

FastAPI – Python Web Framework

i

About the Tutorial

FastAPI is a modern Python web framework, very efficient in building APIs.

FastAPI has been developed by Sebastian Ramirez in Dec. 2018. FastAPI

0.68.0 is the currently available version. The latest version requires Python

3.6 or above. It is one of the fastest web frameworks of Python.

Audience

This tutorial is designed for developers who want to learn how to build REST

APIs using Python.

Prerequisites

Before you proceed, make sure that you understand the basics of procedural

and object-oriented programming in Python. Knowledge of REST

architecture is an added advantage.

Disclaimer & Copyright

 Copyright 2022 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of

Tutorials Point (I) Pvt. Ltd. The user of this e-book is prohibited to reuse,

retain, copy, distribute or republish any contents or a part of contents of

this e-book in any manner without written consent of the publisher.

We strive to update the contents of our website and tutorials as timely and

as precisely as possible, however, the contents may contain inaccuracies or

errors. Tutorials Point (I) Pvt. Ltd. provides no guarantee regarding the

accuracy, timeliness or completeness of our website or its contents

including this tutorial. If you discover any errors on our website or in this

tutorial, please notify us at contact@tutorialspoint.com.

mailto:contact@tutorialspoint.com

FastAPI – Python Web Framework

ii

Table of Contents

About the Tutorial .. i

Audience .. i

Prerequisites .. i

Disclaimer & Copyright ... i

Table of Contents .. ii

1. FASTAPI – INTRODUCTION ..1

FastAPI – Environment Setup .. 1

2. FASTAPI – HELLO WORLD ..3

Getting Started .. 3

3. FASTAPI – OPENAPI ...5

4. FASTAPI – UVICORN...9

5. FASTAPI – TYPE HINTS ...12

6. FASTAPI – IDE SUPPORT ..16

7. FASTAPI – REST ARCHITECTURE ...19

8. FASTAPI – PATH PARAMETERS ...20

Check OpenAPI docs .. 22

Path Parameters with Types.. 25

9. FASTAPI – QUERY PARAMETERS ..27

10. FASTAPI – PARAMETER VALIDATION ...31

FastAPI – Python Web Framework

iii

11. FASTAPI – PYDANTIC..37

12. FASTAPI – REQUEST BODY ...40

13. FASTAPI – TEMPLATES ...47

14. FASTAPI – STATIC FILES ..52

15. FASTAPI – HTML FORM TEMPLATES ..56

16. FASTAPI – ACCESSING FORM DATA ...58

17. FASTAPI – UPLOADING FILES ...60

18. FASTAPI – COOKIE PARAMETERS ...62

19. FASTAPI – HEADER PARAMETERS ..65

20. FASTAPI – RESPONSE MODEL ..68

21. FASTAPI – NESTED MODELS ..71

22. FASTAPI – DEPENDENCIES ...75

23. FASTAPI – CORS ...78

24. FASTAPI – CRUD OPERATIONS ...80

25. FASTAPI – SQL DATABASES ..88

26. FASTAPI – USING MONGODB ..94

27. FASTAPI – USING GRAPHQL ...99

28. FASTAPI – WEBSOCKETS .. 102

FastAPI – Python Web Framework

iv

29. FASTAPI – FASTAPI EVENT HANDLERS ... 106

30. FASTAPI – MOUNTING A SUB-APP ... 108

31. FASTAPI – MIDDLEWARE ... 111

32. FASTAPI – MOUNTING FLASK APP ... 113

33. FASTAPI – DEPLOYMENT ... 115

FastAPI – Python Web Framework

1

FastAPI is a modern Python web framework, very efficient in building APIs.

It is based on Python’s type hints feature that has been added since Python

3.6 onwards. It is one of the fastest web frameworks of Python.

 As it works on the functionality of Starlette and Pydantic libraries, its

performance is amongst the best and on par with that of NodeJS and

Go.

 In addition to offering high performance, FastAPI offers significant

speed for development, reduces human-induced errors in the code,

is easy to learn and is completely production-ready.

 FastAPI is fully compatible with well-known standards of APIs,

namely OpenAPI and JSON schema.

FastAPI has been developed by Sebastian Ramirez in Dec. 2018. FastAPI

0.68.0 is the currently available version.

FastAPI – Environment Setup

To install FastAPI (preferably in a virtual environment), use pip installer.

pip3 install fastapi

FastAPI depends on Starlette and Pydantic libraries, hence they also get

installed.

Installing Uvicorn using PIP

FastAPI doesn’t come with any built-in server application. To run FastAPI

app, you need an ASGI server called uvicorn, so install the same too, using

pip installer. It will also install uvicorn’s dependencies - asgiref, click, h11,

and typing-extensions

pip3 install uvicorn

With these two libraries installed, we can check all the libraries installed so

far.

1. FastAPI – Introduction

FastAPI – Python Web Framework

2

pip3 freeze

asgiref==3.4.1

click==8.0.1

colorama==0.4.4

fastapi==0.68.0

h11==0.12.0

importlib-metadata==4.6.4

pydantic==1.8.2

starlette==0.14.2

typing-extensions==3.10.0.0

uvicorn==0.15.0

zipp==3.5.0

FastAPI – Python Web Framework

3

Getting Started

The first step in creating a FastAPI app is to declare the application object

of FastAPI class.

from fastapi import FastAPI

app = FastAPI()

This app object is the main point of interaction of the application with the

client browser. The uvicorn server uses this object to listen to client’s

request.

The next step is to create path operation. Path is a URL which when visited

by the client invokes visits a mapped URL to one of the HTTP methods, an

associated function is to be executed. We need to bind a view function to

a URL and the corresponding HTTP method. For example, the index()

function corresponds to ‘/’ path with ‘get’ operation.

@app.get("/")

async def root():

 return {"message": "Hello World"}

The function returns a JSON response, however, it can return dict, list,

str, int, etc. It can also return Pydantic models.

Save the following code as main.py

from fastapi import FastAPI

app = FastAPI()

@app.get("/")

async def index():

 return {"message": "Hello World"}

2. FastAPI – Hello World

FastAPI – Python Web Framework

4

Start the uvicorn server by mentioning the file in which the FastAPI

application object is instantiated.

uvicorn main:app --reload

INFO: Uvicorn running on http://127.0.0.1:8000 (Press CTRL+C

to quit)

INFO: Started reloader process [28720]

INFO: Started server process [28722]

INFO: Waiting for application startup.

INFO: Application startup complete.

Open the browser and visit http://localhost:/8000. You will see the JSON

response in the browser window.

http://localhost/8000

FastAPI – Python Web Framework

5

Enter the following URL in the browser to generate automatically the

interactive documentation.

http://127.0.0.1:8000/docs

FastAPI uses Swagger UI to produce this documentation. The browser will

display the following:

3. FastAPI – OpenAPI

FastAPI – Python Web Framework

6

Click the 'try it out' button and then 'Execute' button that appears

afterward.

You can see the Curl command internally executed, the request URL, the

response headers, and the JSON format of the server’s response.

FastAPI generates a schema using OpenAPI specifications. The

specification determines how to define API paths, path parameters, etc. The

API schema defined by the OpenAPI standard decides how the data is sent

FastAPI – Python Web Framework

7

using JSON Schema. Visit http://127.0.0.1:8000/openapi.json from your

browser. A neatly formatted JSON response as follows will be displayed:

{

 "openapi": "3.0.2",

 "info": {

 "title": "FastAPI",

 "version": "0.1.0"

 },

 "paths": {

 "/": {

 "get": {

 "summary": "Index",

 "operationId": "index__get",

 "responses": {

 "200": {

 "description": "Successful Response",

 "content": {

 "application/json": {

 "schema": {}

 }

 }

 }

 }

 }

 }

 }

}

FastAPI also supports another automatic documentation method provided

by Redoc (https://github.com/Redocly/redoc).

http://127.0.0.1:8000/openapi.json
https://github.com/Redocly/redoc

FastAPI – Python Web Framework

8

Enter http://localhost:8000/redoc as URL in the browser’s address bar.

http://localhost:8000/redoc

FastAPI – Python Web Framework

9

Unlike the Flask framework, FastAPI doesn’t contain any built-in

development server. Hence we need Uvicorn. It implements ASGI

standards and is lightning fast. ASGI stands for Asynchronous Server

Gateway Interface.

The WSGI (Web Server Gateway Interface – the older standard) compliant

web servers are not suitable for asyncio applications. Python web

frameworks (such as FastAPI) implementing ASGI specifications provide

high speed performance, comparable to web apps built with Node and Go.

Uvicorn uses uvloop and httptools libraries. It also provides support for

HTTP/2 and WebSockets, which cannot be handled by WSGI. uvloop id

similar to the built-in asyncio event loop. httptools library handles the

http protocols.

The installation of Uvicorn as described earlier will install it with minimal

dependencies. However, standard installation will also install cython based

dependencies along with other additional libraries.

pip3 install uvicorn(standard)

With this, the WebSockets protocol will be supported. Also, PyYAML will

be installed to allow you to provide a .yaml file.

As mentioned earlier, the application is launched on the Uvicorn server with

the following command:

uvicorn main:app –reload

The --reload option enables the debug mode so that any changes in app.py

will be automatically reflected and the display on the client browser will be

automatically refreshed. In addition, the following command-line options

may be used:

--host TEXT Bind socket to this host. [default 127.0.0.1]

--port INTEGER Bind socket to this port. [default 8000]

--uds TEXT Bind to a UNIX domain socket.

--fd INTEGER Bind to socket from this file descriptor.

--reload Enable auto-reload.

4. FastAPI – Uvicorn

FastAPI – Python Web Framework

10

--reload-dir PATH
Set reload directories explicitly, default

current working directory.

--reload-include TEXT
Include files while watching. Includes '*.py' by

default

-reload-exclude TEXT Exclude while watching for files.

