

Functional Programming

i

About the Tutorial

Functional programming languages are specially designed to handle symbolic computation

and list processing applications. Functional programming is based on mathematical

functions. Some of the popular functional programming languages include: Lisp, Python,

Erlang, Haskell, Clojure, etc.

This tutorial provides a brief overview of the most fundamental concepts of functional

programming languages in general. In addition, it provides a comparative analysis of

object-oriented programming and functional programming language in every example.

Audience

This tutorial will help all those readers who are keen to understand the basic concepts of

functional programming. It is a very basic tutorial that has been designed keeping in mind

the requirements of beginners.

Prerequisites

Before proceeding with this tutorial, you should have a basic understanding of Computer

Programming terminologies in general and a good exposure to any programming language

such as C, C++, or Java.

Copyright & Disclaimer

 Copyright 2016 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

Functional Programming

ii

Table of Contents

About the Tutorial .. i

Audience .. i

Prerequisites .. i

Copyright & Disclaimer ... i

Table of Contents .. ii

1. FUNCTIONAL PROGRAMMING – INTRODUCTION .. 1

Functional Programming – Characteristics ... 1

Functional Programming – Advantages ... 1

Functional Programming vs. Object-oriented Programming .. 2

Efficiency of a Program Code ... 3

2. FUNCTIONAL PROGRAMMING – FUNCTIONS OVERVIEW .. 4

Function Prototype .. 6

Function Signature .. 6

3. FUNCTIONAL PROGRAMMING − FUNCTION TYPES .. 7

Predefined Functions ... 7

User-defined Functions.. 8

4. FUNCTIONAL PROGRAMMING – CALL BY VALUE ... 12

5. FUNCTIONAL PROGRAMMING − CALL BY REFERENCE .. 14

6. FUNCTIONAL PROGRAMMING − FUNCTION OVERLOADING .. 16

7. FUNCTIONAL PROGRAMMING − FUNCTION OVERRIDING ... 18

8. FUNCTIONAL PROGRAMMING − RECURSION ... 20

9. FUNCTIONAL PROGRAMMING − HIGHER ORDER FUNCTIONS.. 22

Functional Programming

iii

10. FUNCTIONAL PROGRAMMING − DATA TYPES .. 24

Data Types Supported by C++ .. 24

Data Types Supported by Java ... 25

Data Types Supported by Erlang .. 25

11. FUNCTIONAL PROGRAMMING − POLYMORPHISM ... 29

12. FUNCTIONAL PROGRAMMING − STRINGS .. 32

13. FUNCTIONAL PROGRAMMING − LISTS ... 36

14. FUNCTIONAL PROGRAMMING − TUPLE ... 41

Operations on Tuples .. 42

15. FUNCTIONAL PROGRAMMING − RECORDS .. 44

16. FUNCTIONAL PROGRAMMING − LAMBDA CALCULUS .. 48

17. FUNCTIONAL PROGRAMMING − LAZY EVALUATION .. 51

18. FUNCTIONAL PROGRAMMING − FILE I/O OPERATIONS .. 52

Writing into a File .. 52

Reading from a File .. 53

Delete an Existing File .. 54

Determining the Size of a File .. 55

Functional Programming

4

Functional programming languages are specially designed to handle symbolic computation

and list processing applications. Functional programming is based on mathematical functions.

Some of the popular functional programming languages include: Lisp, Python, Erlang, Haskell,

Clojure, etc.

Functional programming languages are categorized into two groups, i.e.:

 Pure Functional Languages: These types of functional languages support only the

functional paradigms. For example: Haskell.

 Impure Functional Languages: These types of functional languages support the

functional paradigms and imperative style programming. For example: LISP.

Functional Programming – Characteristics

The most prominent characteristics of functional programming are as follows:

 Functional programming languages are designed on the concept of mathematical

functions that use conditional expressions and recursion to perform computation.

 Functional programming supports higher-order functions and lazy evaluation

features.

 Functional programming languages don’t support flow Controls like loop statements

and conditional statements like If-Else and Switch Statements. They directly use the

functions and functional calls.

 Like OOP, functional programming languages support popular concepts such as

Abstraction, Encapsulation, Inheritance, and Polymorphism.

Functional Programming – Advantages

Functional programming offers the following advantages:

 Bugs-Free Code: Functional programming does not support state, so there are no

side-effect results and we can write error-free codes.

 Efficient Parallel Programming: Functional programming languages have NO

Mutable state, so there are no state-change issues. One can program "Functions" to

work parallel as "instructions". Such codes support easy reusability and testability.

