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About the Tutorial 

Gensim = “Generate Similar” is a popular open source natural language processing 

library used for unsupervised topic modeling. It uses top academic models and modern 

statistical machine learning to perform various complex tasks such as Building document 

or word vectors, Corpora, performing topic identification, performing document 

comparison (retrieving semantically similar documents), analysing plain-text documents 

for semantic structure.  

Audience 

This tutorial will be useful for graduates, post-graduates, and research students who either 

have an interest in Natural Language Processing (NLP), Topic Modeling or have these 

subjects as a part of their curriculum. The reader can be a beginner or an advanced 

learner.  

Prerequisites 

The reader must have basic knowledge about NLP and should also be aware of Python 

programming concepts. 

Copyright & Disclaimer 

 Copyright 2020 by Tutorials Point (I) Pvt. Ltd.  

All the content and graphics published in this e-book are the property of Tutorials Point (I) 

Pvt. Ltd.  The user of this e-book is prohibited to reuse, retain, copy, distribute or republish 

any contents or a part of contents of this e-book in any manner without written consent 

of the publisher.   

We strive to update the contents of our website and tutorials as timely and as precisely as 

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt. 

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our 

website or its contents including this tutorial. If you discover any errors on our website or 

in this tutorial, please notify us at contact@tutorialspoint.com 
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This chapter will help you understand history and features of Gensim along with its uses 

and advantages.  

What is Gensim? 

Gensim = “Generate Similar” is a popular open source natural language processing 

(NLP) library used for unsupervised topic modeling. It uses top academic models and 

modern statistical machine learning to perform various complex tasks such as: 

 Building document or word vectors 

 Corpora 

 Performing topic identification 

 Performing document comparison (retrieving semantically similar documents) 

 Analysing plain-text documents for semantic structure 

Apart from performing the above complex tasks, Gensim, implemented in Python and 

Cython, is designed to handle large text collections using data streaming as well as 

incremental online algorithms. This makes it different from those machine learning 

software packages that target only in-memory processing.  

History 

In 2008, Gensim started off as a collection of various Python scripts for the Czech Digital 

Mathematics. There, it served to generate a short list of the most similar articles to a 

particular given article. But in 2009, RARE Technologies Ltd. released its initial release. 

Then, later in July 2019, we got its stable release (3.8.0).  

Various Features 

Following are some of the features and capabilities offered by Gensim: 

Scalability 

Gensim can easily process large and web-scale corpora by using its incremental online 

training algorithms. It is scalable in nature, as there is no need for the whole input corpus 

to reside fully in Random Access Memory (RAM) at any one time. In other words, all its 

algorithms are memory-independent with respect to the corpus size.  

Robust 

Gensim is robust in nature and has been in use in various systems by various people as 

well as organisations for over 4 years. We can easily plug in our own input corpus or data 

stream. It is also very easy to extend with other Vector Space Algorithms. 

 

1. Gensim ― Introduction 
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Platform agnostic 

As we know that Python is a very versatile language as being pure Python Gensim runs on 

all the platforms (like Windows, Mac OS, Linux) that supports Python and Numpy. 

Efficient multicore implementations 

In order to speed up processing and retrieval on machine clusters, Gensim provides 

efficient multicore implementations of various popular algorithms like Latent Semantic 

Analysis (LSA), Latent Dirichlet Allocation (LDA), Random Projections (RP), 

Hierarchical Dirichlet Process (HDP). 

Open source and abundance of community support 

Gensim is licensed under the OSI-approved GNU LGPL license which allows it to be used 

for both personal as well as commercial use for free. Any modifications made in Gensim 

are in turn open-sourced and has abundance of community support too.    

Uses of Gensim 

Gensim has been used and cited in over thousand commercial and academic applications. 

It is also cited by various research papers and student theses. It includes streamed 

parallelised implementations of the following: 

fastText 

fastText, uses a neural network for word embedding, is a library for learning of word 

embedding and text classification. It is created by Facebook’s AI Research (FAIR) lab. This 

model, basically, allows us to create a supervised or unsupervised algorithm for obtaining 

vector representations for words. 

Word2vec 

Word2vec, used to produce word embedding, is a group of shallow and two-layer neural 

network models. The models are basically trained to reconstruct linguistic contexts of 

words.  

LSA (Latent Semantic Analysis) 

It is a technique in NLP (Natural Language Processing) that allows us to analyse 

relationships between a set of documents and their containing terms. It is done by 

producing a set of concepts related to the documents and terms.  

LDA (Latent Dirichlet Allocation) 

It is a technique in NLP that allows sets of observations to be explained by unobserved 

groups. These unobserved groups explain, why some parts of the data are similar. That’s 

the reason, it is a generative statistical model.  

tf-idf (term frequency-inverse document frequency) 

tf-idf, a numeric statistic in information retrieval, reflects how important a word is to a 

document in a corpus. It is often used by search engines to score and rank a document’s 
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relevance given a user query. It can also be used for stop-words filtering in text 

summarisation and classification. 

All of them will be explained in detail in the next sections. 

Advantages 

Gensim is a NLP package that does topic modeling. The important advantages of Gensim 

are as follows: 

 We may get the facilities of topic modeling and word embedding in other packages 

like ‘scikit-learn’ and ‘R’, but the facilities provided by Gensim for building topic 

models and word embedding is unparalleled. It also provides more convenient 

facilities for text processing. 

 

 Another most significant advantage of Gensim is that, it let us handle large text 

files even without loading the whole file in memory. 
 

 Gensim doesn’t require costly annotations or hand tagging of documents because 

it uses unsupervised models.  
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The chapter enlightens about the prerequisites for installing Gensim, its core dependencies 

and information about its current version.  

Prerequisites 

In order to install Gensim, we must have Python installed on our computers. You can go 

to the link https://www.python.org/downloads/ and select the latest version for your OS 

i.e. Windows and Linux/Unix. You can refer to the link 

https://www.tutorialspoint.com/python3/index.htm for basic tutorial on Python. Gensim 

is supported for Linux, Windows and Mac OS X.  

 

Code Dependencies 

Gensim should run on any platform that supports Python 2.7 or 3.5+ and NumPy. It 

actually depends on the following software: 

Python 

Gensim is tested with Python versions 2.7, 3.5, 3.6, and 3.7. 

Numpy 

As we know that, NumPy is a package for scientific computing with Python. It can also be 

used as an efficient multi-dimensional container of generic data. Gensim depends on 

2. Gensim — Getting Started 

https://www.python.org/downloads/
https://www.tutorialspoint.com/python3/index.htm
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NumPy package for number crunching. For basic tutorial on Python, you can refer to the 

link https://www.tutorialspoint.com/numpy/index.htm. 

smart_open 

smart_open, a Python 2 & Python 3 library, is used for efficient streaming of very large 

files. It supports streaming from/to storages such as S3, HDFS, WebHDFS, HTTP, HTTPS, 

SFTP, or local filesystems. Gensim depends upon smart_open Python library for 

transparently opening files on remote storage as well as compressed files. 

Current Version 

The current version of Gensim is 3.8.0 which was released in July 2019.  

Installing using terminal 

One of the simplest ways to install Gensim, is to run the following command in your 

terminal: 

pip install --upgrade gensim 

Installing using conda environment 

An alternative way to download Gensim is, to use conda environment. Run the following 

command in your conda terminal: 

conda install –c conda-forge gensim 

https://www.tutorialspoint.com/numpy/index.htm
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Installing using source package 

Suppose, if you have downloaded and unzipped the source package, then you need to run 

the following commands: 

python setup.py test 

python setup.py install 
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Here, we shall learn about the core concepts of Gensim, with main focus on the documents 

and the corpus.  

Core Concepts of Gensim  

Following are the core concepts and terms that are needed to understand and use Gensim: 

 Document: It refers to some text. 

 Corpus: It refers to a collection of documents. 

 Vector: Mathematical representation of a document is called vector. 

 Model: It refers to an algorithm used for transforming vectors from one 

representation to another. 

What is Document?  

As discussed, it refers to some text. If we go in some detail, it is an object of the text 

sequence type which is known as ‘str’ in Python 3. For example, in Gensim, a document 

can be anything such as: 

 Short tweet of 140 characters 

 Single paragraph, i.e. article or research paper abstract 

 News article 

 Book 

 Novel 

 Theses 

Text Sequence  

A text sequence type is commonly known as ‘str’ in Python 3. As we know that in Python, 

textual data is handled with strings or more specifically ‘str’ objects. Strings are basically 

immutable sequences of Unicode code points and can be written in the following ways: 

 Single quotes: For example, ‘Hi! How are you?’. It allows us to embed double 

quotes also. For example, ‘Hi! “How” are you?’ 

 Double quotes: For example, “Hi! How are you?”. It allows us to embed single 

quotes also. For example, “Hi! ‘How’ are you?” 

 Triple quotes: It can have either three single quotes like, ‘’’Hi! How are you?’’’ 

or three double quotes like, “”” Hi! ‘How’ are you?””” 

   All the whitespaces will be included in the string literal. 

3. Gensim — Documents & Corpus 
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Example  

Following is an example of a Document in Gensim: 

Document = “Tutorialspoint.com is the biggest online tutorials library and it’s 

all free also” 

What is Corpus?  

A corpus may be defined as the large and structured set of machine-readable texts 

produced in a natural communicative setting. In Gensim, a collection of document object 

is called corpus. The plural of corpus is corpora.  

Role of Corpus in Gensim  

A corpus in Gensim serves the following two roles: 

Serves as input for training a model 

The very first and important role a corpus plays in Gensim, is as an input for training a 

model. In order to initialize model’s internal parameters, during training, the model look 

for some common themes and topics from the training corpus. As discussed above, Gensim 

focuses on unsupervised models, hence it doesn’t require any kind of human intervention. 

Serves as topic extractor 

Once the model is trained, it can be used to extract topics from the new documents. Here, 

the new documents are the ones that are not used in the training phase.  

Example  

The corpus can include all the tweets by a particular person, list of all the articles of a 

newspaper or all the research papers on a particular topic etc.   

Collecting Corpus  

Following is an example of small corpus which contains 5 documents. Here, every 

document is a string consisting of a single sentence. 

t_corpus = [ 

    "A survey of user opinion of computer system response time", 

    “Relation of user perceived response time to error measurement", 

    "The generation of random binary unordered trees", 

    "The intersection graph of paths in trees", 

    "Graph minors IV Widths of trees and well quasi ordering", 

    ] 
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Preprocessing Collecting Corpus  

Once we collect the corpus, a few preprocessing steps should be taken to keep corpus 

simple. We can simply remove some commonly used English words like ‘the’. We can also 

remove words that occur only once in the corpus. 