--reload-delay FLOAT
Delay between previous and next check default

0.25

-loop

[auto|asyncio|uvloop]
Event loop implementation. [default auto]

--http

[auto|h11|httptools]
HTTP protocol implementation. [default auto]

--interface

auto|asgi|asgi|wsgi
Select application interface. [default auto]

--env-file PATH Environment configuration file.

--log-config PATH
Logging configuration file. Supported formats

.ini, .json, .yaml.

--version Display the uvicorn version and exit.

--app-dir TEXT
Look for APP in the specified directory default

current directory

--help Show this message and exit.

Instead of starting Uvicorn server from command line, it can be launched

programmatically also.

Example

In the Python code, call uvicorn.run() method, using any of the

parameters listed above:

import uvicorn

from fastapi import FastAPI

app = FastAPI()

@app.get("/")

FastAPI – Python Web Framework

11

async def index():

 return {"message": "Hello World"}

if __name__ == "__main__":

 uvicorn.run("main:app", host="127.0.0.1", port=8000, reload=True)

Now run this app.py as Python script as follows:

(fastapienv) C:\fastapienv>python app.py

Uvicorn server will thus be launched in debug mode.

FastAPI – Python Web Framework

12

FastAPI makes extensive use of the Type hinting feature made available in

Python’s version 3.5 onwards. As a matter of fact, Python is known to be a

dynamically typed language. It also happens to be Python’s distinct feature.

In a Python code, a variable need not be declared to be belonging to a

certain type, and its type is determined dynamically by the instantaneous

value assigned to it. Python’s interpreter doesn’t perform type checks and

hence it is prone to runtime exceptions.

In the following example, a division() function is defined with two

parameters and returns their division, assuming that the parameters will be

numeric.

>>> def division(a, b):

 return a/b

>>> division(10, 4)

2.5

>>> division(10, 2.5)

4.0

However, if one of the values passed to the function happen to be non-

numeric, it results in TypeError as shown below:

>>> division("Python",5)

TypeError: unsupported operand type(s) for /: 'str' and 'int'

Even a basic coding environment such as IDLE indicates that the function

requires two parameters but won’t specify the types as they haven’t been

declared.

5. FastAPI – Type Hints

FastAPI – Python Web Framework

13

Python’s new type hinting feature helps in prompting the user with the

expected type of the parameters to be passed. This is done by adding a

colon and data type after the parameter. We’ll redefine the division()

function as follows:

Note that while calling the function, Python hints at the expected type of

each parameter to be passed. However, this doesn’t prevent the TypeError

from appearing if an incompatible value is passed. You will have to use a

static type checker such as MyPy to check for compatibility before running.

Just as the formal parameters in the function’s definition, it is possible to

provide type hint for a function’s return value. Just before the colon symbol

in the function’s definition statement (after which the function block starts)

add an arrow (->) and the type.

However, as mentioned earlier, if incompatible values are passed to the

function, or returned by the function, Python reports TypeError. Use of MyPy

static type checker can detect such errors. Install mypy package first.

FastAPI – Python Web Framework

14

pip3 install mypy

Save the following code as typecheck.py

def division(x:int, y:int) -> int:

 return (x//y)

a=division(10,2)

print (a)

b=division(5,2.5)

print (b)

c=division("Hello",10)

print (c)

Check this code for type errors using mypy.

C:\python37>mypy typechk.py

typechk.py:7: error: Argument 2 to "division" has incompatible

type "float"; expected "int"

typechk.py:10: error: Argument 1 to "division" has

incompatible type "str"; expected "int"

Found 2 errors in 1 file (checked 1 source file)

There are errors in second and third calls to the function. In second, value

passed to y is float when int is expected. In third, value passed to x is str

when int is expected. (Note that // operator returns integer division)

All standard data types can be used as type hints. This can be done with

global variables, variables as function parameters, inside function definition

etc.

x: int = 3

y: float = 3.14

FastAPI – Python Web Framework

15

nm: str = 'abc'

married: bool = False

names: list = ['a', 'b', 'c']

marks: tuple = (10, 20, 30)

marklist: dict = {'a': 10, 'b': 20, 'c': 30}

A new addition in newer versions of Python (version 3.5 onwards) standard

library is the typing module. It defines special types for corresponding

standard collection types. The types on typing module are List, Tuple,

Dict, and Sequence. It also consists of Union and Optional types. Note

that standard names of data types are all in small case, whereas ones in

typing module have first letter in upper case. Using this feature, we can ask

a collection of a particular type.

from typing import List, Tuple, Dict

following line declares a List object of strings.

If violated, mypy shows error

cities: List[str] = ['Mumbai', 'Delhi', 'Chennai']

This is Tuple with three elements respectively

of str, int and float type)

employee: Tuple[str, int, float] = ('Ravi', 25, 35000)

Similarly in the following Dict, the object key should be str

and value should be of int type, failing which

static type checker throws error

marklist: Dict[str, int] = {'Ravi': 61, 'Anil': 72}

FastAPI – Python Web Framework

16

The Type Hinting feature of Python is most effectively used in almost all

IDEs (Integrated Development Environments) such as PyCharm and VS

Code to provide dynamic autocomplete features.

Let us see how VS Code uses the type hints to provide autocomplete

suggestions while writing a code. In the example below, a function named

as sayhello with name as an argument has been defined. The function

returns a string by concatenating “Hello” to the name parameter by adding

a space in between. Additionally, it is required to ensure that the first letter

of the name be in upper case.

Python’s str class has a capitalize() method for the purpose, but if one

doesn’t remember it while typing the code, one has to search for it

elsewhere. If you give a dot after name, you expect the list of attributes but

nothing is shown because Python doesn’t know what will be the runtime

type of name variable.

Here, type hint comes handy. Include str as the type of name in the

function definition. Now when you press dot (.) after name, a drop down

list of all string methods appears, from which the required method (in this

case capitalize()) can be picked.

6. FastAPI – IDE Support

FastAPI – Python Web Framework

17

It is also possible to use type hints with a user defined class. In the following

example a rectangle class is defined with type hints for arguments to the

__init__() constructor.

class rectangle:

 def __init__(self, w:int, h:int) ->None:

 self.width=w

 self.height=h

Following is a function that uses an object of above rectangle class as an

argument. The type hint used in the declaration is the name of the class.

def area(r:rectangle)->int:

 return r.width*r.height

r1=rectangle(10,20)

print ("area = ", area(r1))

In this case also, the IDE editor provides autocomplete support prompting

list of the instance attributes. Following is a screenshot of PyCharm editor.

FastAPI – Python Web Framework

18

FastAPI makes extensive use of the type hints. This feature is found

everywhere, such as path parameters, query parameters, headers, bodies,

dependencies, etc. as well as validating the data from the incoming request.

The OpenAPI document generation also uses type hints.

FastAPI – Python Web Framework

19

RElational State Transfer (REST) is a software architectural style. REST

defines how the architecture of a web application should behave. It is a

resource based architecture where everything that the REST server hosts,

(a file, an image, or a row in a table of a database), is a resource, having

many representations.

REST recommends certain architectural constraints.

 Uniform interface

 Statelessness

 Client-server

 Cacheability

 Layered system

 Code on demand

REST constraints has the following advantages:

 Scalability

 Simplicity

 Modifiability

 Reliability

 Portability

 Visibility

REST uses HTTP verbs or methods for the operation on the resources. The

POST, GET, PUT and DELETE methods perform respectively CREATE, READ,

UPDATE and DELETE operations respectively.

7. FastAPI – REST Architecture

FastAPI – Python Web Framework

20

Modern web frameworks use routes or endpoints as a part of URL instead

of file-based URLs. This helps the user to remember the application URLs

more effectively. In FastAPI, it is termed a path. A path or route is the part

of the URL trailing after the first ‘/’.

For example, in the following URL,

http://localhost:8000/hello/TutorialsPoint

the path or the route would be

/hello/TutorialsPoint

In FastAPI, such a path string is given as a parameter to the operation

decorator. The operation here refers to the HTTP verb used by the browser

to send the data. These operations include GET, PUT, etc. The operation

decorator (for example, @app.get("/")) is immediately followed by a

function that is executed when the specified URL is visited. In the below

example:

from fastapi import FastAPI

app = FastAPI()

@app.get("/")

async def index():

 return {"message": "Hello World"}

Here, ("/") is the path, get is the operation, @app.get("/") is the path

operation decorator, and the index() function just below it is termed as

path operation function.

Any of the following HTTP verbs can be used as operations.

GET
Sends data in unencrypted form to the server. Most

common method.

HEAD Same as GET, but without the response body.

8. FastAPI – Path Parameters

http://localhost:8000/hello/TutorialsPoint
http://localhost:5000/hello/TutorialsPoint

FastAPI – Python Web Framework

21

POST
Used to send HTML form data to the server. Data received

by the POST method is not cached by the server.

PUT
Replaces all current representations of the target resource

with the uploaded content.

DELETE
Removes all current representations of the target resource

given by a URL.

The async keyword in the function’s definition tells FastAPI that it is to be

run asynchronously i.e. without blocking the current thread of execution.

However, a path operation function can be defined without the async prefix

also.

This decorated function returns a JSON response. Although it can return

almost any of Python’s objects, it will be automatically converted to JSON.

Further in this tutorial, we shall see how such a function returns Pydantic

model objects.

The URL’s endpoint or path can have one or more variable parameters. They

can be accepted by using Python’s string formatting notation. In the above

example URL http://localhost:8000/hello/TutorialsPoint, the last value may

change in every client request. This variable parameter can be accepted in

a variable as defined in the path and passed to the formal parameters

defined in the function bound to the operation decorator.

Example

Add another path decorator with a variable parameter in the route, and bind

hello() function to have name parameter. Modify the main.py as per the

following.

import uvicorn

from fastapi import FastAPI

app = FastAPI()

@app.get("/")

async def index():

 return {"message": "Hello World"}

@app.get("/hello/{name}")

http://localhost:8000/hello/TutorialsPoint

FastAPI – Python Web Framework

22

async def hello(name):

 return {"name": name}

Start the Uvicorn server and visit http://localhost:8000/hello/Tutorialspoint

URL. The browser shows the following JSON response.