1. Functional Programming – Introduction

Functional Programming

5

 Efficiency: Functional programs consist of independent units that can run

concurrently. As a result, such programs are more efficient.

 Supports Nested Functions: Functional programming supports Nested Functions.

 Lazy Evaluation: Functional programming supports Lazy Functional Constructs like

Lazy Lists, Lazy Maps, etc.

As a downside, functional programming requires a large memory space. As it does not have

state, you need to create new objects every time to perform actions.

Functional Programming is used in situations where we have to perform lots of different

operations on the same set of data.

 Lisp is used for artificial intelligence applications like Machine learning, language

processing, Modeling of speech and vision, etc.

 Embedded Lisp interpreters add programmability to some systems like Emacs.

Functional Programming vs. Object-oriented Programming

The following table highlights the major differences between functional programming and

object-oriented programming:

Functional Programming OOP

Uses Immutable data. Uses Mutable data.

Follows Declarative Programming Model. Follows Imperative Programming Model.

Focus is on: “What you are doing” Focus is on “How you are doing”

Supports Parallel Programming Not suitable for Parallel Programming

Its functions have no-side effects Its methods can produce serious side-

effects.

Flow Control is done using function calls &

function calls with recursion

Flow control is done using loops and

conditional statements.

It uses "Recursion" concept to iterate

Collection Data.

It uses "Loop" concept to iterate Collection

Data. For example: For-each loop in Java

Execution order of statements is not so

important.

Execution order of statements is very

important.

Supports both "Abstraction over Data" and

"Abstraction over Behavior".
Supports only "Abstraction over Data".

Functional Programming

6

Efficiency of a Program Code

The efficiency of a programming code is directly proportional to the algorithmic efficiency and

the execution speed. Good efficiency ensures higher performance.

The factors that affect the efficiency of a program includes:

 The speed of the machine

 Compiler speed

 Operating system

 Choosing right Programming language

 The way of data in a program is organized

 Algorithm used to solve the problem

The efficiency of a programming language can be improved by performing the following tasks:

 By removing unnecessary code or the code that goes to redundant processing.

 By making use of optimal memory and nonvolatile storage

 By making the use of reusable components wherever applicable.

 By making the use of error & exception handling at all layers of program.

 By creating programming code that ensures data integrity and consistency.

 By developing the program code that's compliant with the design logic and flow.

An efficient programming code can reduce resource consumption and completion time as

much as possible with minimum risk to the operating environment.

Functional Programming

7

In programming terms, a function is a block of statements that performs a specific task.

Functions accept data, process it, and return a result. Functions are written primarily to

support the concept of reusability. Once a function is written, it can be called easily, without

having to write the same code again and again.

Different functional languages use different syntax to write a function.

Prerequisites to Writing a Function

Before writing a function, a programmer must know the following points:

 Purpose of function should be known to the programmer.

 Algorithm of the function should be known to the programmer.

 Functions data variables & their goal should be known to the programmer.

 Function's data should be known to the programmer that is called by the user.

Flow Control of a Function

When a function is "called", the program "transfers" the control to execute the function and

its "flow of control" is as below:

 The program reaches to the statement containing a "function call".

 The first line inside the function is executed.

 All the statements inside the function are executed from top to bottom.

 When the function is executed successfully, the control goes back to the statement

where it started from.

 Any data computed and returned by the function is used in place of the function in the

original line of code.

Syntax of a Function

The general syntax of a function looks as follows:

returnType functionName(type1 argument1, type2 argument2, . . .)

{

// function body

2. Functional Programming – Functions Overview

Functional Programming

8

}

Defining a Function in C++

Let’s take an example to understand how a function can be defined in C++ which is an object-

oriented programming language. The following code has a function that adds two numbers

and provides its result as the output.

#include <stdio.h>

int addNum(int a, int b); // function prototype

int main()

{

 int sum;

 sum = addNum(5,6); // function call

 printf("sum = %d",sum);

 return 0;

}

int addNum (int a,int b) // function definition

{

 int result;

 result = a+b;

 return result; // return statement

}

It will produce the following output:

Sum=11

Defining a Function in Erlang

Let’s see how the same function can be defined in Erlang, which is a functional programming

language.

-module(helloworld).

-export([add/2,start/0]).

add(A,B) ->

Functional Programming

9

 C = A+B,

 io:fwrite("~w~n",[C]).

start() ->

 add(5,6).

It will produce the following output:

11

Function Prototype

A function prototype is a declaration of the function that includes return-type, function-name

& arguments-list. It is similar to function definition without function-body.