For example, the following Python script is used to lowercase each document, split it by 

white space and filter out stop words: 

import pprint 

 

t_corpus = ["A survey of user opinion of computer system response time", 

“Relation of user perceived response time to error measurement", "The 

generation of random binary unordered trees", "The intersection graph of paths 

in trees", "Graph minors IV Widths of trees and well quasi ordering",]     

     

stoplist = set('for a of the and to in'.split(' ')) 

 

processed_corpus = [[word for word in document.lower().split() if word not in 

stoplist] 

    for document in t_corpus] 

 

pprint.pprint(processed_corpus) 

 

Output 

[['survey', 'user', 'opinion', 'computer', 'system', 'response', 'time'], 

 ['relation', 'user', 'perceived', 'response', 'time', 'error', 'measurement'], 

 ['generation', 'random', 'binary', 'unordered', 'trees'], 

 ['intersection', 'graph', 'paths', 'trees'], 

 ['graph', 'minors', 'iv', 'widths', 'trees', 'well', 'quasi', 'ordering']] 

Effective Preprocessing  

Gensim also provides function for more effective preprocessing of the corpus. In such kind 

of preprocessing, we can convert a document into a list of lowercase tokens. We can also 

ignore tokens that are too short or too long. Such function is 

gensim.utils.simple_preprocess(doc, deacc=False, min_len=2, max_len=15).  

gensim.utils.simple_preprocess() fucntion 

Gensim provide this function to convert a document into a list of lowercase tokens and 

also for ignoring tokens that are too short or too long. It has the following parameters: 
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doc(str) 

It refers to the input document on which preprocessing should be applied.  

deacc(bool, optional) 

This parameter is used to remove the accent marks from tokens. It uses deaccent() to 

do this. 

min_len(int, optional) 

With the help of this parameter, we can set the minimum length of a token. The tokens 

shorter than defined length will be discarded. 

max_len(int, optional) 

With the help of this parameter we can set the maximum length of a token. The tokens 

longer than defined length will be discarded. 

The output of this function would be the tokens extracted from input document.   
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Here, we shall learn about the core concepts of Gensim, with main focus on the vector and 

the model.  

What is Vector?  

What if we want to infer the latent structure in our corpus? For this, we need to represent 

the documents in a such a way that we can manipulate the same mathematically. One 

popular kind of representation is to represent every document of corpus as a vector of 

features. That’s why we can say that vector is a mathematical convenient representation 

of a document. 

To give you an example, let’s represent a single feature, of our above used corpus, as a 

Q-A pair: 

Q: How many times does the word Hello appear in the document?  

A: Zero(0). 

Q: How many paragraphs are there in the document? 

A: Two(2) 

The question is generally represented by its integer id, hence the representation of this 

document is a series of pairs like (1, 0.0), (2, 2.0). Such vector representation is known 

as a dense vector. Why dense, because it comprises an explicit answer to all the 

questions written above. 

The representation can be a simple like (0, 2), if we know all the questions in advance. 

Such sequence of the answers (of course if the questions are known in advance) is the 

vector for our document.   

Another popular kind of representation is the bag-of-word (BoW) model. In this 

approach, each document is basically represented by a vector containing the frequency 

count of every word in the dictionary.  

To give you an example, suppose we have a dictionary that contains the words [‘Hello’, 

‘How’, ‘are’, ‘you’]. A document consisting of the string “How are you how” would then be 

represented by the vector [0, 2, 1, 1]. Here, the entries of the vector are in order of the 

occurrences of “Hello”, “How”, “are”, and “you”.  

Vector versus Document  

From the above explanation of vector, the distinction between a document and a vector is 

almost understood. But, to make it clearer, document is text and vector is a 

mathematically convenient representation of that text. Unfortunately, sometimes many 

people use these terms interchangeably.  

4. Gensim — Vector & Model 
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For example, suppose we have some arbitrary document A then instead of saying, “the 

vector that corresponds to document A”, they used to say, “the vector A” or “the document 

A”. This leads to great ambiguity. One more important thing to be noted here is that, two 

different documents may have the same vector representation. 

Converting corpus into list of vectors 

Before taking an implementation example of converting corpus into the list of vectors, we 

need to associate each word in the corpus with a unique integer ID. For this, we will be 

extending the example taken in above chapter. 

from gensim import corpora 

 

dictionary = corpora.Dictionary(processed_corpus) 

 

print(dictionary) 

 

Output 

Dictionary(25 unique tokens: ['computer', 'opinion', 'response', 'survey', 

'system']...) 

It shows that in our corpus there are 25 different tokens in this 

gensim.corpora.Dictionary. 

Implementation Example 

We can use the dictionary to turn tokenised documents into these 5-diemsional vectors as 

follows: 

pprint.pprint(dictionary.token2id) 

Output 

{'binary': 11, 

 'computer': 0, 

 'error': 7, 

 'generation': 12, 

 'graph': 16, 

 'intersection': 17, 

 'iv': 19, 

 'measurement': 8, 

 'minors': 20, 

 'opinion': 1, 

 'ordering': 21, 
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 'paths': 18, 

 'perceived': 9, 

 'quasi': 22, 

 'random': 13, 

 'relation': 10, 

 'response': 2, 

 'survey': 3, 

 'system': 4, 

 'time': 5, 

 'trees': 14, 

 'unordered': 15, 

 'user': 6, 

 'well': 23, 

 'widths': 24} 

And similarly, we can create the bag-of-word representation for a document as follows: 

BoW_corpus = [dictionary.doc2bow(text) for text in processed_corpus] 

 

pprint.pprint(BoW_corpus) 

Output 

[[(0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1)], 

 [(2, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1)], 

 [(11, 1), (12, 1), (13, 1), (14, 1), (15, 1)], 

 [(14, 1), (16, 1), (17, 1), (18, 1)], 

 [(14, 1), (16, 1), (19, 1), (20, 1), (21, 1), (22, 1), (23, 1), (24, 1)]] 

What is Model?  

Once we have vectorised the corpus, next what? Now, we can transform it using models. 

Model may be referred to an algorithm used for transforming one document representation 

to other.  

As we have discussed, documents, in Gensim, are represented as vectors hence, we can, 

though model as a transformation between two vector spaces. There is always a training 

phase where models learn the details of such transformations. The model reads the 

training corpus during training phase.  

Initializing a model 
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Let’s initialise tf-idf model. This model transforms vectors from the BoW (Bag of Words) 

representation to another vector space where the frequency counts are weighted according 

to the relative rarity of every word in corpus.  

Implementation Example 

In the following example, we are going to initialise the tf-idf model. We will train it on our 

corpus and then transform the string “trees graph”. 

from gensim import models 

 

tfidf = models.TfidfModel(BoW_corpus) 

 

words = "trees graph".lower().split() 

 

print(tfidf[dictionary.doc2bow(words)]) 

Output  

[(3, 0.4869354917707381), (4, 0.8734379353188121)] 

Now, once we created the model, we can transform the whole corpus via tfidf and index 

it, and query the similarity of our query document (we are giving the query document 

‘trees system’) against each document in the corpus: 

from gensim import similarities 

 

index = similarities.SparseMatrixSimilarity(tfidf[BoW_corpus],num_features=5) 

 

query_document = 'trees system'.split() 

 

query_bow = dictionary.doc2bow(query_document) 

 

simils = index[tfidf[query_bow]] 

 

print(list(enumerate(simils))) 

Output 

[(0, 0.0), (1, 0.0), (2, 1.0), (3, 0.4869355), (4, 0.4869355)] 

From the above output, document 4 and document 5 has a similarity score of around 49%. 

Moreover, we can also sort this output for more readability as follows: 
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for doc_number, score in sorted(enumerate(sims), key=lambda x: x[1], 

reverse=True): 

         print(doc_number, score) 

     

Output 

2 1.0 

3 0.4869355 

4 0.4869355 

0 0.0 

1 0.0  
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In last chapter where we discussed about vector and model, you got an idea about the 

dictionary. Here, we are going to discuss Dictionary object in a bit more detail. 

What is Dictionary? 

Before getting deep dive into the concept of dictionary, let’s understand some simple NLP 

concepts: 

 Token: A token means a ‘word’. 

 Document: A document refers to a sentence or paragraph. 

 Corpus: It refers to a collection of documents as a bag of words (BoW). 

For all the documents, a corpus always contains each word’s token’s id along with its 

frequency count in the document.   

Let’s move to the concept of dictionary in Gensim. For working on text documents, Gensim 

also requires the words, i.e. tokens to be converted to their unique ids. For achieving this, 

it gives us the facility of Dictionary object, which maps each word to their unique integer 

id. It does this by converting input text to the list of words and then pass it to the 

corpora.Dictionary() object. 

Need of Dictionary 

Now the question arises that what is actually the need of dictionary object and where it 

can be used? In Gensim, the dictionary object is used to create a bag of words (BoW) 

corpus which further used as the input to topic modelling and other models as well.  

Forms of text inputs 

There are three different forms of input text, we can provide to Gensim: 

 As the sentences stored in Python’s native list object (known as str in Python 3) 

 As one single text file (can be small or large one) 

 Multiple text files 

Creating a Dictionary using Gensim 

As discussed, in Gensim, the dictionary contains the mapping of all words, a.k.a tokens to 

their unique integer id. We can create a dictionary from list of sentences, from one or more 

than one text files (text file containing multiple lines of text). So, first let’s start by creating 

dictionary using list of sentences. 

5. Gensim — Creating a Dictionary 
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From a list of sentences 

In the following example we will be creating dictionary from a list of sentences. When we 

have list of sentences or you can say multiple sentences, we must convert every sentence 

to a list of words and comprehensions is one of the very common ways to do this. 

Implementation Example 

First, import the required and necessary packages as follows: 

import gensim 

from gensim import corpora 

from pprint import pprint 

Next, make the comprehension list from list of sentences/document to use it creating the 

dictionary: 

 doc = ["CNTK formerly known as Computational Network Toolkit", 

       "is a free easy-to-use open-source commercial-grade toolkit", 

        "that enable us to train deep learning algorithms to learn like      

the human brain."] 

 Next, we need to split the sentences into words. It is called tokenisation. 

text_tokens = [[text for text in doc.split()] for doc in doc] 

Now, with the help of following script, we can create the dictionary: 

dict_LoS = corpora.Dictionary(text_tokens) 

Now let’s get some more information like number of tokens in the dictionary:  

print(dict_LoS)  

Output 

Dictionary(27 unique tokens: ['CNTK', 'Computational', 'Network', 'Toolkit', 

'as']...) 

We can also see the word to unique integer mapping as follows: 

print(dict_LoS.token2id) 

Output 

{'CNTK': 0, 'Computational': 1, 'Network': 2, 'Toolkit': 3, 'as': 4, 

'formerly': 5, 'known': 6, 'a': 7, 'commercial-grade': 8, 'easy-to-use': 9, 

'free': 10, 'is': 11, 'open-source': 12, 'toolkit': 13, 'algorithms': 14, 

'brain.': 15, 'deep': 16, 'enable': 17, 'human': 18, 'learn': 19, 'learning': 

20, 'like': 21, 'that': 22, 'the': 23, 'to': 24, 'train': 25, 'us': 26}  
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Complete implementation example 

import gensim 

 

from gensim import corpora 

 

from pprint import pprint 

 

doc = ["CNTK formerly known as Computational Network Toolkit", 

       "is a free easy-to-use open-source commercial-grade toolkit",  

       "that enable us to train deep learning algorithms to learn like the 

human     brain."] 