{"name":"Tutorialspoint"}

Change the variable path parameter to something else such as

http://localhost:8000/hello/Python so that the browser shows:

{"name":"Python"}

Check OpenAPI docs

Now if we check the OpenAPI documentation by entering the URL as

http://localhost:8000/docs, it will show two routes and their respective view

functions. Click the try out button below /hello/{name} button and give

Tutorialspoint as the value of the name parameter’s description and then

click the Execute button.

http://localhost:8000/hello/Tutorialspoint
http://localhost:8000/hello/Python
http://localhost:8000/docs

FastAPI – Python Web Framework

23

It will then show the Curl command, the request URL and the details of

server’s response with response body and response headers.

FastAPI – Python Web Framework

24

A route can have multiple parameters separated by "/" symbol.

from fastapi import FastAPI

app = FastAPI()

@app.get("/hello/{name}/{age}")

async def hello(name,age):

FastAPI – Python Web Framework

25

 return {"name": name, "age":age}

In this case, /hello is the route, followed by two parameters put in curly

brackets. If the URL given in the browser’s address bar is

http://localhost:8000/hello/Ravi/20, The data of Ravi and 20 will be

assigned to variables name and age respectively. The browser displays the

following JSON response:

{"name":"Ravi","age":"20"}

Path Parameters with Types

You can use Python’s type hints for the parameters of the function to be

decorated. In this case, define name as str and age as int.

@app.get("/hello/{name}/{age}")

async def hello(name:str,age:int):

 return {"name": name, "age":age}

This will result in the browser displaying an HTTP error message in the JSON

response if the types don’t match. Try entering

http://localhost:8000/hello/20/Ravi as the URL. The browser’s response will

be as follows:

{

 "detail": [

 {

 "loc": [

 "path",

 "age"

],

 "msg": "value is not a valid integer",

 "type": "type_error.integer"

 }

]

http://localhost:8000/hello/Ravi/20
http://localhost:8000/hello/20/Ravi

FastAPI – Python Web Framework

26

}

The reason is obvious as age being integer, can’t accept a string value. This

will also be reflected in the Swagger UI (OpenAPI) documentation.

FastAPI – Python Web Framework

27

A classical method of passing the request data to the server is to append a

query string to the URL. Assuming that a Python script (hello.py) on a server

is executed as CGI, a list of key-value pairs concatenated by the

ampersand (&) forms the query string, which is appended to the URL by

putting a question mark (?) as a separator. For example:

http://localhost/cgi-bin/hello.py?name=Ravi&age=20

The trailing part of the URL, after (?), is the query string, which is then

parsed by the server-side script for further processing.

As mentioned, the query string is a list of parameter=value pairs

concatenated by & symbol. FastAPI automatically treats the part of the

endpoint which is not a path parameter as a query string and parses it into

parameters and its values. These parameters are passed to the function

below the operation decorator.

Example

from fastapi import FastAPI

app = FastAPI()

@app.get("/hello")

async def hello(name:str,age:int):

 return {"name": name, "age":age}

Start the Uvicorn server and this URL in the browser:

http://localhost:8000/hello?name=Ravi&age=20

You should get the same JSON response. However, checking the tells you

that FastAPI has detected that /hello endpoint has no path parameters, but

query parameters.

9. FastAPI – Query Parameters

http://localhost/cgi-bin/hello.py?name=Ravi&age=20
http://localhost:8000/hello?name=Ravi&age=20

FastAPI – Python Web Framework

28

Click the Try it out button, enter "Ravi" and "20" as values, and press the

Execute button. The documentation page now shows Curl command,

request URL, and the body and headers of HTTP response.

FastAPI – Python Web Framework

29

Example

You can use Python’s type hints for the parameters of the function to be

decorated. In this case, define name as str and age as int.

from fastapi import FastAPI

app = FastAPI()

FastAPI – Python Web Framework

30

@app.get("/hello/{name}")

async def hello(name:str,age:int):

 return {"name": name, "age":age}

Try entering http://localhost:8000/docs as the URL. This will open the

Swagger UI (OpenAPI) documentation. The parameter 'name' is a path

parameter and 'age' is a query parameter.

FastAPI – Python Web Framework

31

It is possible to apply validation conditions on path parameters as well

as query parameters of the URL. In order to apply the validation conditions

on a path parameter, you need to import the Path class. In addition to the

default value of the parameter, you can specify the maximum and minimum

length in the case of a string parameter.

from fastapi import FastAPI, Path

app = FastAPI()

@app.get("/hello/{name}")

async def hello(name:str=Path(...,min_length=3,

max_length=10)):

 return {"name": name}

If the browser’s URL contains the parameter with a length less than 3 or

more than 10, as in (http://localhost:8000/hello/Tutorialspoint), there will

be an appropriate error message such as:

{

 "detail": [

 {

 "loc": [

 "path",

 "name"

],

 "msg": "ensure this value has at most 10 characters",

 "type": "value_error.any_str.max_length",

 "ctx": {

 "limit_value": 10

 }

10. FastAPI – Parameter Validation

http://localhost:8000/hello/Tutorialspoint

FastAPI – Python Web Framework

32

 }

]

}

The OpenAPI docs also shows the validations applied:

Validation rules can be applied on numeric parameters too, using the

operators as given below:

 gt: greater than

 ge: greater than or equal

 lt: less than

 le: less than or equal

Let us modify the above operation decorator to include age as a path

parameter and apply the validations.

from fastapi import FastAPI, Path

app = FastAPI()

@app.get("/hello/{name}/{age}")

FastAPI – Python Web Framework

33

async def hello(*, name: str=Path(...,min_length=3 ,
max_length=10), age: int = Path(..., ge=1, le=100)):

 return {"name": name, "age":age}

In this case, validation rules are applied for both the parameters name and

age. If the URL entered is http://localhost:8000/hello/hi/110, then the

JSON response shows following explanations for validation failure:

{

 "detail": [

 {

 "loc": [

 "path",

 "name"

],

 "msg": "ensure this value has at least 3 characters",

 "type": "value_error.any_str.min_length",

 "ctx": {

 "limit_value": 3

 }

 },

 {

 "loc": [

 "path",

 "age"

],

 "msg": "ensure this value is less than or equal to 100",

 "type": "value_error.number.not_le",

 "ctx": {

 "limit_value": 100

 }

http://localhost:8000/hello/hi/110

FastAPI – Python Web Framework

34

 }

]

}

The swagger UI documentation also identifies the constraints.

The query parameters can also have the validation rules applied to them.

You have to specify them as the part of arguments of Query class

constructor.

Let us add a query parameter called percent in the above function and

apply the validation rules as ge=0 (i.e., greater then equal to 0) and

lt=100 (less than or equal to 100)

FastAPI – Python Web Framework

35

from fastapi import FastAPI, Path, Query

@app.get("/hello/{name}/{age}")

async def hello(*, name: str=Path(...,min_length=3 ,

max_length=10), \

 age: int = Path(..., ge=1, le=100), \

 percent:float=Query(..., ge=0, le=100)):

 return {"name": name, "age":age}

If the URL entered is http://localhost:8000/hello/Ravi/20?percent=79, then

the browser displays following JSON response:

{"name":"Ravi","age":20}

FastAPI correctly identifies percent as a query parameter with validation

conditions applied. It is reflected in the OpenAPI documentation as follows:

http://localhost:8000/hello/Ravi/20?percent=79

FastAPI – Python Web Framework

36

While the client can send the path and query parameters to the API server

using GET method, we need to apply POST method to send some binary

data as a part of the HTTP request. This binary data may be in the form of

an object of any Python class. It forms the request body. FastAPI uses

Pydantic library for this purpose.

FastAPI – Python Web Framework

37

Pydantic is a Python library for data parsing and validation. It uses the

type hinting mechanism of the newer versions of Python (version 3.6

onwards) and validates the types during the runtime. Pydantic defines

BaseModel class. It acts as the base class for creating user defined models.

Following code defines a Student class as a model based on BaseModel.

from typing import List

from pydantic import BaseModel

class Student(BaseModel):

 id: int

 name :str

 subjects: List[str] = []

The attributes of the Student class are declared with type hints. Note that

the subjects attribute is of List type defined in typing module and of built-

in list type.

We can populate an object of Student class with a dictionary with matching

structure as follows:

>>> data = {

 'id': 1,

 'name': 'Ravikumar',

 'subjects': ["Eng", "Maths", "Sci"],

}

>>> s1=Student(**data)

>>> print (s1)

id=1 name='Ravikumar' subjects=['Eng', 'Maths', 'Sci']

>>> s1

Student(id=1, name='Ravikumar', subjects=['Eng', 'Maths', 'Sci'])

11. FastAPI – Pydantic

FastAPI – Python Web Framework

38

>>> s1.dict()

{'id': 1, 'name': 'Ravikumar', 'subjects': ['Eng', 'Maths', 'Sci']}

Pydantic will automatically get the data types converted whenever

possible. For example, even if the id key in the dictionary is assigned a

string representation of a number (such as '123'), it will coerce it into an

integer. But whenever not possible, an exception will be raised.

>>> data = {

 'id': [1,2],

 'name': 'Ravikumar',

 'subjects': ["Eng", "Maths", "Sci"],

}

>>> s1=Student(**data)

Traceback (most recent call last):

 File "<pyshell#13>", line 1, in <module>

 s1=Student(**data)

 File "pydantic\main.py", line 406, in
pydantic.main.BaseModel.__init__

pydantic.error_wrappers.ValidationError: 1 validation error
for Student

id

 value is not a valid integer (type=type_error.integer)

Pydantic also contains a Field class to declare metadata and validation rules

for the model attributes. First modify the Student class to apply Field type

on "name" attribute as follows:

from typing import List

from pydantic import BaseModel, Field

class Student(BaseModel):

 id: int

 name :str = Field(None, title="The description of the

item", max_length=10)

FastAPI – Python Web Framework

39

 subjects: List[str] = []

Populate the data as shown below. The name here is exceeding the

max_length stipulated. Pydantic throws ValidationError as expected.

