
Fortran

i

Fortran

i

About the Tutorial

Fortran was originally developed by a team at IBM in 1957 for scientific calculations. Later

developments made it into a high level programming language. In this tutorial, we will

learn the basic concepts of Fortran and its programming code.

Audience

This tutorial is designed for the readers who wish to learn the basics of Fortran.

Prerequisites

This tutorial is designed for beginners. A general awareness of computer programming

languages is the only prerequisite to make the most of this tutorial.

Copyright & Disclaimer

 Copyright 2017 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

Fortran

ii

Table of Contents

About the Tutorial ··i

Audience ··i

Prerequisites ··i

Copyright & Disclaimer ···i

Table of Contents ·· ii

1. FORTRAN ─ OVERVIEW ·· 1

Facts about Fortran ···1

2. FORTRAN ─ ENVIRONMENT SETUP ·· 2

Setting up Fortran in Windows ··2

How to Use G95 ··3

3. FORTRAN ─ BASIC SYNTAX ··· 4

A Simple Program in Fortran ···4

Basics ··5

Identifier ···5

Keywords ··6

4. FORTRAN ─ DATA TYPES ·· 8

Integer Type ··8

Real Type ··9

Complex Type·· 10

Logical Type ·· 11

Character Type ·· 11

Implicit Typing ··· 11

Fortran

iii

5. FORTRAN ─ VARIABLES ·· 12

Variable Declaration·· 12

6. FORTRAN ─ CONSTANTS ·· 15

Named Constants and Literals ··· 15

7. FORTRAN ─ OPERATORS ·· 17

Arithmetic Operators ·· 17

Relational Operators ··· 19

Logical Operators ·· 21

Operators Precedence in Fortran ·· 23

8. FORTRAN ─ DECISIONS ·· 26

If…then Construct ··· 27

If… then… else Construct ··· 29

if...else if...else Statement ··· 31

Nested If Construct ··· 33

Select Case Construct ·· 34

Nested Select Case Construct ·· 37

9. FORTRAN ─ LOOPS··· 39

do Loop ··· 40

do-while Loop ··· 43

Nested Loops ·· 45

Loop Control Statements··· 46

Exit Statement ·· 47

Cycle Statement ·· 48

Stop Statement ··· 50

Fortran

iv

10. FORTRAN ─ NUMBERS ··· 51

Integer Type ·· 51

Real Type ·· 52

Complex Type·· 53

The Range, Precision, and Size of Numbers ··· 55

The Kind Specifier ··· 57

11. FORTRAN ─ CHARACTERS ·· 59

Character Declaration ··· 59

Concatenation of Characters ··· 60

Some Character Functions ··· 61

Checking Lexical Order of Characters ·· 64

12. FORTRAN ─ STRINGS ·· 66

String Declaration ··· 66

String Concatenation ··· 67

Extracting Substrings ··· 68

Trimming Strings ··· 70

Left and Right Adjustment of Strings ··· 70

Searching for a Substring in a String ·· 71

13. FORTRAN ─ ARRAYS ··· 73

Declaring Arrays ·· 73

Assigning Values·· 74

Some Array Related Terms ·· 76

Passing Arrays to Procedures ·· 76

Array Sections ··· 79

Array Intrinsic Functions ··· 81

Fortran

v

14. FORTRAN ─ DYNAMIC ARRAYS ··· 99

Use of Data Statement ·· 100

Use of Where Statement ··· 102

15. FORTRAN ─ DERIVED DATA TYPES ··· 104

Defining a Derived data type ··· 104

Accessing Structure Members ··· 104

Array of Structures ·· 106

16. FORTRAN ─ POINTERS ··· 109

Declaring a Pointer Variable ·· 109

Allocating Space for a Pointer ··· 109

Targets and Association ·· 110

17. FORTRAN ─ BASIC INPUT OUTPUT ··· 114

Formatted Input Output ·· 114

The Format Statement ·· 119

18. FORTRAN ─ FILE INPUT OUTPUT ·· 120

Opening and Closing Files ·· 120

19. FORTRAN ─ PROCEDURES ·· 127

Function ·· 127

Subroutine ·· 129

Recursive Procedures ·· 131

Internal Procedures ··· 133

20. FORTRAN ─ MODULES ··· 135

Syntax of a Module ··· 135

Using a Module into your Program·· 135

Fortran

vi

Accessibility of Variables and Subroutines in a Module ··· 137

21. FORTRAN ─ INTRINSIC FUNCTIONS ·· 140

Numeric Functions ·· 140

Mathematical Functions ·· 143

Numeric Inquiry Functions ·· 145

Floating-Point Manipulation Functions ··· 145

Bit Manipulation Functions ··· 146

Character Functions ·· 147