For Example: Some programming languages supports function prototyping & some are not.

In C++, we can make function prototype of function ‘sum’ like this:

int sum(int a, int b)

Note: Programming languages like Python, Erlang, etc doesn’t supports function prototyping,

we need to declare the complete function.

What is the use of function prototype?

The function prototype is used by the compiler when the function is called. Compiler uses it

to ensure correct return-type, proper arguments list are passed-in, & their return-type is

correct.

Function Signature

A function signature is similar to function prototype in which number of parameters, data-

type of parameters & order of appearance should be in similar order. For Example:

void Sum(int a, int b, int c); // function 1

void Sum(float a, float b, float c); // function 2

void Sum(float a, float b, float c); // function 3

Function1 and Function2 have different signatures. Function2 and Function3 have same

signatures.

Functional Programming

10

Note: Function overloading and Function overriding which we will discuss in the subsequent

chapters are based on the concept of function signatures.

 Function overloading is possible when a class has multiple functions with the same

name but different signatures.

 Function overriding is possible when a derived class function has the same name and

signature as its base class.

Functional Programming

11

Functions are of two types:

 Predefined functions

 User-defined functions

In this chapter, we will discuss in detail about functions.

Predefined Functions

These are the functions that are built into Language to perform operations & are stored in the

Standard Function Library.

For Example: ‘Strcat’ in C++ & ‘concat’ in Haskell are used to append the two strings, ‘strlen’

in C++ & ‘len’ in Python are used to calculate the string length.

Program to print string length in C++

The following program shows how you can print the length of a string using C++:

#include <iostream>

#include <string.h>

#include <stdio.h>

using namespace std;

int main()

{

char str[20]="Hello World";

 int len;

 len=strlen(str);

 cout<<"String length is: "<<len;

 return 0;

}

It will produce the following output:

String length is: 11

3. Functional Programming − Function Types

Functional Programming

12

Program to print string length in Python

The following program shows how to print the length of a string using Python, which is a

functional programming language:

str = "Hello World";

print("String length is: ", len(str))

It will produce the following output:

String length is: 11

User-defined Functions

User-defined functions are defined by the user to perform specific tasks. There are four

different patterns to define a function:

 Functions with no argument and no return value

 Functions with no argument but a return value

 Functions with argument but no return value

 Functions with argument and a return value

Functions with no argument and no return value

The following program shows how to define a function with no argument and no return value

in C++:

#include <iostream>

using namespace std;

void function1()

{

 cout <<"Hello World";

}

int main()

{

function1();

return 0;

}

Functional Programming

13

It will produce the following output:

Hello World

The following program shows how you can define a similar function (no argument and no

return value) in Python:

def function1():

 print ("Hello World")

function1()

It will produce the following output:

Hello World

Functions with no argument but a return value

The following program shows how to define a function with no argument but a return value

in C++:

#include <iostream>

using namespace std;

string function1()

{

 return("Hello World");

}

int main()

{

cout<<function1();

return 0;

}

It will produce the following output:

Hello World

Functional Programming

14

The following program shows how you can define a similar function (with no argument but a

return value) in Python:

def function1():

 return "Hello World"

res = function1()

print(res)

It will produce the following output:

Hello World

Functions with argument but no return value

The following program shows how to define a function with argument but no return value in

C++:

#include <iostream>

using namespace std;

void function1(int x, int y)

{

int c;

 c=x+y;

 cout<<"Sum is: "<<c;

}

int main()

{

function1(4,5);

return 0;

}

It will produce the following output:

Sum is: 9

The following program shows how you can define a similar function in Python:

Functional Programming

15

def function1(x,y):

 c = x + y

 print("Sum is:",c)

function1(4,5)

It will produce the following output:

Sum is: 9

Functions with argument and a return value

The following program shows how to define a function in C++ with no argument but a return

value:

#include <iostream>

using namespace std;

int function1(int x, int y)

{

int c;

 c=x+y;

 return c;

}

int main()

{

int res;

 res=function1(4,5);

cout<<"Sum is: "<<res;

return 0;

}

It will produce the following output:

Sum is: 9

The following program shows how to define a similar function (with argument and a return

value) in Python:

Functional Programming

16

def function1(x,y):

 c = x + y

 return c

res = function1(4,5)

print("Sum is ",res)

It will produce the following output:

Sum is 9

Functional Programming

17

End of ebook preview

If you liked what you saw…

Buy it from our store @ https://store.tutorialspoint.com

