intending() option in espresso testing framework before opting for UI automator.

Setup Instruction

Android provides UI automator as a separate plugin. It needs to be configured in the

app/build.gradle as specified below,

dependencies {

 ...
 androidTestImplementation 'androidx.test.uiautomator:uiautomator:2.2.0'

}

Workflow for Writing Test Case

Let us understand how to write a UI Automator based test case,

 Get UiDevice object by calling the getInstance() method and passing the

Instrumentation object.

myDevice = UiDevice.getInstance(InstrumentationRegistry.getInstrumentation());

myDevice.pressHome();

 Get UiObject object using the findObject() method. Before using this method, we

can open the uiautomatorviewer application to inspect the target application UI

components since understanding the target application enables us to write better

test cases.

UiObject button = myDevice.findObject(new UiSelector()
 .text("Run")

 .className("android.widget.Button"));

 Simulate user interaction by calling UiObject’s method. For example, setText() to

edit a text field and click() to fire a click event of a button.

if(button.exists() && button.isEnabled()) {

 button.click();

}

14. Espresso — Testing UI for Multiple
Application

Espresso

 81

 Finally, we check whether the UI reflects the expected state.

Espresso

 82

Writing test case is a tedious job. Even though espresso provides very easy and flexible

API, writing test cases may be a lazy and time-consuming task. To overcome this, Android

studio provides a feature to record and generate espresso test cases. Record Espresso

Test is available under the Run menu.

Let us record a simple test case in our HelloWorldApp by following the steps described

below,

 Open the Android studio followed by HelloWorldApp application.

 Click Run -> Record Espresso test and select MainActivity.

15. Espresso — Test Recorder

Espresso

 83

 The Recorder screenshot is as follows,

Espresso

 84

 Click Add Assertion. It will open the application screen as shown below,

Espresso

 85

 Click Hello World!. The Recorder screen to Select text view is as follows,

 Again click Save Assertion This will save the assertion and show it as follows,

Espresso

 86

 Click OK. It will open a new window and ask the name of the test case. The default

name is MainActivityTest

 Change the test case name, if necessary.

 Again, click OK. This will generate a file, MainActivityTest with our recorded test

case. The complete coding is as follows,

package com.tutorialspoint.espressosamples.helloworldapp;

import android.view.View;

import android.view.ViewGroup;

Espresso

 87

import android.view.ViewParent;

import org.hamcrest.Description;

import org.hamcrest.Matcher;

import org.hamcrest.TypeSafeMatcher;
import org.junit.Rule;

import org.junit.Test;

import org.junit.runner.RunWith;

import androidx.test.espresso.ViewInteraction;
import androidx.test.filters.LargeTest;

import androidx.test.rule.ActivityTestRule;

import androidx.test.runner.AndroidJUnit4;

import static androidx.test.espresso.Espresso.onView;

import static androidx.test.espresso.assertion.ViewAssertions.matches;
import static androidx.test.espresso.matcher.ViewMatchers.isDisplayed;

import static androidx.test.espresso.matcher.ViewMatchers.withId;

import static androidx.test.espresso.matcher.ViewMatchers.withText;
import static org.hamcrest.Matchers.allOf;

@LargeTest
@RunWith(AndroidJUnit4.class)

public class MainActivityTest {

 @Rule

 public ActivityTestRule<MainActivity> mActivityTestRule = new

ActivityTestRule<>(MainActivity.class);

 @Test
 public void mainActivityTest() {

 ViewInteraction textView = onView(

 allOf(withId(R.id.textView_hello), withText("Hello World!"),
 childAtPosition(

 childAtPosition(

 withId(android.R.id.content),
 0),

 0),

 isDisplayed()));
 textView.check(matches(withText("Hello World!")));

 }

 private static Matcher<View> childAtPosition(

 final Matcher<View> parentMatcher, final int position) {

 return new TypeSafeMatcher<View>() {

 @Override

 public void describeTo(Description description) {
 description.appendText("Child at position " + position + " in

parent ");
 parentMatcher.describeTo(description);

 }

 @Override

Espresso

 88

 public boolean matchesSafely(View view) {

 ViewParent parent = view.getParent();
 return parent instanceof ViewGroup &&

parentMatcher.matches(parent)

 && view.equals(((ViewGroup)
parent).getChildAt(position));

 }

 };
 }

}

 Finally, run the test using context menu and check whether the test case run.

Espresso

 89

Positive User experience plays a very important role in the success of an application. User

experience not only involves beautiful user interfaces but also how fast those beautiful

user interfaces are rendered and what is the frame per second rate. User interface needs

to run consistently at 60 frames per second to give good user experience.

Let us learn some of the option available in the android to analyze UI performance in this

chapter.

dumpsys

dumpsys is an in-built tool available in the android device. It outputs current information

about the system services. dumpsys has the option to dump information about particular

category. Passing gfxinfo will provide animation information of the supplied package. The

command is as follows,

> adb shell dumpsys gfxinfo <PACKAGE_NAME>

framestats

framestats is an option of the dumpsys command. Once dumpsys is invoked with

framestats, it will dump detailed frame timing information of recent frames. The command

is as follows,

> adb shell dumpsys gfxinfo <PACKAGE_NAME> framestats

It outputs the information as CSV (comma separated values). The output in CSV format

helps to easily push the data into excel and subsequently extract useful information

through excel formulas and charts.

systrace

systrace is also an in-build tool available in the android device. It captures and displays

execution times of the application processes. systrace can be run using the below

command in the android studio’s terminal,

python %ANDROID_HOME%/platform-tools/systrace/systrace.py --time=10 -o

my_trace_output.html gfx view res

16. Espresso — Testing UI Performance

Espresso

 90

Accessibility feature is one of the key features for any application. The application

developed by a vendor should support minimum accessibility guideline set by the android

SDK to be a successful and useful application. Following the accessibility standard is very

important and it is not an easy task. Android SDK provides great support by providing

properly designed views to create accessible user interfaces.

Similarly, Espresso testing framework does a great favour for both developer and end user

by transparently supporting the accessibility testing features into the core-testing engine.

In Espresso, a developer can enable and configure accessibility testing through the

AccessibilityChecks class. The sample code is as follows,

AccessibilityChecks.enable();

By default, the accessibility checks run when you perform any view action. The check

includes the view on which the action is performed as well as all descendant views. You

can check the entire view hierarchy of a screen using the following code:

AccessibilityChecks.enable().setRunChecksFromRootView(true);

Conclusion

Espresso is a great tool for android developers to test their application completely in a

very easy way and without putting extra efforts normally required by a testing framework.

It even has recorder to create test case without writing the code manually. In addition, it

supports all types of user interface testing. By using espresso testing framework, an

android developer can confidently develop a great looking application as well as a

successful application without any issues in a short period of time.

17. Espresso — Testing Accessibility