Kind Functions ··· 148

Logical Function ·· 148

22. FORTRAN ─ NUMERIC PRECISION ·· 149

The Kind Attribute ··· 149

Inquiring the Size of Variables ··· 150

Obtaining the Kind Value ·· 151

23. FORTRAN ─ PROGRAM LIBRARIES ·· 153

24. FORTRAN ─ PROGRAMMING STYLE ··· 154

25. FORTRAN ─ DEBUGGING PROGRAM ·· 155

The gdb Debugger ··· 155

The dbx Debugger ··· 156

Fortran

7

Fortran, as derived from Formula Translating System, is a general-purpose, imperative

programming language. It is used for numeric and scientific computing.

Fortran was originally developed by IBM in the 1950s for scientific and engineering

applications. Fortran ruled this programming area for a long time and became very popular

for high performance computing, because.

It supports:

 Numerical analysis and scientific computation

 Structured programming

 Array programming

 Modular programming

 Generic programming

 High performance computing on supercomputers

 Object oriented programming

 Concurrent programming

 Reasonable degree of portability between computer systems

Facts about Fortran

 Fortran was created by a team, led by John Backus at IBM in 1957.

 Initially the name used to be written in all capital, but current standards and

implementations only require the first letter to be capital.

 Fortran stands for FORmula TRANslator.

 Originally developed for scientific calculations, it had very limited support for character

strings and other structures needed for general purpose programming.

 Later extensions and developments made it into a high level programming language

with good degree of portability.

 Original versions, Fortran I, II and III are considered obsolete now.

 Oldest version still in use is Fortran IV, and Fortran 66.

 Most commonly used versions today are : Fortran 77, Fortran 90, and Fortran 95.

1. FORTRAN ─ OVERVIEW

Fortran

8

 Fortran 77 added strings as a distinct type.

 Fortran 90 added various sorts of threading, and direct array processing.

Fortran

9

Setting up Fortran in Windows

G95 is the GNU Fortran multi-architechtural compiler, used for setting up Fortran in Windows.

The windows version emulates a unix environment using MingW under windows. The installer

takes care of this and automatically adds g95 to the windows PATH variable.

You can get the stable version of G95 from here :

2. FORTRAN ─ ENVIRONMENT SETUP

Fortran

10

How to Use G95

During installation, g95 is automatically added to your PATH variable if you select the option

“RECOMMENDED”. This means that you can simply open a new Command Prompt window

and type “g95” to bring up the compiler. Find some basic commands below to get you started.

Command Description

g95 –c hello.f90 Compiles hello.f90 to an object file named hello.o

g95 hello.f90 Compiles hello.f90 and links it to produce an

executable a.out

g95 -c h1.f90 h2.f90 h3.f90 Compiles multiple source files. If all goes well,

object files h1.o, h2.o and h3.o are created

g95 -o hello h1.f90 h2.f90 h3.f90 Compiles multiple source files and links them

together to an executable file named 'hello'

Command line options for G95:

-c Compile only, do not run the linker.

-o Specify the name of the output file, either an object file or the executable.

Multiple source and object files can be specified at once. Fortran files are indicated by names

ending in ".f", ".F", ".for", ".FOR", ".f90", ".F90", ".f95", ".F95", ".f03" and ".F03". Multiple

source files can be specified. Object files can be specified as well and will be linked to form

an executable file.

Fortran

11

A Fortran program is made of a collection of program units like a main program, modules,

and external subprograms or procedures.

Each program contains one main program and may or may not contain other program units.

