

AGRICULTURAL ENGINEERING

Subject Code: AG Course Structure

Sections/Units	Topics
Section A	Engineering Mathematics
1	Linear Algebra
2	Calculus
3	Vector Calculus
4	Differential Equations
5	Probability and Statistics
6	Numerical Methods
Section B	Farm Machinery
1	Machine Design
2	Farm Machinery
Section C	Farm Power
1	Sources of Power
2	Farm Power
3	Tractors and Powertillers
Section D	Soil and Water Conservation Engineering
1	Fluid Mechanics
2	Soil Mechanics
3	Hydrology
4	Surveying and Leveling

5	Soil and Water Erosion
6	Watershed Management
Section E	Irrigation and Drainage Engineering
1	Soil-Water-Plant Relationship
2	Irrigation Water Conveyance and Application Methods
3	Agricultural Drainage
4	Groundwater Hydrology
5	Wells and Pumps
Section F	Agricultural Processing Engineering
Section F	Agricultural Processing Engineering Drying
1	Drying
1 2	Drying Size Reduction and Conveying
1 2 3	Drying Size Reduction and Conveying Processing and By-product Utilization
1 2 3 4	Drying Size Reduction and Conveying Processing and By-product Utilization Storage System

Course Syllabus

Section A: Engineering Mathematics

Unit 1: Linear Algebra

- > Matrices and determinants
- > Systems of linear equations
- > Eigen values and Eigen vectors

Unit 2: Calculus

- > Limit, continuity and differentiability
- > Partial derivatives

- > Maxima and minima
- > Sequences and series
- > Tests for convergence
 - Fourier series
 - Taylor series

Unit 3: Vector Calculus

- > Gradient; divergence and curl
- Line, surface and volume integrals
- > Stokes, Gauss and Green's theorems

Unit 4: Differential Equations

- Linear and non-linear first order Ordinary Differential Equations (ODE)
- Higher order linear ODEs with constant coefficients
- > Cauchy's and Euler's equations
- > Laplace transforms
- > Partial Differential Equations Laplace, heat and wave equations

Unit 5: Probability and Statistics

- Mean, median, mode and standard deviation
- > Random Variables
- > Poisson, normal and binomial distributions
- > Correlation and regression analysis
- > Tests of significance
- Analysis of variance (ANOVA)

Unit 6: Numerical Methods

- Solutions of linear and non-linear algebraic equations
- Numerical integration trapezoidal and Simpson's rule
- Numerical solutions of ODE

Section B: Farm Machinery

Unit 1: Machine Design

> Design and selection of machine elements:

- Gears
- Pulleys
- Chains and sprockets
- Belts
- Overload safety devices used in farm machinery
- Measurement of force, torque, speed, displacement and acceleration on machine elements

Unit 2: Farm Machinery

- > Soil tillage
 - forces acting on a tillage tool
- ➤ Hitch systems and hitching of tillage implements
- > Functional requirements:
 - Principles of working
 - Construction and operation of manual
 - Animal and power operated equipment for tillage
 - Sowing
 - Planting
 - Fertilizer application
 - Inter-cultivation
 - Spraying
 - Mowing
 - Chaff cutting
 - Harvesting
 - Threshing
 - Transport
- > Testing of agricultural machinery and equipment
- Calculation of performance parameters:
 - Field capacity
 - Efficiency
 - Application rate and losses
- Cost analysis of implements and tractors

Section C: Farm Power

Unit 1: Sources of Power

- > Sources of power on the farm:
 - Human
 - Animal
 - Mechanical

- Electrical
- Wind
- Solar
- Biomass
- Bio-fuels

Unit 2: Farm Power

- > Thermodynamic principles of I.C. Engines
- > I.C. Engine cycles
- > Engine components
- > Fuels and combustion
- Lubricants and their properties
- ➤ I.C. Engine systems:
 - Fuel
 - Cooling
 - Lubrication
 - Ignition
 - Electrical
 - Intake
 - Exhaust
- Selection, operation, maintenance and repair of I.C. Engines
- > Power efficiencies and measurement
- > Calculation of power, torque, fuel consumption, heat load and power losses

Unit 3: Tractors and Powertillers

- Type, selection, maintenance and repair of tractors and powertillers
- Tractor clutches and brakes
- Power transmission systems gear trains, differential, final drives and power take-off
- Mechanics of tractor chassis
- > Traction theory
- > Three point hitches- free link and restrained link operations
- Mechanical steering and hydraulic control systems used in tractors
- > Tractor tests and performance
- Human engineering and safety in design of tractor and agricultural implements

