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About the Tutorial 

Functional programming languages are specially designed to handle symbolic computation 

and list processing applications. Functional programming is based on mathematical 

functions. Some of the popular functional programming languages include: Lisp, Python, 

Erlang, Haskell, Clojure, etc. 

This tutorial provides a brief overview of the most fundamental concepts of functional 

programming languages in general. In addition, it provides a comparative analysis of 

object-oriented programming and functional programming language in every example.  

 

Audience 

This tutorial will help all those readers who are keen to understand the basic concepts of 

functional programming. It is a very basic tutorial that has been designed keeping in mind 

the requirements of beginners. 

 

Prerequisites 

Before proceeding with this tutorial, you should have a basic understanding of Computer 

Programming terminologies in general and a good exposure to any programming language 

such as C, C++, or Java. 

 

Copyright & Disclaimer 

 Copyright 2016 by Tutorials Point (I) Pvt. Ltd.  

All the content and graphics published in this e-book are the property of Tutorials Point (I) 

Pvt. Ltd.  The user of this e-book is prohibited to reuse, retain, copy, distribute or republish 

any contents or a part of contents of this e-book in any manner without written consent 

of the publisher.   

We strive to update the contents of our website and tutorials as timely and as precisely as 

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt. 

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our 

website or its contents including this tutorial. If you discover any errors on our website or 

in this tutorial, please notify us at contact@tutorialspoint.com 
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Functional programming languages are specially designed to handle symbolic computation 

and list processing applications. Functional programming is based on mathematical functions. 

Some of the popular functional programming languages include: Lisp, Python, Erlang, Haskell, 

Clojure, etc.  

Functional programming languages are categorized into two groups, i.e.: 

 Pure Functional Languages: These types of functional languages support only the 

functional paradigms. For example: Haskell. 

 

 Impure Functional Languages: These types of functional languages support the 

functional paradigms and imperative style programming. For example: LISP. 

Functional Programming – Characteristics 

The most prominent characteristics of functional programming are as follows: 

 Functional programming languages are designed on the concept of mathematical 

functions that use conditional expressions and recursion to perform computation.  

 

 Functional programming supports higher-order functions and lazy evaluation 

features. 

 

 Functional programming languages don’t support flow Controls like loop statements 

and conditional statements like If-Else and Switch Statements. They directly use the 

functions and functional calls. 

 

 Like OOP, functional programming languages support popular concepts such as 

Abstraction, Encapsulation, Inheritance, and Polymorphism. 

Functional Programming – Advantages 

Functional programming offers the following advantages:  

 Bugs-Free Code: Functional programming does not support state, so there are no 

side-effect results and we can write error-free codes.  

 

 Efficient Parallel Programming:  Functional programming languages have NO 

Mutable state, so there are no state-change issues. One can program "Functions" to 

work parallel as "instructions". Such codes support easy reusability and testability. 

 

1. Functional Programming – Introduction 
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 Efficiency: Functional programs consist of independent units that can run 

concurrently. As a result, such programs are more efficient.  

 

 Supports Nested Functions: Functional programming supports Nested Functions.  

 

 Lazy Evaluation: Functional programming supports Lazy Functional Constructs like 

Lazy Lists, Lazy Maps, etc.   

As a downside, functional programming requires a large memory space. As it does not have 

state, you need to create new objects every time to perform actions.  

Functional Programming is used in situations where we have to perform lots of different 

operations on the same set of data. 

 Lisp is used for artificial intelligence applications like Machine learning, language 

processing, Modeling of speech and vision, etc. 

 

 Embedded Lisp interpreters add programmability to some systems like Emacs. 

Functional Programming vs. Object-oriented Programming 

The following table highlights the major differences between functional programming and 

object-oriented programming: 

Functional Programming OOP 

Uses Immutable data. Uses Mutable data. 

Follows Declarative Programming Model. Follows Imperative Programming Model. 

Focus is on: “What you are doing” Focus is on “How you are doing” 

Supports Parallel Programming Not suitable for Parallel Programming 

Its functions have no-side effects Its methods can produce serious side-

effects. 

Flow Control is done using function calls & 

function calls with recursion 

Flow control is done using loops and 

conditional statements. 