>>> data = {

 'id': 1,

 'name': 'Ravikumar Sharma',

 'subjects': ["Eng", "Maths", "Sci"],

}

>>> s1=Student(**data)

Traceback (most recent call last):

 File "<pyshell#28>", line 1, in <module>

 s1=Student(**data)

 File "pydantic\main.py", line 406, in

pydantic.main.BaseModel.__init__

pydantic.error_wrappers.ValidationError: 1 validation error

for Student

name

 ensure this value has at most 10 characters

(type=value_error.any_str.max_length; limit_value=10)

Pydantic models can be used to map with ORM models like SQLAlchemy

or Peewee.

FastAPI – Python Web Framework

40

We shall now use the Pydantic model object as a request body of the client’s

request. As mentioned earlier, we need to use POST operation decorator for

the purpose.

import uvicorn

from fastapi import FastAPI

from typing import List

from pydantic import BaseModel, Field

app = FastAPI()

class Student(BaseModel):

 id: int

 name :str = Field(None, title="name of student", max_length=10)

 subjects: List[str] = []

@app.post("/students/")

async def student_data(s1: Student):

 return s1

As it can be seen, the student_data() function is decorated by

@app.post() decorator having the URL endpoint as "/students/". It

receives an object of Student class as Body parameter from the client’s

request. To test this route, start the Uvicorn server and open the Swagger

UI documentation in the browser by visiting http://localhost:8000/docs

The documentation identifies that "/students/" route is attached with

student_data() function with POST method. Under the schemas section

the Student model will be listed.

12. FastAPI – Request Body

http://localhost:8000/docs

FastAPI – Python Web Framework

41

Expand the node in front of it to reveal the structure of the model

FastAPI – Python Web Framework

42

Click the Try it out button to fill in the test values in the request body.

FastAPI – Python Web Framework

43

Click the Execute button and get the server’s response values.

FastAPI – Python Web Framework

44

While a Pydantic model automatically populates the request body, it is also

possible to use singular values to add attributes to it. For that purpose, we

need to use Body class objects as the parameters of the operation function

to be decorated.

First, we need to import Body class from fastapi. As shown in the following

example, declare 'name' and 'marks' as the Body parameters in the

definition of student_data() function below the @app.post() decorator.

import uvicorn

from fastapi import FastAPI, Body

FastAPI – Python Web Framework

45

@app.post("/students")

async def student_data(name:str=Body(...),

marks:int=Body(...)):

 return {"name":name,"marks": marks}

If we check the Swagger UI documentation, we should be able to find this

POST method associated to student_data() function and having a request

body with two parameters.

It is also possible to declare an operation function to have path and/or query

parameters along with request body. Let us modify the student_data()

function to have a path parameter 'college’, 'age' as query parameter and

a Student model object as body parameter.

@app.post("/students/{college}")

async def student_data(college:str, age:int, student:Student):

FastAPI – Python Web Framework

46

 retval={"college":college, "age":age, **student.dict()}

 return retval

The function adds values of college and age parameters along with the

dictionary representation of Student object and returns it as a response. We

can check the API documentation as follows:

As it can be seen, college is the path parameter, age is a query parameter,

and the Student model is the request body.

FastAPI – Python Web Framework

47

By default, FastAPI renders a JSON response to the client. However, it can

be cast to a HTML response. For this purpose, FastAPI has HTMLResponse

class defined in fastapi.responses module. We need to add

response_class as an additional parameter to operation decorator, with

HTMLResponse object as its value.

In the following example, the @app.get() decorator has "/hello/" endpoint

and the HTMLResponse as response_class. Inside the hello() function, we

have a string representation of a HTML code of Hello World message. The

string is returned in the form of HTML response.

from fastapi.responses import HTMLResponse

from fastapi import FastAPI

app = FastAPI()

@app.get("/hello/")

async def hello():

 ret='''

<html>

<body>

<h2>Hello World!</h2>

</body>

</html>

'''

 return HTMLResponse(content=ret)

On examining the API docs, it can be seen that the server’s response body

is in HTML.

13. FastAPI – Templates

FastAPI – Python Web Framework

48

The request URL (http://localhost:8000/hello/) should also render the

message in the browser. However, rendering a raw HTML response is very

tedious. Alternately, it is possible to render prebuilt HTML pages as

templates. For that we need to use a web template library.

Web template library has a template engine that merges a static web page

having place holder variables. Data from any source such as database is

merged to dynamically generate and render the web page. FastAPI doesn’t

have any prepackaged template library. So one is free to use any one that

suits his needs. In this tutorial, we shall be using jinja2, a very popular

web template library. Let us install it first using pip installer.

pip3 install jinja2

FastAPI’s support for Jinja templates comes in the form of

jinja2Templates class defined in fastapi.templates module.

from fastapi.templating import Jinja2Templates

To declare a template object, the folder in which the html templates are

stored, should be provided as parameter. Inside the current working

directory, we shall create a ‘templates’ directory.

http://localhost:8000/hello/

FastAPI – Python Web Framework

49

templates = Jinja2Templates(directory="templates")

A simple web page ‘hello.html’ to render Hello World message is also put

in ‘templates’ folder.

<html>

<body>

<h2>Hello World!</h2>

</body>

</html>

We are now going to render html code from this page as HTMLResponse.

Let us modify the hello() function as follows:

from fastapi.responses import HTMLResponse

from fastapi.templating import Jinja2Templates

from fastapi import FastAPI, Request

app = FastAPI()

templates = Jinja2Templates(directory="templates")

@app.get("/hello/", response_class=HTMLResponse)

async def hello(request: Request):

 return templates.TemplateResponse("hello.html",

{"request": request})

Here, templateResponse() method of template object collects the

template code and the request context to render the http response. When

we start the server and visit the http://localhost:8000/hello/ URL, we get

to see the Hello World message in the browser, which is in fact the output

of hello.html

http://localhost:8000/hello/

FastAPI – Python Web Framework

50

As mentioned earlier, jinja2 template allows certain place holders to be

embedded in the HTML code. The jinja2 code elements are put inside the

curly brackets. As soon as the HTML parser of the browser encounters this,

the template engine takes over and populates these code elements by the

variable data provided by the HTTP response. Jinja2 provides following code

elements:

 {% %} – Statements

 {{ }} – Expressions to print to the template output

 {# #} – Comments which are not included in the template output

 # # # – Line statements

The hello.html is modified as below to display a dynamic message by

substituting the name parameter.

<html>

<body>

<h2>Hello {{name}} Welcome to FastAPI</h2>

</body>

</html>

The operation function hello() is also modified to accept name as a path

parameter. The TemplateResponse should also include the JSON

representation of “name”:name along with the request context.

from fastapi.responses import HTMLResponse

from fastapi.templating import Jinja2Templates

from fastapi import FastAPI, Request

FastAPI – Python Web Framework

51

app = FastAPI()

templates = Jinja2Templates(directory="templates")

@app.get("/hello/{name}", response_class=HTMLResponse)

async def hello(request: Request, name:str):

 return templates.TemplateResponse("hello.html",
{"request": request, "name":name})

Restart the server and go to http://localhost:8000/hello/Kiran. The browser

now fills the jinja2 place holder with the path parameter in this URL.

http://localhost:8000/hello/Kiran

FastAPI – Python Web Framework

52

Often it is required to include in the template response some resources that

remain unchanged even if there is a certain dynamic data. Such resources

are called static assets. Media files (.png, .jpg etc), JavaScript files to be

used for executing some front end code, or stylesheets for formatting HTML

(.CSS files) are the examples of static files.

In order to handle static files, you need a library called aiofiles

pip3 install aiofiles

Next, import StaticFiles class from the fastapi.staticfiles module. Its

object is one of the parameters for the mount() method of the FastAPI

application object to assign "static" subfolder in the current application

folder to store and serve all the static assets of the application.

app.mount(app.mount("/static",

StaticFiles(directory="static"), name="static")

Example

In the following example, FastAPI logo is to be rendered in the hello.html

template. Hence, “fa-logo.png” file is first placed in static folder. It is now

available for using as src attribute of tag in HTML code.

from fastapi import FastAPI, Request

from fastapi.responses import HTMLResponse

from fastapi.templating import Jinja2Templates

from fastapi.staticfiles import StaticFiles

app = FastAPI()

templates = Jinja2Templates(directory="templates")

app.mount("/static", StaticFiles(directory="static"),
name="static")

14. FastAPI – Static Files

FastAPI – Python Web Framework

53

@app.get("/hello/{name}", response_class=HTMLResponse)

async def hello(request: Request, name:str):

 return templates.TemplateResponse("hello.html",
{"request": request, "name":name})

The HTML code of \templates\hello.html is as follows:

<html>

<body>

<h2>Hello {{name}} Welcome to FastAPI</h2>

<img src="{{ url_for('static', path='fa-logo.png') }}" alt=""

width="300">

</body>

</html>

Run the Uvicorn server and visit the URL as http://localhost/hello/Vijay. The

Logo appears in the browser window as shown.

Example

http://localhost/hello/Vijay

FastAPI – Python Web Framework

54

Here is another example of a static file. A JavaScript code hello.js contains

a definition of myfunction() to be executed on the onload event in

following HTML script (\templates\hello.html)

<html>

 <head>

 <title>My Website</title>

 <script src="{{ url_for('static', path='hello.js') }}"></script>

 </head>

 <body onload="myFunction()">

 <div id="time" style="text-align:right; width="100%"></div>

 <h1><div id="ttl">{{ name }}</div></h1>

 </body>

</html>

The hello.js code is as follows: (\static\hello.js)

function myFunction() {

 var today = new Date();

 var h = today.getHours();

 var m = today.getMinutes();

 var s = today.getSeconds();

 var msg="";

 if (h<12)

 {

 msg="Good Morning, ";

 }

 if (h>=12 && h<18)

 {

 msg="Good Afternoon, ";

 }

 if (h>=18)

 {

FastAPI – Python Web Framework

55

 msg="Good Evening, ";

 }

var x=document.getElementById('ttl').innerHTML;

 document.getElementById('ttl').innerHTML = msg+x;

 document.getElementById('time').innerHTML = h + ":" + m +
":" + s;

}

The function detects the value of current time and assigns appropriate value

to msg variable (good morning, good afternoon or good evening)

depending on the time of the day.