 

text_tokens = [[text for text in doc.split()] for doc in doc] 

 

dict_LoS = corpora.Dictionary(text_tokens) 

 

print(dict_LoS.token2id) 

From single text file  

In the following example we will be creating dictionary from a single text file. In the similar 

fashion, we can also create dictionary from more than one text files (i.e. directory of files).  

For this, we have saved the document, used in previous example, in the text file named 

doc.txt. Gensim will read the file line by line and process one line at a time by using 

simple_preprocess. In this way, it doesn’t need to load the complete file in memory all 

at once.  

Implementation Example 

First, import the required and necessary packages as follows: 

import gensim 

from gensim import corpora 

from pprint import pprint 

from gensim.utils import simple_preprocess 

from smart_open import smart_open 

import os 
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Next line of codes will make gensim dictionary by using the single text file named doc.txt: 

dict_STF = corpora.Dictionary(simple_preprocess(line, deacc =True) for line in 

open(‘doc.txt’, encoding=’utf-8’)) 

Now let’s get some more information like number of tokens in the dictionary:  

print(dict_STF)  

Output 

Dictionary(27 unique tokens: ['CNTK', 'Computational', 'Network', 'Toolkit', 

'as']...) 

We can also see the word to unique integer mapping as follows: 

print(dict_STF.token2id) 

Output 

{'CNTK': 0, 'Computational': 1, 'Network': 2, 'Toolkit': 3, 'as': 4, 

'formerly': 5, 'known': 6, 'a': 7, 'commercial-grade': 8, 'easy-to-use': 9, 

'free': 10, 'is': 11, 'open-source': 12, 'toolkit': 13, 'algorithms': 14, 

'brain.': 15, 'deep': 16, 'enable': 17, 'human': 18, 'learn': 19, 'learning': 

20, 'like': 21, 'that': 22, 'the': 23, 'to': 24, 'train': 25, 'us': 26}  

Complete implementation example 

import gensim 

 

from gensim import corpora 

 

from pprint import pprint 

 

from gensim.utils import simple_preprocess 

 

from smart_open import smart_open 

 

import os 

 

dict_STF = corpora.Dictionary(simple_preprocess(line, deacc =True) for line in 

open(‘doc.txt’, encoding=’utf-8’)) 

 

dict_STF = corpora.Dictionary(text_tokens) 
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print(dict_STF.token2id) 

From multiple text files  

Now let’s create dictionary from multiple files, i.e. more than one text file saved in the 

same directory. For this example, we have created three different text files namely 

first.txt, second.txt and third.txt containing the three lines from text file (doc.txt), we 

used for previous example. All these three text files are saved under a directory named 

ABC. 

Implementation Example 

In order to implement this, we need to define a class with a method that can iterate 

through all the three text files (First, Second, and Third.txt) in the directory (ABC) and 

yield the processed list of words tokens.  

Let’s define the class named Read_files having a method named __iteration__() as 

follows: 

class Read_files(object): 

    def __init__(self, directoryname): 

        self.directoryname = directoryname 

 

    def __iter__(self): 

        for fname in os.listdir(self.directoryname): 

            for line in open(os.path.join(self.directoryname, fname), 

encoding='latin'): 

                yield simple_preprocess(line) 

Next, we need to provide the path of the directory as follows: 

path = "ABC"  

#provide the path as per your computer system where you saved the directory. 

Next steps are similar as we did in previous examples. Next line of codes will make Gensim 

directory by using the directory having three text files: 

dict_MUL = corpora.Dictionary(Read_files(path)) 

Output 

Dictionary(27 unique tokens: ['CNTK', 'Computational', 'Network', 'Toolkit', 

'as']...) 

Now we can also see the word to unique integer mapping as follows: 

print(dict_MUL.token2id) 
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Output 

{'CNTK': 0, 'Computational': 1, 'Network': 2, 'Toolkit': 3, 'as': 4, 

'formerly': 5, 'known': 6, 'a': 7, 'commercial-grade': 8, 'easy-to-use': 9, 

'free': 10, 'is': 11, 'open-source': 12, 'toolkit': 13, 'algorithms': 14, 

'brain.': 15, 'deep': 16, 'enable': 17, 'human': 18, 'learn': 19, 'learning': 

20, 'like': 21, 'that': 22, 'the': 23, 'to': 24, 'train': 25, 'us': 26}  

Saving and loading a gensim dictionary  

Gensim support their own native save() method to save dictionary to the disk and load() 

method to load back dictionary from the disk. 

For example, we can save the dictionary with the help of following script: 

Gensim.corpora.dictionary.save(filename)  

#provide the path where you want to save the dictionary. 

Similarly, we can load the saved dictionary by using the load() method. Following script 

can do this: 

Gensim.corpora.dictionary.load(filename)  

#provide the path where you have saved the dictionary. 
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We have understood how to create dictionary from a list of documents and from text files 

(from one as well as from more than one). Now, in this section, we will create a bag-of-

words (BoW) corpus. In order to work with Gensim, it is one of the most important objects 

we need to familiarise with. Basically, it is the corpus that contains the word id and its 

frequency in each document.   

Creating a BoW corpus 

As discussed, in Gensim, the corpus contains the word id and its frequency in every 

document. We can create a BoW corpus from a simple list of documents and from text 

files. What we need to do is, to pass the tokenised list of words to the object named 

Dictionary.doc2bow(). So first, let’s start by creating BoW corpus using a simple list of 

documents. 

From a simple list of sentences 

In the following example, we will create BoW corpus from a simple list containing three 

sentences. 

First, we need to import all the necessary packages as follows: 

import gensim 

import pprint 

from gensim import corpora 

      from gensim.utils import simple_preprocess 

Now provide the list containing sentences. We have three sentences in our list: 

doc_list = ["Hello, how are you?", "How do you do?", "Hey what are you doing? 

yes you What are you doing?"] 

Next, do tokenisation of the sentences as follows: 

doc_tokenized = [simple_preprocess(doc) for doc in doc_list] 

Create an object of corpora.Dictionary() as follows: 

dictionary = corpora.Dictionary() 

Now pass these tokenised sentences to dictionary.doc2bow() object as follows: 

BoW_corpus = [dictionary.doc2bow(doc, allow_update=True) for doc in 

doc_tokenized] 

At last we can print Bag of word corpus: 

6. Gensim — Creating a bag of words (BoW) 
Corpus 
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print(BoW_corpus) 

Output 

[[(0, 1), (1, 1), (2, 1), (3, 1)], [(2, 1), (3, 1), (4, 2)], [(0, 2), (3, 3), 

(5, 2), (6, 1), (7, 2), (8, 1)]] 

The above output shows that the word with id=0 appears once in the first document 

(because we have got (0,1) in the output) and so on.  

The above output is somehow not possible for humans to read. We can also convert these 

ids to words but for this we need our dictionary to do the conversion as follows: 

id_words = [[(dictionary[id], count) for id, count in line] for line in 

BoW_corpus] 

print(id_words) 

Output 

[[('are', 1), ('hello', 1), ('how', 1), ('you', 1)], [('how', 1), ('you', 1), 

('do', 2)], [('are', 2), ('you', 3), ('doing', 2), ('hey', 1), ('what', 2), 

('yes', 1)]] 

Now the above output is somehow human readable. 

Complete implementation example 

import gensim 

import pprint 

from gensim import corpora 

from gensim.utils import simple_preprocess 

 

doc_list = ["Hello, how are you?", "How do you do?", "Hey what are you doing? 

yes you What are you doing?"] 

doc_tokenized = [simple_preprocess(doc) for doc in doc_list] 

dictionary = corpora.Dictionary() 

BoW_corpus = [dictionary.doc2bow(doc, allow_update=True) for doc in 

doc_tokenized] 

print(BoW_corpus) 

id_words = [[(dictionary[id], count) for id, count in line] for line in 

BoW_corpus] 

print(id_words) 
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From a text file  

In the following example, we will be creating BoW corpus from a text file. For this, we 

have saved the document, used in previous example, in the text file named doc.txt.  

Gensim will read the file line by line and process one line at a time by using 

simple_preprocess. In this way, it doesn’t need to load the complete file in memory all 

at once.  

Implementation Example 

First, import the required and necessary packages as follows: 

import gensim 

from gensim import corpora 

from pprint import pprint 

from gensim.utils import simple_preprocess 

from smart_open import smart_open 

import os 

 

Next, the following line of codes will make read the documents from doc.txt and tokenised 

it: 

doc_tokenized = [simple_preprocess(line, deacc =True) for line in 

open(‘doc.txt’, encoding=’utf-8’)] 

dictionary = corpora.Dictionary() 

Now we need to pass these tokenized words into dictionary.doc2bow() object(as did in 

the previous example) 

BoW_corpus = [dictionary.doc2bow(doc, allow_update=True) for doc in 

doc_tokenized] 

   print(BoW_corpus) 

Output 

[[(9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1)], [(15, 1), (16, 

1), (17, 1), (18, 1), (19, 1), (20, 1), (21, 1), (22, 1), (23, 1), (24, 1)], 

[(23, 2), (25, 1), (26, 1), (27, 1), (28, 1), (29, 1), (30, 1), (31, 1), (32, 

1), (33, 1), (34, 1), (35, 1), (36, 1)], [(3, 1), (18, 1), (37, 1), (38, 1), 

(39, 1), (40, 1), (41, 1), (42, 1), (43, 1)], [(18, 1), (27, 1), (31, 2), (32, 

1), (38, 1), (41, 1), (43, 1), (44, 1), (45, 1), (46, 1), (47, 1), (48, 1), 

(49, 1), (50, 1), (51, 1), (52, 1)]] 

The doc.txt file have the following content: 

CNTK formerly known as Computational Network Toolkit is a free easy-to-use open-source 

commercial-grade toolkit that enable us to train deep learning algorithms to learn like the 

human brain.  
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You can find its free tutorial on tutorialspoint.com Tutorialspoint.com also provide best 

technical tutorials on technologies like AI deep learning machine learning for free. 

Complete implementation example 

import gensim 

from gensim import corpora 

from pprint import pprint 

from gensim.utils import simple_preprocess 

from smart_open import smart_open 

import os 

 

doc_tokenized = [simple_preprocess(line, deacc =True) for line in 

open(‘doc.txt’, encoding=’utf-8’)] 

dictionary = corpora.Dictionary() 

BoW_corpus = [dictionary.doc2bow(doc, allow_update=True) for doc in 

doc_tokenized] 

print(BoW_corpus) 

Saving and loading a gensim corpus  

We can save the corpus with the help of following script: 

corpora.MmCorpus.serialize(‘/Users/Desktop/BoW_corpus.mm’, bow_corpus) 

 #provide the path and the name of the corpus. The name of corpus is 

BoW_corpus and we saved it in Matrix Market format. 

Similarly, we can load the saved corpus by using the following script: 

corpus_load = corpora.MmCorpus(‘/Users/Desktop/BoW_corpus.mm’) 

for line in corpus_load: 

print(line) 
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This chapter will help you in learning about the various transformations in Gensim. Let us 

begin by understanding the transforming documents. 

Transforming documents 

Transforming documents means to represent the document in such a way that the 

document can be manipulated mathematically. Apart from deducing the latent structure 

of the corpus, transforming documents will also serve the following goals: 

 It discovers the relationship between words. 