It uses "Recursion" concept to iterate 

Collection Data. 

It uses "Loop" concept to iterate Collection 

Data. For example: For-each loop in Java 

Execution order of statements is not so 

important. 

Execution order of statements is very 

important. 

Supports both "Abstraction over Data" and 

"Abstraction over Behavior". 
Supports only "Abstraction over Data". 
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Efficiency of a Program Code 

The efficiency of a programming code is directly proportional to the algorithmic efficiency and 

the execution speed. Good efficiency ensures higher performance. 

The factors that affect the efficiency of a program includes: 

 The speed of the machine 

 Compiler speed 

 Operating system 

 Choosing right Programming language 

 The way of data in a program is organized 

 Algorithm used to solve the problem 

The efficiency of a programming language can be improved by performing the following tasks:  

 By removing unnecessary code or the code that goes to redundant processing. 

 By making use of optimal memory and nonvolatile storage 

 By making the use of reusable components wherever applicable. 

 By making the use of error & exception handling at all layers of program. 

 By creating programming code that ensures data integrity and consistency. 

 By developing the program code that's compliant with the design logic and flow. 

An efficient programming code can reduce resource consumption and completion time as 

much as possible with minimum risk to the operating environment. 
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In programming terms, a function is a block of statements that performs a specific task. 

Functions accept data, process it, and return a result. Functions are written primarily to 

support the concept of reusability. Once a function is written, it can be called easily, without 

having to write the same code again and again.  

Different functional languages use different syntax to write a function.  

Prerequisites to Writing a Function  

Before writing a function, a programmer must know the following points: 

 Purpose of function should be known to the programmer. 

 Algorithm of the function should be known to the programmer.  

 Functions data variables & their goal should be known to the programmer. 

 Function's data should be known to the programmer that is called by the user.  

Flow Control of a Function 

When a function is "called", the program "transfers" the control to execute the function and 

its "flow of control" is as below: 

 The program reaches to the statement containing a "function call". 

 

 The first line inside the function is executed. 

 

 All the statements inside the function are executed from top to bottom. 

 

 When the function is executed successfully, the control goes back to the statement 

where it started from. 

 

 Any data computed and returned by the function is used in place of the function in the 

original line of code. 

Syntax of a Function 

The general syntax of a function looks as follows:  

returnType functionName(type1 argument1, type2 argument2, . . . ) 

{     

// function body 

2. Functional Programming – Functions Overview 
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} 

Defining a Function in C++  

Let’s take an example to understand how a function can be defined in C++ which is an object-

oriented programming language. The following code has a function that adds two numbers 

and provides its result as the output. 

#include <stdio.h> 

int addNum(int a, int b);          // function prototype 

 

int main() 

{    

    int sum; 

    sum = addNum(5,6);          // function call 

    printf("sum = %d",sum); 

    return 0; 

} 

 

int addNum (int a,int b)          // function definition    

{ 

    int result; 

    result = a+b; 

    return result;                   // return statement 

} 

It will produce the following output:  

Sum=11 

Defining a Function in Erlang 

Let’s see how the same function can be defined in Erlang, which is a functional programming 

language.  

-module(helloworld).  

-export([add/2,start/0]).  

 

add(A,B) ->  
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   C = A+B,  

   io:fwrite("~w~n",[C]).  

start() ->  

   add(5,6). 

It will produce the following output:  

11 

Function Prototype  

A function prototype is a declaration of the function that includes return-type, function-name 

& arguments-list. It is similar to function definition without function-body.  

For Example: Some programming languages supports function prototyping & some are not. 

In C++, we can make function prototype of function ‘sum’ like this: 

int sum(int a, int b)  

Note: Programming languages like Python, Erlang, etc doesn’t supports function prototyping, 

we need to declare the complete function.  

What is the use of function prototype? 

The function prototype is used by the compiler when the function is called. Compiler uses it 

to ensure correct return-type, proper arguments list are passed-in, & their return-type is 

correct.  

