

tutorialspoint

SIMPLY EASY LEARNING

INSTRUMENTAL ENGINEERING

Subject Code: IN Course Structure

Sections/Units	Topics
Section A	Engineering Mathematics
Unit 1	Linear Algebra
Unit 2	Calculus
Unit 3	Differential Equations
Unit 4	Analysis of complex variables
Unit 5	Probability and Statistics
Unit 6	Numerical Methods
Section B	Electric Circuits
Section C	Signals and Systems
Section D	Control Systems
Section E	Analog Electronics
Section F	Digital Electronics
Section G	Measurements
Section H	Sensors and Industrial Instrumentation
Section I	Communication and Optical Instrumentation

Course Syllabus

Section A: Engineering Mathematics

Unit 1: Linear Algebra

- > Matrix algebra
- > Systems of linear equations

- Eigen values and Eigen
- Vectors

Unit 2: Calculus

- Mean value theorems
- Theorems of integral calculus
- Partial derivatives
- Maxima and minima
- Multiple integrals
- > Fourier series
- Vector identities
- > Line, surface and volume
- Integrals, stokes, gauss and green's theorems

Unit 3: Differential equations

- First order equation (linear and nonlinear)
- > Higher order linear differential equations with constant coefficients
- Method of variation of parameters
- > Cauchy's and Euler's equations
- Initial and boundary value problems
- > Solution of partial differential equations
- > Variable separable method

Unit 4: Analysis of complex variables

- Analytic functions
- > Cauchy's integral theorem and integral formula
- > Taylor's and Laurent's series
- Residue theorem
- Solution of integrals

Unit 5: Probability and Statistics

- Sampling theorems
- Conditional probability
- Mean, median, mode and standard deviation
- > Random variables
- Discrete and continuous distributions
- Normal, Poisson and binomial distributions

Unit 6: Numerical Methods

- Matrix inversion
- Solutions of non-linear algebraic equations
- Iterative methods for solving differential equations
- Numerical integration
- Regression and correlation analysis

Section B: Electrical Circuits

Unit 1: Voltage and current sources

- Independent, dependent, ideal and practical
- V-i relationships of resistor, inductor, mutual inductor and capacitor
- > Transient analysis of RLC circuits with dc excitation

Unit 2: Kirchoff's laws

- Mesh and nodal analysis
- > Superposition
- > Thevenin
- Norton
- Maximum power
- > Transfer
- > Reciprocity theorems

Unit 3: Peak-, average- and RMS values of AC quantities

- Apparent-, active- and reactive powers
- Phasor analysis, impedance and admittance
- > Series and parallel resonance
- Locus, diagrams, realization of basic filters with r, I and c elements
- > One-port and two-port networks
- Driving point impedance and admittance
- > Open- and short circuit parameters

Section C: Signals and Systems

- Signals and Systems:
 - · Periodic, aperiodic and impulse signals
 - Laplace, Fourier and z-transforms

- Transfer function, frequency response of first and second order linear time invariant systems
- Impulse response of systems
- Convolution, correlation
- Discrete time system:
 - Impulse response
 - Frequency response
 - Pulse transfer function
 - DFT and FFT
 - Basics of IIR and fir filters

Section D: Control Systems

- Feedback principles:
 - Signal flow graphs
 - Transient response
 - Steady-state-errors
 - Bode plot
 - Phase and gain margins
 - Routh and Nyquist criteria
 - Root loci
 - Design of lead
 - Lag and lead-lag compensators
 - State-space representation of systems
- > Time-delay systems:
 - Mechanical, hydraulic and pneumatic system components
 - Synchro pair
 - Servo and stepper motors
 - Servo valves
- > On-off, P, P-I, P-I-D, cascade, feedforward, and ratio controllers.

Section E: Analog Electronics

- Characteristics and applications of:
 - Diode
 - Zener diode
 - BJT
 - MOSFET
- Small signal analysis of transistor circuits, feedback amplifiers
- Characteristics of operational amplifiers
- > Applications of opamps:
 - Difference amplifier

- Adder
- Subtractor
- Integrator
- Differentiator
- Instrumentation amplifier
- Precision rectifier
- Active filters and other circuits
- Oscillators, signal generators, voltage controlled oscillators and phase locked loop

Section F: Digital Electronics

- Combinational logic circuits, minimization of Boolean functions
- IC families: TTL and CMOS
- > Arithmetic circuits, comparators, Schmitt trigger, multi-vibrators, sequential circuits, flipflops, shift registers, timers and counters
- Sample-and-hold circuit, multiplexer, analog-todigital (successive approximation, integrating, flash and sigma-delta) and digital-toanalog converters (weighted r, r-2r ladder and current steering logic)
- Characteristics of ADC and DAC (resolution, quantization, significant bits, conversion/settling time)
- ➤ Basics of number systems, 8-bit microprocessor and microcontroller: applications, memory and input-output interfacing
- Basics of data acquisition systems

Section G: Measurements

- > SI units, systematic and random errors in measurement, expression of uncertainty accuracy and precision index, propagation of errors
- PMMC, MI and dynamometer type instruments:
 - DC potentiometer
 - Bridges for measurement of R, L and C, Q-meter
- > Measurement of voltage, current and power in single and three phase circuits:
 - AC and DC current probes
 - True RMS meters
 - Voltage and current scaling
 - Instrument transformers
 - Timer/counter
 - Time
 - Phase and frequency measurements
 - Digital voltmeter
 - Digital multimeter

Oscilloscope, shielding and grounding

Section H: Sensors and Industrial Instrumentation

- Resistive-, capacitive-, inductive-, piezoelectric-, Hall effect sensors and associated signal conditioning circuits
- > Transducers for industrial instrumentation:
 - Displacement (linear and angular)
 - Velocity
 - Acceleration
 - Force
 - Torque
 - Vibration
 - Shock
 - Pressure (including low pressure)
 - Flow (differential pressure, variable area, electromagnetic, ultrasonic, turbine and open channel flow meters)
 - Temperature (thermocouple, bolometer, RTD (3/4 wire)
 - Thermistor
 - Pyrometer and semiconductor
 - Liquid level, pH, conductivity and viscosity measurement

Section I: Communication and Optical Instrumentation

- Amplitude- and frequency modulation and demodulation
- Shannon's sampling theorem, pulse code modulation
- > Frequency and time division multiplexing, amplitude-, phase-, frequency-, pulse shift keying for digital modulation
- Optical sources and detectors: led, laser, photo-diode, light dependent resistor and their characteristics
- Interferometer: applications in metrology
- Basics of fiber optic sensing