The syntax of the main program is as follows:

program program_name

implicit none

! type declaration statements

! executable statements

end program program_name

A Simple Program in Fortran

Let’s write a program that adds two numbers and prints the result:

program addNumbers

! This simple program adds two numbers

 implicit none

! Type declarations

 real :: a, b, result

! Executable statements

 a = 12.0

 b = 15.0

 result = a + b

 print *, 'The total is ', result

3. FORTRAN ─ BASIC SYNTAX

Fortran

12

end program addNumbers

When you compile and execute the above program, it produces the following result:

The total is 27.0000000

Please note that:

 All Fortran programs start with the keyword program and end with the keywordend

program, followed by the name of the program.

 The implicit none statement allows the compiler to check that all your variable types

are declared properly. You must always use implicit none at the start of every

program.

 Comments in Fortran are started with the exclamation mark (!), as all characters after
this (except in a character string) are ignored by the compiler.

 The print * command displays data on the screen.

 Indentation of code lines is a good practice for keeping a program readable.

 Fortran allows both uppercase and lowercase letters. Fortran is case-insensitive,
except for string literals.

Basics

The basic character set of Fortran contains:

 the letters A ... Z and a ... z

 the digits 0 ... 9

 the underscore (_) character

 the special characters = : + blank - * / () [] , . $ ' ! " % & ; < > ?

Tokens are made of characters in the basic character set. A token could be a keyword, an

identifier, a constant, a string literal, or a symbol.

Program statements are made of tokens.

Identifier

An identifier is a name used to identify a variable, procedure, or any other user-defined item.

A name in Fortran must follow the following rules:

 It cannot be longer than 31 characters.

 It must be composed of alphanumeric characters (all the letters of the alphabet, and

the digits 0 to 9) and underscores (_).

Fortran

13

 First character of a name must be a letter.

 Names are case-insensitive

Keywords

Keywords are special words, reserved for the language. These reserved words cannot be used

as identifiers or names.

The following table, lists the Fortran keywords:

Non-I/O keywords

allocatable allocate assign assignment block data

call case character common complex

contains continue cycle data deallocate

default do double precision else else if

elsewhere end block data end do end function end if

end interface end module end program end select end subroutine

end type end where entry equivalence exit

external function go to if implicit

in inout integer intent interface

intrinsic kind len logical module

namelist nullify only operator optional

out parameter pause pointer private

Fortran

14

program public real recursive result

return save select case stop subroutine

target then type type() use

Where While

I/O related keywords

backspace close endfile format inquire

pen print read rewind Write

Fortran

15

Fortran provides five intrinsic data types, however, you can derive your own data types as

well. The five intrinsic types are:

 Integer type

 Real type

 Complex type

 Logical type

 Character type

Integer Type

The integer types can hold only integer values. The following example extracts the largest

value that can be held in a usual four byte integer:

program testingInt

implicit none

 integer :: largeval

 print *, huge(largeval)

end program testingInt

When you compile and execute the above program it produces the following result:

2147483647

Note that the huge() function gives the largest number that can be held by the specific

integer data type. You can also specify the number of bytes using the kind specifier. The

following example demonstrates this:

program testingInt

implicit none

 !two byte integer

4. FORTRAN ─ DATA TYPES

Fortran

16

 integer(kind=2) :: shortval

 !four byte integer

 integer(kind=4) :: longval

 !eight byte integer

 integer(kind=8) :: verylongval

 !sixteen byte integer

 integer(kind=16) :: veryverylongval

 !default integer

 integer :: defval

 print *, huge(shortval)

 print *, huge(longval)

 print *, huge(verylongval)

 print *, huge(veryverylongval)

 print *, huge(defval)

end program testingInt

When you compile and execute the above program, it produces the following result:

32767

2147483647

9223372036854775807

170141183460469231731687303715884105727

2147483647

Real Type

It stores the floating point numbers, such as 2.0, 3.1415, -100.876, etc.

Traditionally there are two different real types, the default real type and double

precisiontype.

Fortran

17

However, Fortran 90/95 provides more control over the precision of real and integer data

types through thekindspecifier, which we will study in the chapter on Numbers.