Function Signature 

A function signature is similar to function prototype in which number of parameters, data-

type of parameters & order of appearance should be in similar order. For Example:  

void Sum(int a, int b, int c);              // function 1 

 

void Sum(float a, float b, float c);   // function 2 

 

void Sum(float a, float b, float c);   // function 3 

Function1 and Function2 have different signatures. Function2 and Function3 have same 

signatures. 
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Note: Function overloading and Function overriding which we will discuss in the subsequent 

chapters are based on the concept of function signatures.   

 Function overloading is possible when a class has multiple functions with the same 

name but different signatures. 

 

 Function overriding is possible when a derived class function has the same name and 

signature as its base class. 
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Functions are of two types:  

 Predefined functions 

 User-defined functions 

In this chapter, we will discuss in detail about functions. 

Predefined Functions  

These are the functions that are built into Language to perform operations & are stored in the 

Standard Function Library. 

For Example: ‘Strcat’ in C++ & ‘concat’ in Haskell are used to append the two strings, ‘strlen’ 

in C++ & ‘len’ in Python are used to calculate the string length.   

Program to print string length in C++ 

The following program shows how you can print the length of a string using C++: 

#include <iostream> 

#include <string.h> 

#include <stdio.h> 

using namespace std; 

 

int main() 

{     

char str[20]="Hello World"; 

      int len; 

      len=strlen(str); 

      cout<<"String length is: "<<len; 

 return 0; 

} 

It will produce the following output:  

String length is: 11  

3. Functional Programming − Function Types  
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Program to print string length in Python 

The following program shows how to print the length of a string using Python, which is a 

functional programming language: 

str = "Hello World"; 

print("String length is: ", len(str)) 

It will produce the following output:  

String length is: 11 

User-defined Functions  

User-defined functions are defined by the user to perform specific tasks. There are four 

different patterns to define a function: 

 Functions with no argument and no return value 

 Functions with no argument but a return value 

 Functions with argument but no return value 

 Functions with argument and a return value 

Functions with no argument and no return value  

The following program shows how to define a function with no argument and no return value 

in C++:  

#include <iostream> 

using namespace std; 

void function1() 

{ 

    cout <<"Hello World"; 

} 

 

int main() 

{ 

function1(); 

return 0; 

} 
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It will produce the following output:  

Hello World 

The following program shows how you can define a similar function (no argument and no 

return value) in Python:  

def function1():    

   print ("Hello World") 

    

function1() 

It will produce the following output:  

Hello World 

Functions with no argument but a return value  

The following program shows how to define a function with no argument but a return value 

in C++: 

#include <iostream> 

using namespace std; 

string function1() 

{ 

    return("Hello World"); 

} 

 

int main() 

{ 

cout<<function1(); 

return 0; 

} 

 

It will produce the following output:  

Hello World 
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The following program shows how you can define a similar function (with no argument but a 

return value) in Python: 

def function1(): 

    return "Hello World" 

res = function1() 

print(res) 

 

It will produce the following output:  

Hello World  

Functions with argument but no return value  

The following program shows how to define a function with argument but no return value in 

C++:  

#include <iostream> 

using namespace std; 

void function1(int x, int y) 

{    

int c; 

    c=x+y;  

     cout<<"Sum is: "<<c; 

} 

 

int main() 

{ 

function1(4,5); 

return 0; 

} 

It will produce the following output:  

Sum is: 9 

The following program shows how you can define a similar function in Python: 
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def function1(x,y): 

    c = x + y 

    print("Sum is:",c) 

function1(4,5) 

It will produce the following output:  

Sum is: 9 

 

 

Functions with argument and a return value  

The following program shows how to define a function in C++ with no argument but a return 

value:  

#include <iostream> 

using namespace std; 

int function1(int x, int y) 

{    

int c; 

     c=x+y;  

     return c;    

} 

int main() 

{  

int res; 

  res=function1(4,5); 

cout<<"Sum is: "<<res; 

return 0; 

} 

It will produce the following output:  

Sum is: 9 

The following program shows how to define a similar function (with argument and a return 

value) in Python: 
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def function1(x,y): 

    c = x + y 

    return c 

 

res = function1(4,5) 

print("Sum is ",res) 

It will produce the following output:  

Sum is 9 

  



Functional Programming 

17 

 

End of ebook preview 

If you liked what you saw… 

Buy it from our store @ https://store.tutorialspoint.com 