 It brings out the hidden structure in the corpus. 

 It describes the documents in a new and more semantic way. 

 It makes the representation of the documents more compact. 

 It improves efficiency because new representation consumes less resources. 

 It improves efficacy because in new representation marginal data trends are 

ignored. 

 The noise is also reduced in new document representation. 

Let’s see the implementation steps for transforming the documents from one vector space 

representation to another. 

Implementation steps  

In order to transform documents, we must follow the following steps: 

Step 1: Creating the Corpus 

The very first and basic step is to create the corpus from the documents. We have already 

created the corpus in previous examples. Let’s create another one with some 

enhancements (removing common words and the words that appear only once): 

First import the necessary packages as follows: 

import gensim 

import pprint 

from collections import defaultdict 

from gensim import corpora 

Now provide the documents for creating the corpus: 

t_corpus = ["CNTK formerly known as Computational Network Toolkit", "is a free easy-to-

use open-source commercial-grade toolkit", "that enable us to train deep learning 

algorithms to learn like the human brain.", "You can find its free tutorial on 

7. Gensim — Transformations 
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tutorialspoint.com", "Tutorialspoint.com also provide best technical tutorials on 

technologies like AI deep learning machine learning for free"] 

Next, we need to do tokenise and along with it we will remove the common words also: 

stoplist = set('for a of the and to in'.split(' ')) 

processed_corpus = [[word for word in document.lower().split() if word not in 

stoplist] 

               for document in t_corpus] 

Following script will remove those words that appear only:  

frequency = defaultdict(int) 

for text in processed_corpus: 

      for token in text: 

            frequency[token] += 1 

   processed_corpus = [[token for token in text if frequency[token] > 1] for 

text in processed_corpus] 

pprint.pprint(processed_corpus) 

Output 

[['toolkit'], 

 ['free', 'toolkit'], 

 ['deep', 'learning', 'like'], 

 ['free', 'on', 'tutorialspoint.com'], 

 ['tutorialspoint.com', 'on', 'like', 'deep', 'learning', 'learning', 'free']] 

Now pass it to the corpora.dictionary() object to get the unique objects in our corpus:  

dictionary = corpora.Dictionary(processed_corpus) 

print(dictionary) 

Output 

Dictionary(7 unique tokens: ['toolkit', 'free', 'deep', 'learning', 'like']...) 

Next, the following line of codes will create the Bag of Word model for our corpus: 

BoW_corpus = [dictionary.doc2bow(text) for text in processed_corpus] 

pprint.pprint(BoW_corpus) 

Output 

[[(0, 1)], 
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 [(0, 1), (1, 1)], 

 [(2, 1), (3, 1), (4, 1)], 

 [(1, 1), (5, 1), (6, 1)], 

 [(1, 1), (2, 1), (3, 2), (4, 1), (5, 1), (6, 1)]] 

Step 2: Creating a transformation 

The transformations are some standard Python objects. We can initialize these 

transformations i.e. Python objects by using a trained corpus. Here we are going to use 

tf-idf model to create a transformation of our trained corpus i.e. BoW_corpus. 

First, we need to import the models package from gensim 

from gensim import models 

 

Now, we need to initialise the model as follows: 

tfidf = models.TfidfModel(BoW_corpus) 

Step 3: Transforming vectors 

Now, in this last step, the vectors will be converted from old representation to new 

representation. As we have initialised the tfidf model in above step, the tfidf will now be 

treated as a read only object. Here, by using this tfidf object we will convert our vector 

from bag of word representation (old representation) to Tfidf real-valued weights (new 

representation).  

doc_BoW = [(1,1),(3,1)] 

 

print(tfidf[doc_BoW]) 

Output 

[(1, 0.4869354917707381), (3, 0.8734379353188121)] 

We applied the transformation on two values of corpus, but we can also apply it to the 

whole corpus as follows: 

corpus_tfidf = tfidf[BoW_corpus] 

 

for doc in corpus_tfidf: 

 

     print(doc) 

Output 

[(0, 1.0)] 
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[(0, 0.8734379353188121), (1, 0.4869354917707381)] 

[(2, 0.5773502691896257), (3, 0.5773502691896257), (4, 0.5773502691896257)] 

[(1, 0.3667400603126873), (5, 0.657838022678017), (6, 0.657838022678017)] 

[(1, 0.19338287240886842), (2, 0.34687949360312714), (3, 0.6937589872062543), 

(4, 0.34687949360312714), (5, 0.34687949360312714), (6, 0.34687949360312714)] 

Complete implementation example 

import gensim 

import pprint 

from collections import defaultdict 

from gensim import corpora 

t_corpus = ["CNTK formerly known as Computational Network Toolkit", "is a free 

easy-to-use open-source commercial-grade toolkit", "that enable us to train 

deep learning algorithms to learn like the human brain.", "You can find its 

free tutorial on tutorialspoint.com", "Tutorialspoint.com also provide best 

technical tutorials on technologies like AI deep learning machine learning for 

free"] 

stoplist = set('for a of the and to in'.split(' ')) 

processed_corpus = [[word for word in document.lower().split() if word not in 

stoplist] 

               for document in t_corpus] 

    

frequency = defaultdict(int) 

for text in processed_corpus: 

      for token in text: 

            frequency[token] += 1 

   processed_corpus = [[token for token in text if frequency[token] > 1] for 

text in processed_corpus] 

pprint.pprint(processed_corpus) 

dictionary = corpora.Dictionary(processed_corpus) 

print(dictionary) 

BoW_corpus = [dictionary.doc2bow(text) for text in processed_corpus] 

pprint.pprint(BoW_corpus) 

 

      from gensim import models 

 

      tfidf = models.TfidfModel(BoW_corpus) 

 

      doc_BoW = [(1,1),(3,1)] 
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      print(tfidf[doc_BoW]) 

 

      corpus_tfidf = tfidf[BoW_corpus] 

 

      for doc in corpus_tfidf: 

 

 print(doc) 

 

Various transformations in Gensim 

Using Gensim, we can implement various popular transformations, i.e. Vector Space Model 

algorithms. Some of them are as follows: 

Tf-Idf(Term Frequency-Inverse Document Frequency) 

During initialisation, this tf-idf model algorithm expects a training corpus having integer 

values (such as Bag-of-Words model). Then after that, at the time of transformation, it 

takes a vector representation and returns another vector representation.  

The output vector will have the same dimensionality but the value of the rare features (at 

the time of training) will be increased. It basically converts integer-valued vectors into 

real-valued vectors. Following is the syntax of Tf-idf transformation: 

Model=models.TfidfModel(corpus, normalize=True) 

LSI(Latent Semantic Indexing) 

LSI model algorithm can transform document from either integer valued vector model 

(such as Bag-of-Words model) or Tf-Idf weighted space into latent space. The output 

vector will be of lower dimensionality. Following is the syntax of LSI transformation: 

Model=models.LsiModel(tfidf_corpus, id2word=dictionary, num_topics=300) 

LDA(Latent Dirichlet Allocation) 

LDA model algorithm is another algorithm that transforms document from Bag-of-Words 

model space into a topic space. The output vector will be of lower dimensionality. Following 

is the syntax of LSI transformation: 

Model=models.LdaModel(corpus, id2word=dictionary, num_topics=100) 

 

Random Projections (RP)   
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RP, a very efficient approach, aims to reduce the dimensionality of vector space. This 

approach is basically approximate the Tf-Idf distances between the documents. It does 

this by throwing in a little randomness. 

Model=models.RpModel(tfidf_corpus, num_topics=500) 

Hierarchical Dirichlet Process (HDP) 

HDP is a non-parametric Bayesian method which is a new addition to Gensim. We should 

have to take care while using it.  

Model=models.HdpModel(corpus, id2word=dictionary 
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Here, we will learn about creating Term Frequency-Inverse Document Frequency (TF-IDF) 

Matrix with the help of Gensim. 

What is TF-IDF? 

It is the Term Frequency-Inverse Document Frequency model which is also a bag-of-words 

model. It is different from the regular corpus because it down weights the tokens i.e. 

words appearing frequently across documents. During initialisation, this tf-idf model 

algorithm expects a training corpus having integer values (such as Bag-of-Words model).  

Then after that at the time of transformation, it takes a vector representation and returns 

another vector representation. The output vector will have the same dimensionality but 

the value of the rare features (at the time of training) will be increased. It basically 

converts integer-valued vectors into real-valued vectors.  

How it is computed? 

TF-IDF model computes tfidf with the help of following two simple steps: 

Step 1: Multiplying local and global component 

In this first step, the model will multiply a local component such as TF (Term Frequency) 

with a global component such as IDF (Inverse Document Frequency). 

Step 2: Normalise the result 

Once done with multiplication, in the next step TFIDF model will normalize the result to 

the unit length.  

As a result of these above two steps frequently occurred words across the documents will 

get down-weighted. 

How to get TF-IDF weights? 

Here, we will be going to implement an example to see how we can get TF-IDF weights. 

Basically, in order to get TF-IDF weights, first we need to train the corpus and the then 

apply that corpus within the tfidf model.  

Train the Corpus 

As said above to get the TF-IDF we first need to train our corpus. First, we need to import 

all the necessary packages as follows: 

import gensim 

import pprint 

from gensim import corpora 

8. Gensim — Creating TF-IDF Matrix 
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      from gensim.utils import simple_preprocess 

Now provide the list containing sentences. We have three sentences in our list: 

doc_list = ["Hello, how are you?", "How do you do?", "Hey what are you doing? 

yes you What are you doing?"] 

Next, do tokenisation of the sentences as follows: 

doc_tokenized = [simple_preprocess(doc) for doc in doc_list] 

Create an object of corpora.Dictionary() as follows: 

dictionary = corpora.Dictionary() 

Now pass these tokenised sentences to dictionary.doc2bow() object as follows: 

BoW_corpus = [dictionary.doc2bow(doc, allow_update=True) for doc in 

doc_tokenized] 

Next, we will get the word ids and their frequencies in our documents. 

for doc in BoW_corpus: 

    print([[dictionary[id], freq] for id, freq in doc]) 

Output 

[['are', 1], ['hello', 1], ['how', 1], ['you', 1]] 

[['how', 1], ['you', 1], ['do', 2]] 

[['are', 2], ['you', 3], ['doing', 2], ['hey', 1], ['what', 2], ['yes', 1]] 

In this way we have trained our corpus (Bag-of-Word corpus). 

Next, we need to apply this trained corpus within the tfidf model models.TfidfModel(). 