The following example shows the use of real data type:

program division

implicit none

 ! Define real variables

 real :: p, q, realRes

 ! Define integer variables

 integer :: i, j, intRes

 ! Assigning values

 p = 2.0

 q = 3.0

 i = 2

 j = 3

 ! floating point division

 realRes = p/q

 intRes = i/j

 print *, realRes

 print *, intRes

end program division

When you compile and execute the above program it produces the following result:

0.666666687

0

Fortran

18

Complex Type

This is used for storing complex numbers. A complex number has two parts, the real part and

the imaginary part. Two consecutive numeric storage units store these two parts.

For example, the complex number (3.0, -5.0) is equal to 3.0 – 5.0i

We will discuss Complex types in more detail, in the Numbers chapter.

Logical Type

There are only two logical values: .true. and .false.

Character Type

The character type stores characters and strings. The length of the string can be specified by

len specifier. If no length is specified, it is 1.

For example,

character (len=40) :: name

name = “Zara Ali”

The expression, name(1:4) would give the substring “Zara”.

Implicit Typing

Older versions of Fortran allowed a feature called implicit typing, i.e., you do not have to

declare the variables before use. If a variable is not declared, then the first letter of its name

will determine its type.

Variable names starting with i, j, k, l, m, or n, are considered to be for integer variable and

others are real variables. However, you must declare all the variables as it is good

programming practice. For that you start your program with the statement:

implicit none

This statement turns off implicit typing.

Fortran

19

A variable is nothing but a name given to a storage area that our programs can manipulate.

Each variable should have a specific type, which determines the size and layout of the

variable's memory; the range of values that can be stored within that memory; and the set

of operations that can be applied to the variable.

The name of a variable can be composed of letters, digits, and the underscore character. A

name in Fortran must follow the following rules:

 It cannot be longer than 31 characters.

 It must be composed of alphanumeric characters (all the letters of the alphabet, and

the digits 0 to 9) and underscores (_).

 First character of a name must be a letter.

 Names are case-insensitive.

Based on the basic types explained in previous chapter, following are the variable types:

Type Description

Integer It can hold only integer values.

Real It stores the floating point numbers.

Complex It is used for storing complex numbers.

Logical It stores logical Boolean values.

Character It stores characters or strings.

Variable Declaration

Variables are declared at the beginning of a program (or subprogram) in a type declaration

statement.

Syntax for variable declaration is as follows:

5. FORTRAN ─ VARIABLES

Fortran

20

type-specifier :: variable_name

For example,

integer :: total

real :: average

complex :: cx

logical :: done

character(len=80) :: message ! a string of 80 characters

Later you can assign values to these variables, like,

total = 20000

average = 1666.67

done = .true.

message = “A big Hello from Tutorials Point”

cx = (3.0, 5.0) ! cx = 3.0 + 5.0i

You can also use the intrinsic function cmplx, to assign values to a complex variable:

cx = cmplx (1.0/2.0, -7.0) ! cx = 0.5 – 7.0i

cx = cmplx (x, y) ! cx = x + yi

Example

The following example demonstrates variable declaration, assignment and display on screen:

program variableTesting

implicit none

 ! declaring variables

 integer :: total

 real :: average

 complex :: cx

 logical :: done

Fortran

21

 character(len=80) :: message ! a string of 80 characters

 !assigning values

 total = 20000

 average = 1666.67

 done = .true.

 message = "A big Hello from Tutorials Point"

 cx = (3.0, 5.0) ! cx = 3.0 + 5.0i

 Print *, total

 Print *, average

 Print *, cx

 Print *, done

 Print *, message

end program variableTesting

When the above code is compiled and executed, it produces the following result:

20000

1666.67004

(3.00000000, 5.00000000)

T

A big Hello from Tutorials Point

Fortran

22

The constants refer to the fixed values that the program cannot alter during its execution.

These fixed values are also called literals.

Constants can be of any of the basic data types like an integer constant, a floating constant,

a character constant, a complex constant, or a string literal. There are only two logical

constants : .true. and .false.

The constants are treated just like regular variables, except that their values cannot be

modified after their definition.

Named Constants and Literals

There are two types of constants:

 Literal constants

 Named constants

A literal constant have a value, but no name.