Save /static/hello.js, modify \templates\hello.html and restart the

server. The browser should show the current time and corresponding

message below it.

FastAPI – Python Web Framework

56

Let us add another route "/login" to our application which renders a html

template having a simple login form. The HTML code for login page is as

follows:

<html>

 <body>

 <form action="/submit" method="POST">

 <h3>Enter User name</h3>

 <p><input type='text' name='nm'/></p>

 <h3>Enter Password</h3>

 <p><input type='password' name='pwd'/></p>

 <p><input type='submit' value='Login'/></p>

 </form>

 </body>

</html>

Note that the action parameter is set to "/submit" route and action set to

POST. This will be significant for further discussion.

Add login() function in the main.py file as under:

@app.get("/login/", response_class=HTMLResponse)

async def login(request: Request):

 return templates.TemplateResponse("login.html",

{"request": request})

The URL http://localhost:8000/login will render the login form as follows:

15. FastAPI – HTML Form Templates

http://localhost:8000/login

FastAPI – Python Web Framework

57

FastAPI – Python Web Framework

58

Now we shall see how the HTML form data can be accessed in a FastAPI

operation function. In the above example, the /login route renders a login

form. The data entered by the user is submitted to /submit URL with POST

as the request method. Now we have to provide a view function to process

the data submitted by the user.

FastAPI has a Form class to process the data received as a request by

submitting an HTML form. However, you need to install the python-

multipart module. It is a streaming multipart form parser for Python.

pip3 install python-multipart

Add Form class to the imported resources from FastAPI

from fastapi import Form

Let us define a submit() function to be decorated by @app.post(). In order

to receive the form data, declare two parameters of Form type, having the

same name as the form attributes.

@app.post("/submit/")

async def submit(nm: str = Form(...), pwd: str = Form(...)):

 return {"username": nm}

Press submit after filling the text fields. The browser is redirected to /submit

URL and the JSON response is rendered. Check the Swagger API docs of

the /submit route. It correctly identifies nm and pwd as the request body

parameters and the form’s "media type" as application/x-www-form-

urlencoded.

16. FastAPI – Accessing Form Data

FastAPI – Python Web Framework

59

It is even possible to populate and return Pydantic model with HTML form

data. In the following code, we declare User class as a Pydantic model and

send its object as the server’ response.

from pydantic import BaseModel

class User(BaseModel):

 username:str

 password:str

@app.post("/submit/", response_model=User)

async def submit(nm: str = Form(...), pwd: str = Form(...)):

 return User(username=nm, password=pwd)

FastAPI – Python Web Framework

60

First of all, to send a file to the server you need to use the HTML form’s

enctype as multipart/form-data, and use the input type as the file to

render a button, which when clicked allows you to select a file from the file

system.

<html>

 <body>

 <form action="http://localhost:8000/uploader"

method="POST" enctype="multipart/form-data">

 <input type="file" name="file" />

 <input type="submit"/>

 </form>

 </body>

</html>

Note that the form’s action parameter to the endpoint

http://localhost:8000/uploader and the method is set to POST.

This HTML form is rendered as a template with following code:

from fastapi import FastAPI, File, UploadFile, Request

import uvicorn

import shutil

from fastapi.responses import HTMLResponse

from fastapi.templating import Jinja2Templates

app = FastAPI()

templates = Jinja2Templates(directory="templates")

17. FastAPI – Uploading Files

http://localhost:8000/uploader

FastAPI – Python Web Framework

61

@app.get("/upload/", response_class=HTMLResponse)

async def upload(request: Request):

 return templates.TemplateResponse("uploadfile.html",

{"request": request})

Visit http://localhost:8000/upload/. You should get the form with Choose

File button. Click it to open the file to be uploaded.

The upload operation is handled by UploadFile function in FastAPI

from fastapi import FastAPI, File, UploadFile

import shutil

@app.post("/uploader/")

async def create_upload_file(file: UploadFile = File(...)):

 with open("destination.png", "wb") as buffer:

 shutil.copyfileobj(file.file, buffer)

 return {"filename": file.filename}

We shall use shutil library in Python to copy the received file in the server

location by the name destination.png

http://localhost:8000/upload/

FastAPI – Python Web Framework

62

A cookie is one of the HTTP headers. The web server sends a response to

the client, in addition to the data requested, it also inserts one or more

cookies. A cookie is a very small amount of data, that is stored in the

client’s machine. On subsequent connection requests from the same client,

this cookie data is also attached along with the HTTP requests.

The cookies are useful for recording information about client’s browsing.

Cookies are a reliable method of retrieving stateful information in otherwise

stateless communication by HTTP protocol.

In FastAPI, the cookie parameter is set on the response object with the help

of set_cookie() method

response.set_cookie(key, value)

Example

Here is an example of set_cookie() method. We have a JSON response

object called content. Call the set_cookie() method on it to set a cookie

as key="usrname" and value="admin":

from fastapi import FastAPI

from fastapi.responses import JSONResponse

app = FastAPI()

@app.post("/cookie/")

def create_cookie():

 content = {"message": "cookie set"}

 response = JSONResponse(content=content)

 response.set_cookie(key="username", value="admin")

 return response

To read back the cookie on a subsequent visit, use the Cookie object in the

FastAPI library.

18. FastAPI – Cookie Parameters

FastAPI – Python Web Framework

63

from fastapi import FastAPI, Cookie

app = FastAPI()

@app.get("/readcookie/")

async def read_cookie(username: str = Cookie(None)):

 return {"username": username}

Inspect these two endpoints in the Swagger API. There are these two routes

"/cookies" and "/readcookie". Execute the create_cookie() function

bound to "/cookies". The response is just the content, although the cookie

is set.

FastAPI – Python Web Framework

64

When the read_cookie() function is executed, the cookie is read back and

appears as the response. Also, not that the documentation identifies the

user name as a cookie parameter.

FastAPI – Python Web Framework

65

In order to read the values of an HTTP header that is a part of the client

request, import the Header object from the FastAPI library, and declare a

parameter of Header type in the operation function definition. The name of

the parameter should match with the HTTP header converted in

camel_case.

In the following example, the "accept-language" header is to be retrieved.

Since Python doesn’t allow "-" (dash) in the name of identifier, it is replaced

by "_" (underscore)

from typing import Optional

from fastapi import FastAPI, Header

app = FastAPI()

@app.get("/headers/")

async def read_header(accept_language: Optional[str] =
Header(None)):

 return {"Accept-Language": accept_language}

As the following Swagger documentation shows, the retrieved header is

shown as the response body.

19. FastAPI – Header Parameters

FastAPI – Python Web Framework

66

You can push custom as well as predefined headers in the response object.

The operation function should have a parameter of Response type. In order

to set a custom header, its name should be prefixed with "X". In the

following case, a custom header called "X-Web-Framework" and a

predefined header “Content-Language" is added along with the response of

the operation function.

from fastapi import FastAPI

from fastapi.responses import JSONResponse

app = FastAPI()

@app.get("/rspheader/")

def set_rsp_headers():

 content = {"message": "Hello World"}

 headers = {"X-Web-Framework": "FastAPI", "Content-Language": "en-US"}

 return JSONResponse(content=content, headers=headers)

FastAPI – Python Web Framework

67

The newly added headers will appear in the response header section of the

documentation.

FastAPI – Python Web Framework

68

An operation function returns A JSON response to the client. The response

can be in the form of Python primary types, i.e., numbers, string, list or

dict, etc. It can also be in the form of a Pydantic model. For a function to

return a model object, the operation decorator should declare a

respone_model parameter.

With the help of response_model, FastAPI Converts the output data to a

structure of a model class. It validates the data, adds a JSON Schema for

the response, in the OpenAPI path operation.

One of the important advantages of response_model parameter is that we

can format the output by selecting the fields from the model to cast the

response to an output model.

Example

In the following example, the POST operation decorator receives the

request body in the form of an object of the student class (a subclass of

BaseModel). As one of the fields in this class, i.e. marks (a list of marks) is

not needed in the response, we define another model called percent and

use it as the response_model parameter.

from typing import List

from fastapi import FastAPI

from pydantic import BaseModel, Field

app = FastAPI()

class student(BaseModel):

 id: int

 name :str = Field(None, title="name of student", max_length=10)

 marks: List[int] = []

 percent_marks: float

class percent(BaseModel):

20. FastAPI – Response Model

FastAPI – Python Web Framework

69

 id:int

 name :str = Field(None, title="name of student", max_length=10)

 percent_marks: float

@app.post("/marks", response_model=percent)

async def get_percent(s1:student):

 s1.percent_marks=sum(s1.marks)/2

 return s1

If we check the Swagger documentation, it shows that the "/marks" route

gets an object of student class as the request body. Populate the attributes

with appropriate values and execute the get_percent() function.

The server response is cast to the percent class as it has been used as the

response_model.

FastAPI – Python Web Framework

70

FastAPI – Python Web Framework

71

Each attribute of a Pydantic model has a type. The type can be a built-in

Python type or a model itself. Hence it is possible to declare nested JSON

"objects" with specific attribute names, types, and validations.