First import the numpay package: 

import numpy as np 

Now applying our trained corpus(BoW_corpus) within the square brackets of 

models.TfidfModel() 

tfidf = models.TfidfModel(BoW_corpus, smartirs='ntc') 

Next, we will get the word ids and their frequencies in our tfidf modeled corpus: 

for doc in tfidf[BoW_corpus]: 

    print([[dictionary[id], np.around(freq,decomal=2)] for id, freq in doc]) 

Output 
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[['are', 0.33], ['hello', 0.89], ['how', 0.33]] 

[['how', 0.18], ['do', 0.98]] 

[['are', 0.23], ['doing', 0.62], ['hey', 0.31], ['what', 0.62], ['yes', 0.31]] 

 

[['are', 1], ['hello', 1], ['how', 1], ['you', 1]] 

[['how', 1], ['you', 1], ['do', 2]] 

[['are', 2], ['you', 3], ['doing', 2], ['hey', 1], ['what', 2], ['yes', 1]] 

 

[['are', 0.33], ['hello', 0.89], ['how', 0.33]] 

[['how', 0.18], ['do', 0.98]] 

[['are', 0.23], ['doing', 0.62], ['hey', 0.31], ['what', 0.62], ['yes', 0.31]] 

From the above outputs, we see the difference in the frequencies of the words in our 

documents. 

Complete implementation example 

import gensim 

import pprint 

from gensim import corpora 

from gensim.utils import simple_preprocess 

 

doc_list = ["Hello, how are you?", "How do you do?", "Hey what are you doing? 

yes you What are you doing?"] 

doc_tokenized = [simple_preprocess(doc) for doc in doc_list] 

dictionary = corpora.Dictionary() 

BoW_corpus = [dictionary.doc2bow(doc, allow_update=True) for doc in 

doc_tokenized] 

for doc in BoW_corpus: 

    print([[dictionary[id], freq] for id, freq in doc]) 

import numpy as np 

tfidf = models.TfidfModel(BoW_corpus, smartirs='ntc') 

for doc in tfidf[BoW_corpus]: 

    print([[dictionary[id], np.around(freq,decomal=2)] for id, freq in doc]) 
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Difference in weight of words 

As discussed above, the words that will occur more frequently in the document will get the 

smaller weights. Let’s understand the difference in weights of words from the above two 

outputs. The word ‘are’ occurs in two documents and have been weighted down. Similarly, 

the word ‘you’ appearing in all the documents and removed altogether.  
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This chapter deals with topic modeling with regards to Gensim. 

To annotate our data and understand sentence structure, one of the best methods is to 

use computational linguistic algorithms. No doubt, with the help of these computational 

linguistic algorithms we can understand some finer details about our data but, 

 Can we know what kind of words appear more often than others in our corpus? 

 Can we group our data? 

 Can we be underlying themes in our data? 

We’d be able to achieve all these with the help of topic modeling. So let’s deep dive into 

the concept of topic models. 

What are Topic models? 

A Topic model may be defined as the probabilistic model containing information about 

topics in our text. But here, two important questions arise which are as follows: 

First, what exactly a topic is?  

Topic, as name implies, is underlying ideas or the themes represented in our text. To give 

you an example, the corpus containing newspaper articles would have the topics related 

to finance, weather, politics, sports, various states news and so on.  

Second, what is the importance of topic models in text processing?  

As we know that, in order to identify similarity in text, we can do information retrieval and 

searching techniques by using words. But, with the help of topic models, now we can 

search and arrange our text files using topics rather than words.  

In this sense we can say that topics are the probabilistic distribution of words. That’s why, 

by using topic models, we can describe our documents as the probabilistic distributions of 

topics.   

Goals of Topic models 

As discussed above, the focus of topic modeling is about underlying ideas and themes. Its 

main goals are as follows: 

 Topic models can be used for text summarisation. 

 They can be used to organise the documents. For example, we can use topic 

modeling to group news articles together into an organised/ interconnected section 

such as organising all the news articles related to cricket. 

 They can improve search result. How? For a search query, we can use topic models 

to reveal the document having a mix of different keywords, but are about same 

idea. 

9. Gensim — Topic Modeling 
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 The concept of recommendations is very useful for marketing. It’s used by various 

online shopping websites, news websites and many more. Topic models helps in 

making recommendations about what to buy, what to read next etc. They do it by 

finding materials having a common topic in list.   

Topic modeling algorithms in Gensim 

Undoubtedly, Gensim is the most popular topic modeling toolkit. Its free availability and 

being in Python make it more popular. In this section, we will be discussing some most 

popular topic modeling algorithms. Here, we will focus on ‘what’ rather than ‘how’ because 

Gensim abstract them very well for us. 

Latent Dirichlet allocation (LDA) 

Latent Dirichlet allocation (LDA) is the most common and popular technique currently in 

use for topic modeling. It is the one that the Facebook researchers used in their research 

paper published in 2013. It was first proposed by David Blei, Andrew Ng, and Michael 

Jordan in 2003. They proposed LDA in their paper that was entitled simply Latent 

Dirichlet allocation. 

Characteristics of LDA 

Let’s know more about this wonderful technique through its characteristics: 

Probabilistic topic modeling technique 

LDA is a probabilistic topic modeling technique. As we discussed above, in topic modeling 

we assume that in any collection of interrelated documents (could be academic papers, 

newspaper articles, Facebook posts, Tweets, e-mails and so-on), there are some 

combinations of topics included in each document.  

The main goal of probabilistic topic modeling is to discover the hidden topic structure for 

collection of interrelated documents. Following three things are generally included in a 

topic structure: 

 Topics 

 Statistical distribution of topics among the documents 

 Words across a document comprising the topic 

Work in an unsupervised way 

LDA works in an unsupervised way. It is because, LDA use conditional probabilities to 

discover the hidden topic structure. It assumes that the topics are unevenly distributed 

throughout the collection of interrelated documents. 

Very easy to create it in Gensim 

 In Gensim, it is very easy to create LDA model. we just need to specify the corpus, the 

dictionary mapping, and the number of topics we would like to use in our model.  

Model=models.LdaModel(corpus, id2word=dictionary, num_topics=100) 
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May face computationally intractable problem 

Calculating the probability of every possible topic structure is a computational challenge 

faced by LDA. It’s challenging because, it needs to calculate the probability of every 

observed word under every possible topic structure. If we have large number of topics and 

words, LDA may face computationally intractable problem. 

Latent Semantic indexing (LSI) 

The topic modeling algorithms that was first implemented in Gensim with Latent Dirichlet 

Allocation (LDA) is Latent Semantic Indexing (LSI). It is also called Latent Semantic 

Analysis (LSA).  

It got patented in 1988 by Scott Deerwester, Susan Dumais, George Furnas, Richard 

Harshman, Thomas Landaur, Karen Lochbaum, and Lynn Streeter. In this section we are 

going to set up our LSI model. It can be done in the same way of setting up LDA model. 

we need to import LSI model from gensim.models. 

Role of LSI 

Actually, LSI is a technique NLP, especially in distributional semantics.  It analyzes the 

relationship in between a set of documents and the terms these documents contain. If we 

talk about its working, then it constructs a matrix that contains word counts per document 

from a large piece of text.  

Once constructed, to reduce the number of rows, LSI model use a mathematical technique 

called singular value decomposition (SVD). Along with reducing the number of rows, it also 

preserves the similarity structure among columns. In matrix, the rows represent unique 

words and the columns represent each document. It works based on distributional 

hypothesis i.e. it assumes that the words that are close in meaning will occur in same kind 

of text.  

Model=models.LsiModel(corpus, id2word=dictionary, num_topics=100) 

Hierarchical Dirichlet Process (HDP) 

Topic models such as LDA and LSI helps in summarizing and organize large archives of 

texts that is not possible to analyze by hand. Apart from LDA and LSI, one other powerful 

topic model in Gensim is HDP (Hierarchical Dirichlet Process). It’s basically a mixed-

membership model for unsupervised analysis of grouped data. Unlike LDA (its’s finite 

counterpart), HDP infers the number of topics from the data. 

Model=models.HdpModel(corpus, id2word=dictionary 
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This chapter will help you learn how to create Latent Dirichlet allocation (LDA) topic model 

in Gensim. 

Automatically extracting information about topics from large volume of texts in one of the 

primary applications of NLP (natural language processing). Large volume of texts could be 

feeds from hotel reviews, tweets, Facebook posts, feeds from any other social media 

channel, movie reviews, news stories, user feedbacks, e-mails etc.  

In this digital era, to know what people/customers are talking about, to understand their 

opinions, and their problems, can be highly valuable for businesses, political campaigns 

and administrators. But, is it possible to manually read through such large volumes of text 

and then extracting the information from topics?  

No, it’s not. It requires an automatic algorithm that can read through these large volume 

of text documents and automatically extract the required information/topics discussed 

from it. 

Role of LDA 

LDA’s approach to topic modeling is to classify text in a document to a particular topic. 

Modeled as Dirichlet distributions, LDA builds: 

 A topic per document model and 

 Words per topic model 

After providing the LDA topic model algorithm, in order to obtain a good composition of 

topic-keyword distribution, it re-arrange: 

 The topics distributions within the document and 

 Keywords distribution within the topics 

While processing, some of the assumptions made by LDA are: 

 Every document is modeled as multi-nominal distributions of topics. 

 Every topic is modeled as multi-nominal distributions of words. 

 We should have to choose the right corpus of data because LDA assumes that each 

chunk of text contains the related words. 

 LDA also assumes that the documents are produced from a mixture of topics.  

Implementation with Gensim 

Here, we are going to use LDA (Latent Dirichlet Allocation) to extract the naturally 

discussed topics from dataset.     

Loading Data set 

10. Gensim — Creating LDA Topic Model 
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The dataset which we are going to use is the dataset of ’20 Newsgroups’ having 

thousands of news articles from various sections of a news report. It is available under 

Sklearn data sets. We can easily download with the help of following Python script: 

from sklearn.datasets import fetch_20newsgroups 

newsgroups_train = fetch_20newsgroups(subset='train') 

Let’s look at some of the sample news with the help of following script: 

newsgroups_train.data[:4] 

 

["From: lerxst@wam.umd.edu (where's my thing)\nSubject: WHAT car is 

this!?\nNntp-Posting-Host: rac3.wam.umd.edu\nOrganization: University of 

Maryland, College Park\nLines: 15\n\n I was wondering if anyone out there could 

enlighten me on this car I saw\nthe other day. It was a 2-door sports car, 

looked to be from the late 60s/\nearly 70s. It was called a Bricklin. The doors 

were really small. In addition,\nthe front bumper was separate from the rest of 

the body. This is \nall I know. If anyone can tellme a model name, engine 

specs, years\nof production, where this car is made, history, or whatever info 

you\nhave on this funky looking car, please e-mail.\n\nThanks,\n- IL\n   ---- 

brought to you by your neighborhood Lerxst ----\n\n\n\n\n", 

 "From: guykuo@carson.u.washington.edu (Guy Kuo)\nSubject: SI Clock Poll - 

Final Call\nSummary: Final call for SI clock reports\nKeywords: 