For example, following are the literal constants:

Type Example

Integer constants 0 1 -1 300 123456789

Real constants 0.0 1.0 -1.0 123.456 7.1E+10 -52.715E-30

Complex constants (0.0, 0.0) (-123.456E+30, 987.654E-29)

Logical constants .true. .false.

Character constants "PQR" "a" "123'abc$%#@!"

" a quote "" "

'PQR' 'a' '123"abc$%#@!'

' an apostrophe '' '

6. FORTRAN ─ CONSTANTS

Fortran

23

A named constant has a value as well as a name.

Named constants should be declared at the beginning of a program or procedure, just like a

variable type declaration, indicating its name and type. Named constants are declared with

the parameter attribute. For example,

real, parameter :: pi = 3.1415927

Example

The following program calculates the displacement due to vertical motion under gravity.

program gravitationalDisp

! this program calculates vertical motion under gravity

implicit none

 ! gravitational acceleration

 real, parameter :: g = 9.81

 ! variable declaration

 real :: s ! displacement

 real :: t ! time

 real :: u ! initial speed

 ! assigning values

 t = 5.0

 u = 50

 ! displacement

 s = u * t - g * (t**2) / 2

 ! output

 print *, "Time = ", t

 print *, 'Displacement = ',s

end program gravitationalDisp

Fortran

24

When the above code is compiled and executed, it produces the following result:

Time = 5.00000000

Displacement = 127.374992

Fortran

25

An operator is a symbol that tells the compiler to perform specific mathematical or logical

manipulations. Fortran provides the following types of operators:

 Arithmetic Operators

 Relational Operators

 Logical Operators

Let us look at all these types of operators one by one.

Arithmetic Operators

Following table shows all the arithmetic operators supported by Fortran. Assume

variable Aholds 5 and variable B holds 3 then:

Operator Description Example

+ Addition Operator, adds two operands. A + B will give 8

- Subtraction Operator, subtracts second operand
from the first.

A - B will give 2

* Multiplication Operator, multiplies both operands. A * B will give 15

/ Division Operator, divides numerator by de-
numerator.

A / B will give 1

** Exponentiation Operator, raises one operand to the

power of the other.

A ** B will give 125

Example

Try the following example to understand all the arithmetic operators available in Fortran:

program arithmeticOp

7. FORTRAN ─ OPERATORS

Fortran

26

! this program performs arithmetic calculation

implicit none

 ! variable declaration

 integer :: a, b, c

 ! assigning values

 a = 5

 b = 3

 ! Exponentiation

 c = a ** b

 ! output

 print *, "c = ", c

 ! Multiplication

 c = a * b

 ! output

 print *, "c = ", c

 ! Division

 c = a / b

 ! output

 print *, "c = ", c

 ! Addition

 c = a + b

 ! output

 print *, "c = ", c

Fortran

27

 ! Subtraction

 c = a - b

 ! output

 print *, "c = ", c

end program arithmeticOp

When you compile and execute the above program, it produces the following result:

c = 125

c = 15

c = 1

c = 8

c = 2

Relational Operators

Following table shows all the relational operators supported by Fortran. Assume

variable Aholds 10 and variable B holds 20, then:

Operator Equivalent Description Example

== .eq. Checks if the values of two operands are equal
or not, if yes then condition becomes true.

(A == B) is
not true.

/= .ne. Checks if the values of two operands are equal

or not, if values are not equal then condition
becomes true.

(A != B) is
true.

> .gt. Checks if the value of left operand is greater

than the value of right operand, if yes then
condition becomes true.

(A > B) is

not true.

< .lt. Checks if the value of left operand is less than

the value of right operand, if yes then

condition becomes true.

(A < B) is
true.

Fortran

28

>= .ge. Checks if the value of left operand is greater

than or equal to the value of right operand, if
yes then condition becomes true.

(A >= B) is

not true.

<= .le. Checks if the value of left operand is less than

or equal to the value of right operand, if yes

then condition becomes true.

(A <= B) is
true.

Fortran

29

End of ebook preview

If you liked what you saw…

Buy it from our store @ https://store.tutorialspoint.com