Example

In the following example, we construct a customer model with one of the

attributes as product model class. The product model in turn has an

attribute of supplier class.

from typing import Tuple

from fastapi import FastAPI

from pydantic import BaseModel

app = FastAPI()

class supplier(BaseModel):

 supplierID:int

 supplierName:str

class product(BaseModel):

 productID:int

 prodname:str

 price:int

 supp:supplier

class customer(BaseModel):

 custID:int

 custname:str

 prod:Tuple[product]

21. FastAPI – Nested Models

FastAPI – Python Web Framework

72

The following POST operation decorator renders the object of the customer

model as the server response.

@app.post('/invoice')

async def getInvoice(c1:customer):

 return c1

The swagger UI page reveals the presence of three schemas, corresponding

to three BaseModel classes.

The Customer schema when expanded to show all the nodes looks like this:

FastAPI – Python Web Framework

73

An example response of "/invoice" route should be as follows:

{

 "custID": 1,

 "custname": "Jay",

 "prod": [

 {

 "productID": 1,

 "prodname": "LAPTOP",

 "price": 40000,

 "supp": {

 "supplierID": 1,

 "supplierName": "Dell"

FastAPI – Python Web Framework

74

 }

 }

]

}

FastAPI – Python Web Framework

75

The built-in dependency injection system of FastAPI makes it possible to

integrate components easier when building your API. In programming,

Dependency injection refers to the mechanism where an object receives

other objects that it depends on. The other objects are called dependencies.

Dependency injection has the following advantages:

 reuse the same shared logic

 share database connections

 enforce authentication and security features

Assuming that a FastAPI app has two operation functions both having the

same query parameters id, name and age.

from fastapi import FastAPI

app = FastAPI()

@app.get("/user/")

async def user(id: str, name: str, age: int):

 return {"id": id, "name": name, "age": age}

@app.get("/admin/")

async def admin(id: str, name: str, age: int):

 return {"id": id, "name": name, "age": age}

In case of any changes such as adding/removing query parameters, both

the route decorators and functions need to be changed.

FastAPI provides Depends class and its object is used as a common

parameter in such cases. First import Depends from FastAPI and define a

function to receive these parameters:

async def dependency(id: str, name: str, age: int):

 return {"id": id, "name": name, "age": age}

22. FastAPI – Dependencies

FastAPI – Python Web Framework

76

Now we can use the return value of this function as a parameter in operation

functions

@app.get("/user/")

async def user(dep: dict = Depends(dependency)):

 return dep

For each new Request, FastAPI calls the dependency function using the

corresponding parameters, returns the result, and assigns the result to your

operation.

You can use a class for managing dependencies instead of a function.

Declare a class with id, name and age as attributes.

class dependency:

 def __init__(self, id: str, name: str, age: int):

 self.id = id

 self.name = name

 self.age = age

Use this class as the type of parameters.

@app.get("/user/")

async def user(dep: dependency = Depends(dependency)):

 return dep

@app.get("/admin/")

async def admin(dep: dependency = Depends(dependency)):

 return dep

Here, we used the dependency injection in the operation function. It can

also be used as operation decoration. For example, we want to check if the

value of query parameter age is less than 21. If yes it should throw an

exception. So, we write a function to check it and use it as a dependency.

FastAPI – Python Web Framework

77

async def validate(dep: dependency = Depends(dependency)):

 if dep.age < 18:

 raise HTTPException(status_code=400, detail="You are

not eligible")

@app.get("/user/", dependencies=[Depends(validate)])

async def user():

 return {"message": "You are eligible"}

In FastAPI dependency management, you can use yield instead of return to

add some extra steps. For example, the following function uses database

dependency with yield.

async def get_db():

 db = DBSession()

 try:

 yield db

 finally:

 db.close()

FastAPI – Python Web Framework

78

Cross-Origin Resource Sharing (CORS) is a situation when a frontend

application that is running on one client browser tries to communicate with

a backend through JavaScript code, and the backend is in a different "origin"

than the frontend. The origin here is a combination of protocol, domain

name, and port numbers. As a result, http://localhost and https://localhost

have different origins.

If the browser with a URL of one origin sends a request for the execution of

JavaScript code from another origin, the browser sends an OPTIONS HTTP

request.

If the backend authorizes the communication from this different origin by

sending the appropriate headers it will let the JavaScript in the frontend

send its request to the backend. For that, the backend must have a list of

"allowed origins".

To specify explicitly the allowed origins, import CORSMiddleware and add

the list of origins to the app's middleware.

from fastapi import FastAPI

from fastapi.middleware.cors import CORSMiddleware

app = FastAPI()

origins = [

 "http://192.168.211.:8000",

 "http://localhost",

 "http://localhost:8080",

]

app.add_middleware(

 CORSMiddleware,

 allow_origins=origins,

23. FastAPI – CORS

http://localhost/
https://localhost/

FastAPI – Python Web Framework

79

 allow_credentials=True,

 allow_methods=["*"],

 allow_headers=["*"],

)

@app.get("/")

async def main():

 return {"message": "Hello World"}

FastAPI – Python Web Framework

80

The REST architecture uses HTTP verbs or methods for the operation on the

resources. The POST, GET, PUT and DELETE methods perform respectively

CREATE, READ, UPDATE and DELETE operations respectively.

In the following example, we shall use a Python list as an in-memory

database and perform the CRUD operations on it. First, let us set up a

FastAPI app object and declare a Pydantic model called Book.

from fastapi import FastAPI

from pydantic import BaseModel

app = FastAPI()

data = []

class Book(BaseModel):

 id: int

 title: str

 author: str

 publisher: str

An object of this model is populated using the @app.post() decorator and

it is appended to the list of books (data is declared for the list of books)

@app.post("/book")

def add_book(book: Book):

 data.append(book.dict())

 return data

In the Swagger UI, execute this operation function a couple of times and

add some data.

24. FastAPI – CRUD Operations

FastAPI – Python Web Framework

81

The server’s JSON response shows the list of books added so far.

To retrieve the list, define an operation function bound to the @app.get()

decorator as follows:

FastAPI – Python Web Framework

82

@app.get("/list")

def get_books():

 return data

To retrieve a book with its id as a path parameter, define the get() operation

decorator and get_book() function as below:

@app.get("/book/{id}")

def get_book(id: int):

 id = id - 1

 return data[id]

The /list route retrieves all the books.

FastAPI – Python Web Framework

83

On the other hand, use "id" as the path parameter in the "/book/1" route.

FastAPI – Python Web Framework

84

The book with "id=1" will be retrieved as can be seen in the server response

of Swagger UI

Next, define @app.put() decorator that modifies an object in the data list.

This decorator too has a path parameter for the id field.

@app.put("/book/{id}")

def add_book(id: int, book: Book):

FastAPI – Python Web Framework

85

 data[id-1] = book

 return data

Inspect this operation function in the swagger UI. Give id=1, and change

value of publisher to BPB in the request body.

When executed, the response shows the list with object with id=1 updated

with the new values.

FastAPI – Python Web Framework

86

Finally, we define the @app.delete() decorator to delete an object

corresponding to the path parameter.

@app.delete("/book/{id}")

def delete_book(id: int):

 data.pop(id-1)

 return data

Give id=1 as the path parameter and execute the function.

FastAPI – Python Web Framework

87

Upon execution, the list now shows only two objects.

FastAPI – Python Web Framework

88

In the previous chapter, a Python list has been used as an in-memory

database to perform CRUD operations using FastAPI. Instead, we can use

any relational database (such as MySQL, Oracle, etc.) to perform store,

retrieve, update and delete operations.

Instead of using a DB-API compliant database driver, we shall use

SQLAlchemy as an interface between Python code and a database (we are

going to use SQLite database as Python has in-built support for it).

SQLAlchemy is a popular SQL toolkit and Object Relational Mapper.

Object Relational Mapping is a programming technique for converting data

between incompatible type systems in object-oriented programming

languages. Usually, the type system used in an Object-Oriented language

like Python contains non-scalar types. However, data types in most of the

database products such as Oracle, MySQL, etc., are of primitive types such

as integers and strings.

In an ORM system, each class maps to a table in the underlying database.

Instead of writing tedious database interfacing code yourself, an ORM takes

care of these issues for you while you can focus on programming the logics

of the system.

In order to use SQLAlchemy, we need to first install the library using the

PIP installer.

pip install sqlalchemy

SQLAlchemy is designed to operate with a DBAPI implementation built for

a particular database. It uses dialect system to communicate with various

types of DBAPI implementations and databases. All dialects require that an

appropriate DBAPI driver is installed.

The following are the dialects included −

 Firebird

 Microsoft SQL Server

 MySQL

 Oracle

 PostgreSQL

25. FastAPI – SQL Databases

FastAPI – Python Web Framework

89

 SQLite

 Sybase

Since we are going to use SQLite database, we need to create a database

engine for our database called test.db. Import create_engine() function

from sqlalchemy module.

from sqlalchemy import create_engine

from sqlalchemy.dialects.sqlite import *

SQLALCHEMY_DATABASE_URL = "sqlite:///./test.db"

engine = create_engine(SQLALCHEMY_DATABASE_URL, connect_args =

{"check_same_thread": False})

In order to interact with the database, we need to obtain its handle. A

session object is the handle to database. Session class is defined using

sessionmaker() – a configurable session factory method which is bound

to the engine object.

from sqlalchemy.orm import sessionmaker, Session

session = sessionmaker(autocommit=False, autoflush=False,

bind=engine)

Next, we need a declarative base class that stores a catalog of classes and

mapped tables in the Declarative system.

from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()

Books, a subclass of Base, is mapped to a book table in the database.

Attributes in the Books class correspond to the data types of the columns

in the target table. Note that the id attribute corresponds to the primary

key in the book table.

from sqlalchemy import Column, Integer, String

class Books(Base):

 __tablename__ = 'book'

 id = Column(Integer, primary_key=True, nullable=False)

 title = Column(String(50), unique=True)

FastAPI – Python Web Framework

90

 author = Column(String(50))

 publisher = Column(String(50))

Base.metadata.create_all(bind=engine)

The create_all() method creates the corresponding tables in the database.