SI,acceleration,clock,upgrade\nArticle-I.D.: 

shelley.1qvfo9INNc3s\nOrganization: University of Washington\nLines: 11\nNNTP-

Posting-Host: carson.u.washington.edu\n\nA fair number of brave souls who 

upgraded their SI clock oscillator have\nshared their experiences for this 

poll. Please send a brief message detailing\nyour experiences with the 

procedure. Top speed attained, CPU rated speed,\nadd on cards and adapters, 

heat sinks, hour of usage per day, floppy disk\nfunctionality with 800 and 1.4 

m floppies are especially requested.\n\nI will be summarizing in the next two 

days, so please add to the network\nknowledge base if you have done the clock 

upgrade and haven't answered this\npoll. Thanks.\n\nGuy Kuo 

<guykuo@u.washington.edu>\n", 

 'From: twillis@ec.ecn.purdue.edu (Thomas E Willis)\nSubject: PB 

questions...\nOrganization: Purdue University Engineering Computer 

Network\nDistribution: usa\nLines: 36\n\nwell folks, my mac plus finally gave 

up the ghost this weekend after\nstarting life as a 512k way back in 1985.  

sooo, i\'m in the market for a\nnew machine a bit sooner than i intended to 

be...\n\ni\'m looking into picking up a powerbook 160 or maybe 180 and have a 

bunch\nof questions that (hopefully) somebody can answer:\n\n* does anybody 

know any dirt on when the next round of powerbook\nintroductions are expected?  

i\'d heard the 185c was supposed to make an\nappearence "this summer" but 

haven\'t heard anymore on it - and since i\ndon\'t have access to macleak, i 

was wondering if anybody out there had\nmore info...\n\n* has anybody heard 

rumors about price drops to the powerbook line like the\nones the duo\'s just 

went through recently?\n\n* what\'s the impression of the display on the 180?  

i could probably swing\na 180 if i got the 80Mb disk rather than the 120, but i 

don\'t really have\na feel for how much "better" the display is (yea, it looks 

great in the\nstore, but is that all "wow" or is it really that good?).  could 

i solicit\nsome opinions of people who use the 160 and 180 day-to-day on if its 
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worth\ntaking the disk size and money hit to get the active display?  (i 

realize\nthis is a real subjective question, but i\'ve only played around with 

the\nmachines in a computer store breifly and figured the opinions of 

somebody\nwho actually uses the machine daily might prove helpful).\n\n* how 

well does hellcats perform?  ;)\n\nthanks a bunch in advance for any info - if 

you could email, i\'ll post a\nsummary (news reading time is at a premium with 

finals just around the\ncorner... :( )\n--\nTom Willis  \\  

twillis@ecn.purdue.edu    \\    Purdue Electrical Engineering\n----------------

-----------------------------------------------------------\n"Convictions are 

more dangerous enemies of truth than lies."  - F. W.\nNietzsche\n', 

 'From: jgreen@amber (Joe Green)\nSubject: Re: Weitek P9000 ?\nOrganization: 

Harris Computer Systems Division\nLines: 14\nDistribution: world\nNNTP-Posting-

Host: amber.ssd.csd.harris.com\nX-Newsreader: TIN [version 1.1 PL9]\n\nRobert 

J.C. Kyanko (rob@rjck.UUCP) wrote:\n> abraxis@iastate.edu writes in article 

<abraxis.734340159@class1.iastate.edu>:\n> > Anyone know about the Weitek P9000 

graphics chip?\n> As far as the low-level stuff goes, it looks pretty nice.  

It\'s got this\n> quadrilateral fill command that requires just the four 

points.\n\nDo you have Weitek\'s address/phone number?  I\'d like to get some 

information\nabout this chip.\n\n--\nJoe Green\t\t\t\tHarris 

Corporation\njgreen@csd.harris.com\t\t\tComputer Systems Division\n"The only 

thing that really scares me is a person with no sense of humor."\n\t\t\t\t\t\t-

- Jonathan Winters\n'] 

Prerequisite 

We need Stopwords from NLTK and English model from Scapy. Both can be downloaded 

as follows: 

import nltk;  

nltk.download('stopwords') 

nlp = spacy.load('en_core_web_md', disable=['parser', 'ner']) 

Importing necessary packages 

In order to build LDA model we need to import following necessary package: 

import re 

import numpy as np 

import pandas as pd 

from pprint import pprint 

import gensim 

import gensim.corpora as corpora 

from gensim.utils import simple_preprocess 

from gensim.models import CoherenceModel 

import spacy 

import pyLDAvis 

import pyLDAvis.gensim  
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import matplotlib.pyplot as plt 

Preparing Stopwords 

Now, we need to import the Stopwords and use them: 

from nltk.corpus import stopwords 

stop_words = stopwords.words('english') 

stop_words.extend(['from', 'subject', 're', 'edu', 'use']) 

Clean up the text 

Now, with the help of Gensim’s simple_preprocess() we need to tokenise each sentence 

into a list of words. We should also remove the punctuations and unnecessary characters. 

In order to do this, we will create a function named sent_to_words(): 

def sent_to_words(sentences): 

    for sentence in sentences: 

        yield(gensim.utils.simple_preprocess(str(sentence), deacc=True))   

data_words = list(sent_to_words(data)) 

Building Bigram & Trigram models 

As we know that, bigrams are two words that are frequently occurring together in the 

document and trigram are three words that are frequently occurring together in the 

document. With the help of Gensim’s Phrases model, we can do this: 

bigram = gensim.models.Phrases(data_words, min_count=5, threshold=100)  

trigram = gensim.models.Phrases(bigram[data_words], threshold=100)   

bigram_mod = gensim.models.phrases.Phraser(bigram) 

trigram_mod = gensim.models.phrases.Phraser(trigram) 

Filter out Stopwords 

Next, we need to filter out the Stopwords. Along with that, we will also create functions to 

make bigrams, trigrams and for lemmatisation: 

def remove_stopwords(texts): 

    return [[word for word in simple_preprocess(str(doc)) if word not in 

stop_words] for doc in texts] 

def make_bigrams(texts): 

    return [bigram_mod[doc] for doc in texts] 

def make_trigrams(texts): 

    return [trigram_mod[bigram_mod[doc]] for doc in texts] 

def lemmatization(texts, allowed_postags=['NOUN', 'ADJ', 'VERB', 'ADV']): 
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    texts_out = [] 

    for sent in texts: 

        doc = nlp(" ".join(sent))  

        texts_out.append([token.lemma_ for token in doc if token.pos_ in 

allowed_postags]) 

    return texts_out 

Building Dictionary & Corpus for Topic model 

We now need to build the dictionary & corpus. We did it in the previous examples as well: 

id2word = corpora.Dictionary(data_lemmatized) 

texts = data_lemmatized 

corpus = [id2word.doc2bow(text) for text in texts] 

Building LDA topic model 

We already implemented everything that is required to train the LDA model. Now, it is the 

time to build the LDA topic model. For our implementation example, it can be done with 

the help of following line of codes: 

lda_model = gensim.models.ldamodel.LdaModel(corpus=corpus,                                            

id2word=id2word, num_topics=20, random_state=100, update_every=1,                    

chunksize=100, passes=10, alpha='auto', per_word_topics=True) 

Implementation Example 

Let’s see the complete implementation example to build LDA topic model: 

import re 

import numpy as np 

import pandas as pd 

from pprint import pprint 

import gensim 

import gensim.corpora as corpora 

from gensim.utils import simple_preprocess 

from gensim.models import CoherenceModel 

import spacy 

import pyLDAvis 

import pyLDAvis.gensim  

import matplotlib.pyplot as plt 

from nltk.corpus import stopwords 

stop_words = stopwords.words('english') 
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stop_words.extend(['from', 'subject', 're', 'edu', 'use']) 

from sklearn.datasets import fetch_20newsgroups 

newsgroups_train = fetch_20newsgroups(subset='train') 

data = newsgroups_train.data 

data = [re.sub('\S*@\S*\s?', '', sent) for sent in data] 

data = [re.sub('\s+', ' ', sent) for sent in data] 

data = [re.sub("\'", "", sent) for sent in data] 

print(data_words[:4]) #it will print the data after prepared for stopwords 

bigram = gensim.models.Phrases(data_words, min_count=5, threshold=100)  

trigram = gensim.models.Phrases(bigram[data_words], threshold=100)   

bigram_mod = gensim.models.phrases.Phraser(bigram) 

trigram_mod = gensim.models.phrases.Phraser(trigram) 

def remove_stopwords(texts): 

    return [[word for word in simple_preprocess(str(doc)) if word not in 

stop_words] for doc in texts] 

 

def make_bigrams(texts): 

    return [bigram_mod[doc] for doc in texts] 

 

def make_trigrams(texts): 

    return [trigram_mod[bigram_mod[doc]] for doc in texts] 

 

def lemmatization(texts, allowed_postags=['NOUN', 'ADJ', 'VERB', 'ADV']): 

     

    texts_out = [] 

    for sent in texts: 

        doc = nlp(" ".join(sent))  

        texts_out.append([token.lemma_ for token in doc if token.pos_ in 

allowed_postags]) 

 

    return texts_out 

data_words_nostops = remove_stopwords(data_words) 

data_words_bigrams = make_bigrams(data_words_nostops) 

nlp = spacy.load('en_core_web_md', disable=['parser', 'ner']) 

data_lemmatized = lemmatization(data_words_bigrams, allowed_postags=['NOUN', 

'ADJ', 'VERB', 'ADV']) 

print(data_lemmatized[:4]) #it will print the lemmatized data. 

id2word = corpora.Dictionary(data_lemmatized) 
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texts = data_lemmatized 

corpus = [id2word.doc2bow(text) for text in texts] 

print(corpus[:4]) #it will print the corpus we created above. 

[[(id2word[id], freq) for id, freq in cp] for cp in corpus[:4]] #it will print 

the words with their frequencies. 

lda_model = gensim.models.ldamodel.LdaModel(corpus=corpus,                                            

id2word=id2word, num_topics=20, random_state=100, update_every=1,                    

chunksize=100, passes=10, alpha='auto', per_word_topics=True) 

We can now use the above created LDA model to get the topics, to compute Model 

Perplexity.  
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In this chapter, we will understand how to use Latent Dirichlet Allocation (LDA) topic 

model.  