Section D: Soil and Water Conservation Engineering

Unit 1: Fluid Mechanics

- > Ideal and real fluids:
 - properties of fluids
- > Hydrostatic pressure and its measurement
- Hydrostatic forces on plane and curved surface
- Continuity equation
- > Bernoulli's theorem
- Laminar and turbulent flow in pipes, darcy- weisbach and hazen-williams equations, moody's diagram
- > Flow through orifices and notches
- > Flow in open channels

Unit 2: Soil Mechanics

- > Engineering properties of soils
- > Fundamental definitions and relationships
- > Index properties of soils
- Permeability and seepage analysis
- > Shear strength, mohr's circle of stress, active and passive earth pressures
- Stability of slopes

Unit 3: Hydrology

- > Hydrological cycle and components
- Meteorological parameters, their measurement and analysis of precipitation data
- > Runoff estimation
- Hydrograph analysis:
 - Unit hydrograph theory and application
- > Stream flow measurement
- > Flood routing:
 - Hydrological reservoir
 - Channel routing

Unit 4: Surveying and Leveling

- Measurement of distance and area
- Instruments for surveying and leveling
- Chain surveying, methods of traversing

- Measurement of angles and bearings
- Plane table surveying
- Types of leveling
- theodolite traversing
- Contouring
- Computation of areas and volume

Unit 5: Soil and Water Erosion

- Mechanics of soil erosion:
 - Soil erosion types
 - Wind and water erosion
 - Factors affecting erosion
 - Soil loss estimation
- Biological and engineering measures to control erosion:
 - Terraces and bunds
 - Vegetative waterways
 - Gully control structures, drop, drop inlet and chute spillways
 - Earthen dams

Unit 6: Watershed Management

- Watershed characterization
- > Land use capability classification
- Rainwater harvesting structures
- > Check dams and farm ponds

Section E: Irrigation and Drainage Engineering

Unit 1: Soil-Water-Plant Relationship

- Water requirement of crops
- > Consumptive use and evapotranspiration
- Measurement of infiltration:
 - Soil moisture
 - Irrigation water infiltration

Unit 2: Irrigation Water Conveyance and Application Methods

- Design of irrigation channels and underground pipelines irrigation scheduling
- Surface, sprinkler and micro irrigation methods

- Design and evaluation of irrigation methods
- Irrigation efficiencies

Unit 3: Agricultural Drainage

- > Drainage coefficient:
 - Planning
 - Design and layout of surface
 - Sub-surface drainage systems
- Leaching requirement and salinity control
- Irrigation and drainage water quality and reuse

Unit 4: Groundwater Hydrology

- Groundwater occurrence
- Darcy's Law, steady flow in confined and unconfined aquifers, evaluation of aquifer properties
- > Groundwater recharge

Unit 5: Wells and Pumps

- Types of wells, steady flow through wells
- > Classification of pumps
- > Pump characteristics
- Pump selection and installation

Section F: Agricultural Processing Engineering

Unit 1: Drying

- Psychrometry properties of air-vapors mixture
- Concentration and drying of liquid foods evaporators, tray, drum and spray dryers
- > Hydrothermal treatment
- Drying and milling of cereals, pulses and oilseeds

Unit 2: Size Reduction and Conveying

- Mechanics and energy requirement in size reduction of granular solids
- > Particle size analysis for comminuted solids

- Size separation by screening
- > Fluidization of granular solids-pneumatic, bucket, screw and belt conveying
- Cleaning and grading
- Effectiveness of grain cleaners
- Centrifugal separation of solids, liquids and gases

Unit 3: Processing and By-product Utilization

- Processing of:
 - Seeds
 - Spices
 - Fruits
 - Vegetables
- > By-product utilization from processing industries

Unit 4: Storage Systems

- Controlled and modified atmosphere storage
- > Perishable food storage, godowns, bins and grain silos

Section G: Dairy and Food Engineering

Unit 1: Heat and Mass Transfer

- Steady state heat transfer in conduction, convection and radiation
- > Transient heat transfer in simple geometry
- Working principles of heat exchangers
- > Diffusive and convective mass transfer
- Simultaneous heat and mass transfer in agricultural processing operations
- Material and energy balances in food processing systems
- Water activity, sorption and desorption isotherms

Unit 2: Preservation of Food

- Kinetics of microbial death pasteurization and sterilization of milk and other liquid foods
- > preservation of food by cooling and freezing
- Refrigeration and cold storage basics and applications