We now have to declare a Pydantic model that corresponds to the

declarative base subclass (Books class defined above).

from typing import List

from pydantic import BaseModel, constr

class Book(BaseModel):

 id: int

 title: str

 author:str

 publisher: str

 class Config:

 orm_mode = True

Note the use of orm_mode=True in the config class indicating that it is
mapped with the ORM class of SQLAlchemy.

Rest of the code is just similar to in-memory CRUD operations, with the

difference being the operation functions interact with the database through

SQLalchemy interface. The POST operation on the FastAPI application
object is defined below:

from fastapi import FastAPI, Depends

app=FastAPI()

def get_db():

 db = session()

 try:

 yield db

 finally:

FastAPI – Python Web Framework

91

 db.close()

@app.post('/add_new', response_model=Book)

def add_book(b1: Book, db: Session = Depends(get_db)):

 bk=Books(id=b1.id, title=b1.title, author=b1.author,
publisher=b1.publisher)

 db.add(bk)

 db.commit()

 db.refresh(bk)

 return Books(**b1.dict())

A database session is first established. Data from the POST request body is

added to the book table as a new row. Execute the add_book() operation

function to add sample data to the books table. To verify, you can use

SQLiteStudio, a GUI tool for SQLite databases.

Two operation functions for GET operation are defined, one for fetching all
the records, and one for the record matching a path parameter.

Following is the get_books() function bound to the /list route. When
executed, its server response is the list of all records.

@app.get('/list', response_model=List[Book])

def get_books(db: Session = Depends(get_db)):

 recs = db.query(Books).all()

 return recs

FastAPI – Python Web Framework

92

The /book/{id} route calls the get_book() function with id as path

parameter. The SQLAlchemy’s query returns an object corresponding to the

given id.

@app.get('/book/{id}', response_model=Book)

def get_book(id:int, db: Session = Depends(get_db)):

 return db.query(Books).filter(Books.id == id).first()

The following image shows the result of get_books() function executed

from the Swagger UI.

FastAPI – Python Web Framework

93

The update and delete operations are performed by update_book()

function (executed when /update/{id} route is visited) and del_book()

function called when the route /delete/{id} is given in as the URL.

@app.put('/update/{id}', response_model=Book)

def update_book(id:int, book:Book, db: Session = Depends(get_db)):

 b1 = db.query(Books).filter(Books.id == id).first()

 b1.id=book.id

 b1.title=book.title

 b1.author=book.author

 b1.publisher=book.publisher

 db.commit()

 return db.query(Books).filter(Books.id == id).first()

@app.delete('/delete/{id}')

def del_book(id:int, db: Session = Depends(get_db)):

 try:

 db.query(Books).filter(Books.id == id).delete()

 db.commit()

 except Exception as e:

 raise Exception(e)

 return {"delete status": "success"}

If you intend to use any other database in place of SQLite, you need to only

the change the dialect definition accordingly. For example, to use MySQL

database and pymysql driver, change the statement of engine object to

the following:

engine =

create_engine('mysql+pymysql://user:password@localhost/test')

FastAPI – Python Web Framework

94

FastAPI can also use NoSQL databases such as MongoDB, Cassandra,

CouchDB, etc. as the backend for the CRUD operations of a REST app. In

this topic, we shall see how to use MongoDB in a FastAPI application.

MongoDB is a document oriented database, in which the semi-structured

documents are stored in formats like JSON. Documents can contain many

different key-value pairs, or key-array pairs, or even nested documents. It

is a collection of key-value pairs, similar to Python dictionary object. One or

more such documents are stored in a Collection.

A Collection in MongoDB is equivalent to a table in relational database.

However, MongoDB (as do all the NoSQL databases) doesn't have a

predefined schema. A Document is similar to single row in a table of SQL

based relational database. Each document may be of variable number of

key-value pairs. Thus MongoDB is a schema-less database.

To use MongoDB with FastAPI, MongoDB server must be installed on the

machine. We also need to install PyMongo, an official Python driver for

MongoDB.

pip3 install pymongo

Before interacting with MongoDB database through Python and FastAPI

code, ensure that MongoDB is running by issuing following command

(assuming that MongoDB server is installed in e:\mongodb folder).

E:\mongodb\bin>mongod

..

waiting for connections on port 27017

An object of MongoClient class in the PyMongo module is the handle using

which Python interacts with MongoDB server.

from pymongo import MongoClient

client=MongoClient()

26. FastAPI – Using MongoDB

FastAPI – Python Web Framework

95

We define Book as the BaseModel class to populate the request body (same

as the one used in the SQLite example)

from pydantic import BaseModel

from typing import List

class Book(BaseModel):

 bookID: int

 title: str

 author:str

 publisher: str

Set up the FastAPI application object:

from fastapi import FastAPI, status

app = FastAPI()

The POST operation decorator has "/add_new" as URL route and executes

add_book() function. It parses the Book BaseModel object into a dictionary

and adds a document in the BOOK_COLLECTION of test database.

@app.post("/add_new", status_code=status.HTTP_201_CREATED)

def add_book(b1: Book):

 """Post a new message to the specified channel."""

 with MongoClient() as client:

 book_collection = client[DB][BOOK_COLLECTION]

 result = book_collection.insert_one(b1.dict())

 ack = result.acknowledged

 return {"insertion": ack}

Add a few documents using the web interface of Swagger UI by visiting

http://localhost:8000/docs. You can verify the collection in the Compass

GUI front end for MongoDB.

http://localhost:8000/docs

FastAPI – Python Web Framework

96

To retrieve the list of all books, let us include the following get operation

function – get_books(). It will be executed when "/books" URL route is

visited.

@app.get("/books", response_model=List[str])

def get_books():

 """Get all books in list form."""

 with MongoClient() as client:

 book_collection = client[DB][BOOK_COLLECTION]

 booklist = book_collection.distinct("title")

 return booklist

In this case, the server response will be the list of all titles in the books

collection.

[

 "Computer Fundamentals",

 "Python Cookbook",

 "Let Us Python"

]

FastAPI – Python Web Framework

97

This following GET decorator retrieves a book document corresponding to

given ID as path parameter:

@app.get("/books/{id}", response_model=Book)

def get_book(id: int):

 """Get all messages for the specified channel."""

 with MongoClient() as client:

 book_collection = client[DB][BOOK_COLLECTION]

 b1 = book_collection.find_one({"bookID": id})

 return b1

Swagger UI documentation page shows the following interface:

FastAPI – Python Web Framework

98

The server’s JSON response, when the above function is executed, is as

follows:

FastAPI – Python Web Framework

99

Facebook developed GraphQL in 2012, a new API standard with the

intention of optimizing RESTful API Calls. GraphQL is the data query and

manipulation language for the API. GraphQL is more flexible, efficient, and

accurate as compared to REST. A GraphQL server provides only a single
endpoint and responds with the precise data required by the client.

As GraphQL is compatible with ASGI, it can be easily integrated with a

FastAPI application. There are many Python libraries for GraphQL. Some of

them are listed below:

 Strawberry

 Ariadne

 Tartiflette

 Graphene

FastAPI’s official documentation recommends using Strawberry library as
its design is also based on type annotations (as in the case of FastAPI itself).

In order to integrate GraphQL with a FastAPI app, first decorate a Python
class as Strawberry type.

@strawberry.type

class Book:

 title: str

 author: str

 price: int

Next, declare a Query class containing a function that returns a Book

object.

@strawberry.type

class Query:

 @strawberry.field

 def book(self) -> Book:

 return Book(title="Computer Fundamentals",
author="Sinha", price=300)

27. FastAPI – Using GraphQL

FastAPI – Python Web Framework

100

Use this Query class as the parameter to obtain Strawberry.Schema object.

schema = strawberry.Schema(query=Query)

Then declare the objects of both GraphQL class and FastAPI application class.

graphql_app = GraphQL(schema)

app = FastAPI()

Finally, add routes to the FastAPI object and run the server.

app.add_route("/book", graphql_app)

app.add_websocket_route("/book", graphql_app)

Visit http://localhost:8000/book in the browser. An in-browser GraphQL

IDE opens up.

http://localhost:8000/book

FastAPI – Python Web Framework

101

Below the commented section, enter the following query using the Explorer

bar of the Graphiql IDE. Run the query to display the result in the output

pane.

FastAPI – Python Web Framework

102

A WebSocket is a persistent connection between a client and server to

provide bidirectional, full-duplex communication between the two. The

communication takes place over HTTP through a single TCP/IP socket

connection. It can be seen as an upgrade of HTTP instead of a protocol

itself.

One of the limitations of HTTP is that it is a strictly half-duplex or

unidirectional protocol. With WebSockets, on the other hand, we can send

message-based data, similar to UDP, but with the reliability of TCP.

WebSocket uses HTTP as the initial transport mechanism, but keeps the

TCP connection alive the connection after the HTTP response is received.

Same connection object it can be used two-way communication between

client and server. Thus, real-time applications can be built using WebSocket

APIs.

FastAPI supports WebSockets through WebSocket class in FastAPI module.

Following example demonstrates functioning of WebSocket in FastAPI

application.