Viewing topics in LDA model 

The LDA model (lda_model) we have created above can be used to view the topics from 

the documents. It can be done with the help of following script: 

pprint(lda_model.print_topics()) 

doc_lda = lda_model[corpus] 

Output 

[(0, 

  '0.036*"go" + 0.027*"get" + 0.021*"time" + 0.017*"back" + 0.015*"good" + ' 

  '0.014*"much" + 0.014*"be" + 0.013*"car" + 0.013*"well" + 0.013*"year"'), 

 (1, 

  '0.078*"screen" + 0.067*"video" + 0.052*"character" + 0.046*"normal" + ' 

  '0.045*"mouse" + 0.034*"manager" + 0.034*"disease" + 0.031*"processor" + ' 

  '0.028*"excuse" + 0.028*"choice"'), 

 (2, 

  '0.776*"ax" + 0.079*"_" + 0.011*"boy" + 0.008*"ticket" + 0.006*"red" + ' 

  '0.004*"conservative" + 0.004*"cult" + 0.004*"amazing" + 0.003*"runner" + ' 

  '0.003*"roughly"'), 

 (3, 

  '0.086*"season" + 0.078*"fan" + 0.072*"reality" + 0.065*"trade" + ' 

  '0.045*"concept" + 0.040*"pen" + 0.028*"blow" + 0.025*"improve" + ' 

  '0.025*"cap" + 0.021*"penguin"'), 

 (4, 

  '0.027*"group" + 0.023*"issue" + 0.016*"case" + 0.016*"cause" + ' 

  '0.014*"state" + 0.012*"whole" + 0.012*"support" + 0.011*"government" + ' 

  '0.010*"year" + 0.010*"rate"'), 

 (5, 

  '0.133*"evidence" + 0.047*"believe" + 0.044*"religion" + 0.042*"belief" + ' 

  '0.041*"sense" + 0.041*"discussion" + 0.034*"atheist" + 0.030*"conclusion" +  

' 

11. Gensim — Using LDA Topic Model 
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  '0.029*"explain" + 0.029*"claim"'), 

 (6, 

  '0.083*"space" + 0.059*"science" + 0.031*"launch" + 0.030*"earth" + ' 

  '0.026*"route" + 0.024*"orbit" + 0.024*"scientific" + 0.021*"mission" + ' 

  '0.018*"plane" + 0.017*"satellite"'), 

 (7, 

  '0.065*"file" + 0.064*"program" + 0.048*"card" + 0.041*"window" + ' 

  '0.038*"driver" + 0.037*"software" + 0.034*"run" + 0.029*"machine" + ' 

  '0.029*"entry" + 0.028*"version"'), 

 (8, 

  '0.078*"publish" + 0.059*"mount" + 0.050*"turkish" + 0.043*"armenian" + ' 

  '0.027*"western" + 0.026*"russian" + 0.025*"locate" + 0.024*"proceed" + ' 

  '0.024*"electrical" + 0.022*"terrorism"'), 

 (9, 

  '0.023*"people" + 0.023*"child" + 0.021*"kill" + 0.020*"man" + 0.019*"death" 

' 

  '+ 0.015*"die" + 0.015*"live" + 0.014*"attack" + 0.013*"age" + ' 

  '0.011*"church"'), 

(10, 

  '0.092*"cpu" + 0.085*"black" + 0.071*"controller" + 0.039*"white" + ' 

  '0.028*"water" + 0.027*"cold" + 0.025*"solid" + 0.024*"cool" + 0.024*"heat" ' 

  '+ 0.023*"nuclear"'), 

 (11, 

  '0.071*"monitor" + 0.044*"box" + 0.042*"option" + 0.041*"generate" + ' 

  '0.038*"vote" + 0.032*"battery" + 0.029*"wave" + 0.026*"tradition" + ' 

  '0.026*"fairly" + 0.025*"task"'), 

 (12, 

  '0.048*"send" + 0.045*"mail" + 0.036*"list" + 0.033*"include" + ' 

  '0.032*"price" + 0.031*"address" + 0.027*"email" + 0.026*"receive" + ' 

  '0.024*"book" + 0.024*"sell"'), 

 (13, 

  '0.515*"drive" + 0.052*"laboratory" + 0.042*"blind" + 0.020*"investment" + ' 

  '0.011*"creature" + 0.010*"loop" + 0.005*"dialog" + 0.000*"slave" + ' 

  '0.000*"jumper" + 0.000*"sector"'), 

 

 (14, 

  '0.153*"patient" + 0.066*"treatment" + 0.062*"printer" + 0.059*"doctor" + ' 
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  '0.036*"medical" + 0.031*"energy" + 0.029*"study" + 0.029*"probe" + ' 

  '0.024*"mph" + 0.020*"physician"'), 

 (15, 

  '0.068*"law" + 0.055*"gun" + 0.039*"government" + 0.036*"right" + ' 

  '0.029*"state" + 0.026*"drug" + 0.022*"crime" + 0.019*"person" + ' 

  '0.019*"citizen" + 0.019*"weapon"'), 

 (16, 

  '0.107*"team" + 0.102*"game" + 0.078*"play" + 0.055*"win" + 0.052*"player" + 

' 

  '0.051*"year" + 0.030*"score" + 0.025*"goal" + 0.023*"wing" + 0.023*"run"'), 

 (17, 

  '0.031*"say" + 0.026*"think" + 0.022*"people" + 0.020*"make" + 0.017*"see" + 

' 

  '0.016*"know" + 0.013*"come" + 0.013*"even" + 0.013*"thing" + 0.013*"give"'), 

 (18, 

  '0.039*"system" + 0.034*"use" + 0.023*"key" + 0.016*"bit" + 0.016*"also" + ' 

  '0.015*"information" + 0.014*"source" + 0.013*"chip" + 0.013*"available" + ' 

  '0.010*"provide"'), 

(19, 

  '0.085*"line" + 0.073*"write" + 0.053*"article" + 0.046*"organization" + ' 

  '0.034*"host" + 0.023*"be" + 0.023*"know" + 0.017*"thank" + 0.016*"want" + ' 

  '0.014*"help"')] 

Computing Model Perplexity 

The LDA model (lda_model) we have created above can be used to compute the model’s 

perplexity, i.e. how good the model is. The lower the score the better the model will be. 

It can be done with the help of following script: 

print('\nPerplexity: ', lda_model.log_perplexity(corpus)) 

Output 

Perplexity:  -12.338664984332151 

 

Computing Coherence score 

The LDA model (lda_model) we have created above can be used to compute the model’s 

coherence score i.e. the average /median of the pairwise word-similarity scores of the 

words in the topic. It can be done with the help of following script: 
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coherence_model_lda = CoherenceModel(model=lda_model, texts=data_lemmatized, 

dictionary=id2word, coherence='c_v') 

coherence_lda = coherence_model_lda.get_coherence() 

print('\nCoherence Score: ', coherence_lda) 

Output 

Coherence Score:  0.510264381411751 

Visualising the topics-keywords 

The LDA model (lda_model) we have created above can be used to examine the produced 

topics and the associated keywords. It can be visualised by using pyLDAvis package as 

follows: 

pyLDAvis.enable_notebook() 

vis = pyLDAvis.gensim.prepare(lda_model, corpus, id2word) 

vis 

Output 
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From the above output, the bubbles on the left-side represents a topic and larger the 

bubble, the more prevalent is that topic. The topic model will be good if the topic model 

has big, non-overlapping bubbles scattered throughout the chart.  
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This chapter will explain what is a Latent Dirichlet Allocation (LDA) Mallet Model and how 

to create the same in Gensim.   

In the previous section we have implemented LDA model and get the topics from 

documents of 20Newsgroup dataset. That was Gensim’s inbuilt version of the LDA 

algorithm. There is a Mallet version of Gensim also, which provides better quality of topics. 

Here, we are going to apply Mallet’s LDA on the previous example we have already 

implemented.   

What is LDA Mallet Model? 

Mallet, an open source toolkit, was written by Andrew McCullum. It is basically a Java 

based package which is used for NLP, document classification, clustering, topic modeling, 

and many other machine learning applications to text. It provides us the Mallet Topic 

Modeling toolkit which contains efficient, sampling-based implementations of LDA as well 

as Hierarchical LDA.  

Mallet2.0 is the current release from MALLET, the java topic modeling toolkit. Before we 

start using it with Gensim for LDA, we must download the mallet-2.0.8.zip package on our 

system and unzip it. Once installed and unzipped, set the environment variable 

%MALLET_HOME% to the point to the MALLET directory either manually or by the code 

we will be providing, while implementing the LDA with Mallet next. 

Gensim wrapper 

Python provides Gensim wrapper for Latent Dirichlet Allocation (LDA). The syntax of that 

wrapper is gensim.models.wrappers.LdaMallet.  This module, collapsed gibbs 

sampling from MALLET, allows LDA model estimation from a training corpus and inference 

of topic distribution on new, unseen documents as well.  

Implementation Example 

We will be using LDA Mallet on previously built LDA model and will check the difference in 

performance by calculating Coherence score. 

Providing path to Mallet file 

Before applying Mallet LDA model on our corpus built in previous example, we must have 

to update the environment variables and provide the path the Mallet file as well. It can be 

done with the help of following code: 

import os 

from gensim.models.wrappers import LdaMallet 

os.environ.update({'MALLET_HOME':r'C:/mallet-2.0.8/'}) #You should update this 

path as per the path of Mallet directory on your system. 

12. Gensim — Creating LDA Mallet Model 
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mallet_path = r'C:/mallet-2.0.8/bin/mallet' #You should update this path as per 

the path of Mallet directory on your system. 

Once we provided the path to Mallet file, we can now use it on the corpus. It can be done 

with the help of ldamallet.show_topics() function as follows: 

ldamallet = gensim.models.wrappers.LdaMallet(mallet_path, corpus=corpus, 

num_topics=20, id2word=id2word) 

pprint(ldamallet.show_topics(formatted=False)) 

Output 

[(4, 

  [('gun', 0.024546225966016102), 

   ('law', 0.02181426826996709), 

   ('state', 0.017633545129043606), 

   ('people', 0.017612848479831116), 

   ('case', 0.011341763768445888), 

   ('crime', 0.010596684396796159), 

   ('weapon', 0.00985160502514643), 

   ('person', 0.008671896020034356), 

   ('firearm', 0.00838214293105946), 

   ('police', 0.008257963035784506)]), 

 (9, 

  [('make', 0.02147966482730431), 

   ('people', 0.021377478029838543), 

   ('work', 0.018557122419783363), 

   ('money', 0.016676885346413244), 

   ('year', 0.015982015123646026), 

   ('job', 0.012221540976905783), 

   ('pay', 0.010239117106069897), 

   ('time', 0.008910688739014919), 

   ('school', 0.0079092581238504), 

   ('support', 0.007357449417535254)]), 

 (14, 

  [('power', 0.018428398507941996), 

   ('line', 0.013784244460364121), 

   ('high', 0.01183271164249895), 

   ('work', 0.011560979224821522), 
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   ('ground', 0.010770484918850819), 

   ('current', 0.010745781971789235), 

   ('wire', 0.008399002000938712), 

   ('low', 0.008053160742076529), 

   ('water', 0.006966231071366814), 

   ('run', 0.006892122230182061)]), 

 (0, 

  [('people', 0.025218349201353372), 

   ('kill', 0.01500904870564167), 

   ('child', 0.013612400660948935), 

   ('armenian', 0.010307655991816822), 

   ('woman', 0.010287984892595798), 

   ('start', 0.01003226060272248), 

   ('day', 0.00967818081674404), 

   ('happen', 0.009383114328428673), 

   ('leave', 0.009383114328428673), 

   ('fire', 0.009009363443229208)]), 

 (1, 

  [('file', 0.030686386604212003), 

   ('program', 0.02227713642901929), 

   ('window', 0.01945561169918489), 

   ('set', 0.015914874783314277), 

   ('line', 0.013831003577619592), 

   ('display', 0.013794120901412606), 

   ('application', 0.012576992586582082), 

   ('entry', 0.009275993066056873), 

   ('change', 0.00872275292295209), 

   ('color', 0.008612104894331132)]), 

 (12, 

  [('line', 0.07153810971508515), 

   ('buy', 0.02975597944523662), 

   ('organization', 0.026877236406682988), 

   ('host', 0.025451316957679788), 

   ('price', 0.025182275552207485), 

   ('sell', 0.02461728860071565), 

   ('mail', 0.02192687454599263), 



Gensim       

   54 

 