First we have an index() function that renders a template (socket.html). It

is bound to "/" route. The HTML file socket.html is placed in the “templates”

folder.

main.py

from fastapi import FastAPI, Request

from fastapi.responses import HTMLResponse

from fastapi.templating import Jinja2Templates

templates = Jinja2Templates(directory="templates")

from fastapi.staticfiles import StaticFiles

app = FastAPI()

app.mount("/static", StaticFiles(directory="static"), name="static")

28. FastAPI – WebSockets

FastAPI – Python Web Framework

103

@app.get("/", response_class=HTMLResponse)

async def index(request: Request):

 return templates.TemplateResponse("socket.html", {"request":
request})

The template file renders a text box and a button.

socket.html

<!DOCTYPE html>

<html>

 <head>

 <title>Chat</title>

 <script src="{{ url_for('static',
path='ws.js') }}"></script>

 </head>

 <body>

 <h1>WebSocket Chat</h1>

 <form action="" onsubmit="sendMessage(event)">

 <input type="text" id="messageText"
autocomplete="off"/>

 <button>Send</button>

 </form>

 <ul id='messages'>

 </body>

</html>

Inside the socket.html, there is a call to the JavaScript function to be

executed on the form’s submit. Hence, to serve JavaScript, the "static"

folder is first mounted. The JavaScript file ws.js is placed in the "static"

folder.

ws.js

FastAPI – Python Web Framework

104

var ws = new WebSocket("ws://localhost:8000/ws");

ws.onmessage = function(event) {

 var messages = document.getElementById('messages')

 var message = document.createElement('li')

 var content = document.createTextNode(event.data)

 message.appendChild(content)

 messages.appendChild(message)

};

function sendMessage(event) {

 var input = document.getElementById("messageText")

 ws.send(input.value)

 input.value = ''

 event.preventDefault()

}

As the JavaScript code is loaded, it creates a websocket listening at

"ws://localhost:8000/ws". The sendMessage() function directs the input

message to the WebSocket URL.

This route invokes the websocket_endpoint() function in the application

code. The incoming connection request is accepted and the incoming

message is echoed on the client browser. Add the below code to main.py.

from fastapi import WebSocket

@app.websocket("/ws")

async def websocket_endpoint(websocket: WebSocket):

 await websocket.accept()

 while True:

 data = await websocket.receive_text()

 await websocket.send_text(f"Message text was: {data}")

Save the FastAPI code file (main.py), template (socket.html) and JavaScript

file (ws.js). Run the Uvicorn server and visit http://localhost:8000/ to

render the chat window as below:

http://localhost:8000/

FastAPI – Python Web Framework

105

Type a certain text and press Send button. The input message will be

redirected on the browser through the websocket.

FastAPI – Python Web Framework

106

Event handlers are the functions to be executed when a certain identified

event occurs. In FastAPI, two such events are identified – startup and

shutdown. FastAPI’s application object has on_event() decorator that

uses one of these events as an argument. The function registered with this

decorator is fired when the corresponding event occurs.

The startup event occurs before the development server starts and the

registered function is typically used to perform certain initialization tasks,

establishing connection with the database etc. The event handler of

shutdown event is called just before the application shutdown.

Example

Here is a simple example of startup and shutdown event handlers. As the

app starts, the starting time is echoed in the console log. Similarly, when

the server is stopped by pressing ctrl+c, the shutdown time is also

displayed.

main.py

from fastapi import FastAPI

import datetime

app = FastAPI()

@app.on_event("startup")

async def startup_event():

 print('Server started :', datetime.datetime.now())

@app.on_event("shutdown")

async def shutdown_event():

 print('server Shutdown :', datetime.datetime.now())

29. FastAPI – FastAPI Event Handlers

FastAPI – Python Web Framework

107

Output

It will produce the following output:

uvicorn main:app --reload

INFO: Uvicorn running on http://127.0.0.1:8000 (Press CTRL+C

to quit)

INFO: Started reloader process [28720]

INFO: Started server process [28722]

INFO: Waiting for application startup.

Server started: 2021-11-23 23:51:45.907691

INFO: Application startup complete.

INFO: Shutting down

INFO: Waiting for application

server Shutdown: 2021-11-23 23:51:50.82955

INFO: Application shutdown com

INFO: Finished server process

FastAPI – Python Web Framework

108

If you have two independent FastAPI apps, one of them can be mounted on

top of the other. The one that is mounted is called a sub-application. The

app.mount() method adds another completely "independent" application

in a specific path of the main app. It then takes care of handling everything

under that path, with the path operations declared in that sub-application.

Let us first declare a simple FastAPI application object to be used as a top

level application.

from fastapi import FastAPI

app = FastAPI()

@app.get("/app")

def mainindex():

 return {"message": "Hello World from Top level app"}

Then create another application object subapp and add its own path

operations.

subapp = FastAPI()

@subapp.get("/sub")

def subindex():

 return {"message": "Hello World from sub app"}

Mount this subapp object on the main app by using mount() method. Two

parameters needed are the URL route and name of the sub application.

app.mount("/subapp", subapp)

Both the main and sub application will have its own docs as can be inspected

using Swagger UI.

30. FastAPI – Mounting a Sub-App

FastAPI – Python Web Framework

109

The sub application’s docs are available at

http://localhost:8000/subapp/docs

http://localhost:8000/subapp/docs

FastAPI – Python Web Framework

110

FastAPI – Python Web Framework

111

A middleware is a function that is processed with every request (before

being processed by any specific path operation) as well as with every

response before returning it. This function takes each request that comes

to your application. It may perform some process with the request by

running a code defined in it and then passes the request to be processed

by the corresponding operation function. It can also process the response

generated by the operation function before returning it.

Following are some of the middleware available in FastAPI library:

 CORSMiddleware

 HTTPSRedirectMiddleware

 TrustedHostMiddleware

 GZipMiddleware

FastAPI provides app.add_middleware() function to handle server errors

and custom exception handlers. In addition to the above integrated

middleware, it is possible to define a custom middleware. The following

example defines the addmiddleware() function and decorates it into a

middleware by decorating it with @app.middleware() decorator.

The function has two parameters, the HTTP request object, and the

call_next() function that will send the API request to its corresponding

path and return a response.

In addition to the middleware function, the application also has two

operation functions.

import time

from fastapi import FastAPI, Request

app = FastAPI()

@app.middleware("http")

async def addmiddleware(request: Request, call_next):

 print("Middleware works!")

31. FastAPI – Middleware

FastAPI – Python Web Framework

112

 response = await call_next(request)

 return response

@app.get("/")

async def index():

 return {"message":"Hello World"}

@app.get("/{name}")

async def hello(name:str):

 return {"message":"Hello "+name}

As the application runs, for each request made by the browser, the

middleware output (Middleware works!) will appear in the console log before

the response output.

FastAPI – Python Web Framework

113

A WSGI application written in Flask or Django framework can be wrapped

in WSGIMiddleware and mounted it on a FastAPI app to make it ASGI

compliant.

First install the Flask package in the current FastAPI environment.

pip3 install flask

The following code is a minimal Flask application:

from flask import Flask

flask_app = Flask(__name__)

@flask_app.route("/")

def index_flask():

 return "Hello World from Flask!"

Then declare app as a FastAPI application object and define an operation

function for rendering Hello World message.

from fastapi import FastAPI

app = FastAPI()

@app.get("/")

def index():

 return {"message": "Hello World from FastAPI!"}

Next, mount the flask application as a sub application of FastAPI main app

using mount() method.

from fastapi.middleware.wsgi import WSGIMiddleware

app.mount("/flask", WSGIMiddleware(flask_app))

32. FastAPI – Mounting Flask App

FastAPI – Python Web Framework

114

Run the Uvicorn development server.

uvicorn flaskapp:app –reload

The main FastAPI application is available at the URL http://localhost:8000/

route.

{"message":"Hello World from FastAPI!"}

The Flask sub application is mounted at the URL

http://localhost:8000/flask.

Hello World from Flask!

http://localhost:8000/
http://localhost:8000/flask

FastAPI – Python Web Framework

115

So far, we have been using a local development server "Uvicorn" to run our

FastAPI application. In order to make the application publicly available, it

must be deployed on a remote server with a static IP address. It can be

deployed to different platforms such as Heroku, Google Cloud, nginx, etc.

using either free plans or subscription based services.

In this chapter, we are going to use Deta cloud platform. Its free to use

deployment service is very easy to use.

First of all, to use Deta, we need to create an account on its website with a

suitable username and password of choice.

33. FastAPI – Deployment

FastAPI – Python Web Framework

116

Once the account is created, install Deta CLI (command line interface) on

the local machine. Create a folder for your application (c:\fastapi_deta_app)

If you are using Linux, use the following command in the terminal:

iwr https://get.deta.dev/cli.ps1 -useb | iex

If you are using Windows, run the following command from Windows

PowerShell terminal:

PS C:\fastapi_deta_app> iwr https://get.deta.dev/cli.ps1 -useb
| iex

Deta was installed successfully to
C:\Users\User\.deta\bin\deta.exe

Run 'deta --help' to get started

Use the login command and authenticate your username and password.

PS C:\fastapi_deta_app> deta login

Please, log in from the web page. Waiting...

https://web.deta.sh/cli/60836

Logged in successfully.

In the same application folder, create a minimal FastAPI application in

main.py file

main.py

from fastapi import FastAPI

app = FastAPI()

@app.get("/")

def read_root():

 return {"Hello": "World"}

@app.get("/items/{item_id}")

def read_item(item_id: int):

 return {"item_id": item_id}

FastAPI – Python Web Framework

117

Now we are ready to deploy our application. Use deta new command from

the power shell terminal.

PS C:\fastapi_deta_app> deta new

Successfully created a new micro

{

 "name": "fastapi_deta_app",

 "id": "2b236e8f-da6a-409b-8d51-7c3952157d3c",

 "project": "c03xflte",

 "runtime": "python3.9",

 "endpoint": "https://vfrjgd.deta.dev",

 "region": "ap-southeast-1",

 "visor": "enabled",

 "http_auth": "disabled"

}

Adding dependencies...

…..

Installing collected packages: typing-extensions, pydantic,
idna, sniffio, anyio, starlette, fastapi

Successfully installed anyio-3.4.0 fastapi-0.70.0 idna-3.3
pydantic-1.8.2 sniffio-1.2.0 starlette-0.16.0 typing-
extensions-4.0.0

Deta deploys the application at the given endpoint (which may be randomly

created for each application). It first installs the required dependencies as

if it is installed on the local machine. After successful deployment, open the

browser and visit the URL as shown in front of endpoint key. The Swagger

UI documentation can also be found at https://vfrigd.deta.dev/docs.

https://vfrigd.deta.dev/docs

FastAPI – Python Web Framework

118