   ('good', 0.018967419085797303), 

   ('sale', 0.017998870026097017), 

   ('send', 0.013694207538540181)]), 

 (11, 

  [('thing', 0.04901329901329901), 

   ('good', 0.0376018876018876), 

   ('make', 0.03393393393393394), 

   ('time', 0.03326898326898327), 

   ('bad', 0.02664092664092664), 

   ('happen', 0.017696267696267698), 

   ('hear', 0.015615615615615615), 

   ('problem', 0.015465465465465466), 

   ('back', 0.015143715143715144), 

   ('lot', 0.01495066495066495)]), 

 (18, 

  [('space', 0.020626317374284855), 

   ('launch', 0.00965716006366413), 

   ('system', 0.008560244332602057), 

   ('project', 0.008173097603991913), 

   ('time', 0.008108573149223556), 

   ('cost', 0.007764442723792318), 

   ('year', 0.0076784101174345075), 

   ('earth', 0.007484836753129436), 

   ('base', 0.0067535595990880545), 

   ('large', 0.006689035144319697)]), 

 (5, 

  [('government', 0.01918437232469453), 

   ('people', 0.01461203206475212), 

   ('state', 0.011207097828624796), 

   ('country', 0.010214802708381975), 

   ('israeli', 0.010039691804809714), 

   ('war', 0.009436532025838587), 

   ('force', 0.00858043427504086), 

   ('attack', 0.008424780138532182), 

   ('land', 0.0076659662230523775), 
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   ('world', 0.0075103120865437)]), 

 (2, 

  [('car', 0.041091194044470564), 

   ('bike', 0.015598981291017729), 

   ('ride', 0.011019688510138114), 

   ('drive', 0.010627877363110981), 

   ('engine', 0.009403467528651191), 

   ('speed', 0.008081104907434616), 

   ('turn', 0.007738270153785875), 

   ('back', 0.007738270153785875), 

   ('front', 0.007468899990204721), 

   ('big', 0.007370947203447938)])] 

Evaluating Performance 

Now we can also evaluate its performance by calculating the coherence score as follows: 

coherence_model_ldamallet = CoherenceModel(model=ldamallet, 

texts=data_lemmatized, dictionary=id2word, coherence='c_v') 

coherence_ldamallet = coherence_model_ldamallet.get_coherence() 

print('\nCoherence Score: ', coherence_ldamallet) 

Output 

Coherence Score:  0.5842762900901401 
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This chapter discusses the documents and LDA model in Gensim. 

Finding optimal number of topics for LDA 

We can find the optimal number of topics for LDA by creating many LDA models with 

various values of topics. Among those LDAs we can pick one having highest coherence 

value. 

Following function named coherence_values_computation() will train multiple LDA 

models. It will also provide the models as well as their corresponding coherence score: 

def coherence_values_computation(dictionary, corpus, texts, limit, start=2, 

step=3): 

    coherence_values = [] 

    model_list = [] 

    for num_topics in range(start, limit, step): 

        model = gensim.models.wrappers.LdaMallet(mallet_path, corpus=corpus, 

num_topics=num_topics, id2word=id2word) 

        model_list.append(model) 

        coherencemodel = CoherenceModel(model=model, texts=texts, 

dictionary=dictionary, coherence='c_v') 

        coherence_values.append(coherencemodel.get_coherence()) 

    return model_list, coherence_values 

Now with the help of following code, we can get the optimal number of topics which we 

can show with the help of a graph as well: 

model_list, coherence_values = coherence_values_computation 

(dictionary=id2word, corpus=corpus, texts=data_lemmatized, start=1, limit=50, 

step=8) 

limit=50; start=1; step=8; 

x = range(start, limit, step) 

plt.plot(x, coherence_values) 

plt.xlabel("Num Topics") 

plt.ylabel("Coherence score") 

plt.legend(("coherence_values"), loc='best') 

plt.show() 

  

13. Gensim — Documents & LDA Model 
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Output 

 

Next, we can also print the coherence values for various topics as follows: 

for m, cv in zip(x, coherence_values): 

    print("Num Topics =", m, " is having Coherence Value of", round(cv, 4)) 

Output 

Num Topics = 1  is having Coherence Value of 0.4866 

Num Topics = 9  is having Coherence Value of 0.5083 

Num Topics = 17  is having Coherence Value of 0.5584 

Num Topics = 25  is having Coherence Value of 0.5793 

Num Topics = 33  is having Coherence Value of 0.587 

Num Topics = 41  is having Coherence Value of 0.5842 

Num Topics = 49  is having Coherence Value of 0.5735 

Now, the question arises which model should we pick now? One of the good practices is 

to pick the model, that is giving highest coherence value before flattering out. So that’s 

why, we will be choosing the model with 25 topics which is at number 4 in the above list. 

optimal_model = model_list[3] 

model_topics = optimal_model.show_topics(formatted=False) 

pprint(optimal_model.print_topics(num_words=10)) 
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[(0, 

  '0.018*"power" + 0.011*"high" + 0.010*"ground" + 0.009*"current" + ' 

  '0.008*"low" + 0.008*"wire" + 0.007*"water" + 0.007*"work" + 0.007*"design" ' 

  '+ 0.007*"light"'), 

 (1, 

  '0.036*"game" + 0.029*"team" + 0.029*"year" + 0.028*"play" + 0.020*"player" ' 

  '+ 0.019*"win" + 0.018*"good" + 0.013*"season" + 0.012*"run" + 0.011*"hit"'), 

 (2, 

  '0.020*"image" + 0.019*"information" + 0.017*"include" + 0.017*"mail" + ' 

  '0.016*"send" + 0.015*"list" + 0.013*"post" + 0.012*"address" + ' 

  '0.012*"internet" + 0.012*"system"'), 

 (3, 

  '0.986*"ax" + 0.002*"_" + 0.001*"tm" + 0.000*"part" + 0.000*"biz" + ' 

  '0.000*"mb" + 0.000*"mbs" + 0.000*"pne" + 0.000*"end" + 0.000*"di"'), 

 (4, 

  '0.020*"make" + 0.014*"work" + 0.013*"money" + 0.013*"year" + 0.012*"people" 

' 

  '+ 0.011*"job" + 0.010*"group" + 0.009*"government" + 0.008*"support" + ' 

  '0.008*"question"'), 

 (5, 

  '0.011*"study" + 0.011*"drug" + 0.009*"science" + 0.008*"food" + ' 

  '0.008*"problem" + 0.008*"result" + 0.008*"effect" + 0.007*"doctor" + ' 

  '0.007*"research" + 0.007*"patient"'), 

 (6, 

  '0.024*"gun" + 0.024*"law" + 0.019*"state" + 0.015*"case" + 0.013*"people" + 

' 

  '0.010*"crime" + 0.010*"weapon" + 0.010*"person" + 0.008*"firearm" + ' 

  '0.008*"police"'), 

 (7, 

  '0.012*"word" + 0.011*"question" + 0.011*"exist" + 0.011*"true" + ' 

  '0.010*"religion" + 0.010*"claim" + 0.008*"argument" + 0.008*"truth" + ' 

  '0.008*"life" + 0.008*"faith"'), 

 (8, 

  '0.077*"time" + 0.029*"day" + 0.029*"call" + 0.025*"back" + 0.021*"work" + ' 

 

  '0.019*"long" + 0.015*"end" + 0.015*"give" + 0.014*"year" + 0.014*"week"'), 
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 (9, 

  '0.048*"thing" + 0.041*"make" + 0.038*"good" + 0.037*"people" + ' 

  '0.028*"write" + 0.019*"bad" + 0.019*"point" + 0.018*"read" + 0.018*"post" + 

' 

  '0.016*"idea"'), 

 (10, 

  '0.022*"book" + 0.020*"_" + 0.013*"man" + 0.012*"people" + 0.011*"write" + ' 

  '0.011*"find" + 0.010*"history" + 0.010*"armenian" + 0.009*"turkish" + ' 

  '0.009*"number"'), 

 (11, 

  '0.064*"line" + 0.030*"buy" + 0.028*"organization" + 0.025*"price" + ' 

  '0.025*"sell" + 0.023*"good" + 0.021*"host" + 0.018*"sale" + 0.017*"mail" + ' 

  '0.016*"cost"'), 

 (12, 

  '0.041*"car" + 0.015*"bike" + 0.011*"ride" + 0.010*"engine" + 0.009*"drive" ' 

  '+ 0.008*"side" + 0.008*"article" + 0.007*"turn" + 0.007*"front" + ' 

  '0.007*"speed"'), 

 (13, 

  '0.018*"people" + 0.011*"attack" + 0.011*"state" + 0.011*"israeli" + ' 

  '0.010*"war" + 0.010*"country" + 0.010*"government" + 0.009*"live" + ' 

  '0.009*"give" + 0.009*"land"'), 

 (14, 

  '0.037*"file" + 0.026*"line" + 0.021*"read" + 0.019*"follow" + ' 

  '0.018*"number" + 0.015*"program" + 0.014*"write" + 0.012*"entry" + ' 

  '0.012*"give" + 0.011*"check"'), 

 (15, 

  '0.196*"write" + 0.172*"line" + 0.165*"article" + 0.117*"organization" + ' 

  '0.086*"host" + 0.030*"reply" + 0.010*"university" + 0.008*"hear" + ' 

  '0.007*"post" + 0.007*"news"'), 

(16, 

  '0.021*"people" + 0.014*"happen" + 0.014*"child" + 0.012*"kill" + ' 

  '0.011*"start" + 0.011*"live" + 0.010*"fire" + 0.010*"leave" + 0.009*"hear" ' 

  '+ 0.009*"home"'), 

 (17, 

  '0.038*"key" + 0.018*"system" + 0.015*"space" + 0.015*"technology" + ' 

  '0.014*"encryption" + 0.010*"chip" + 0.010*"bit" + 0.009*"launch" + ' 

  '0.009*"public" + 0.009*"government"'), 
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 (18, 

  '0.035*"drive" + 0.031*"system" + 0.027*"problem" + 0.027*"card" + ' 

  '0.020*"driver" + 0.017*"bit" + 0.017*"work" + 0.016*"disk" + ' 

  '0.014*"monitor" + 0.014*"machine"'), 

 (19, 

  '0.031*"window" + 0.020*"run" + 0.018*"color" + 0.018*"program" + ' 

  '0.017*"application" + 0.016*"display" + 0.015*"set" + 0.015*"version" + ' 

  '0.012*"screen" + 0.012*"problem"')] 

Finding dominant topics in sentences 

Finding dominant topics in sentences is one of the most useful practical applications of 

topic modeling. It determines what topic a given document is about. Here, we will find 

that topic number which has the highest percentage contribution in that particular 

document. In order to aggregate the information in a table, we will be creating a function 

named dominant_topics(): 

def dominant_topics(ldamodel=lda_model, corpus=corpus, texts=data): 

    sent_topics_df = pd.DataFrame() 

Next, we will get the main topics in every document: 

    for i, row in enumerate(ldamodel[corpus]): 

        row = sorted(row, key=lambda x: (x[1]), reverse=True) 

Next, we will get the Dominant topic, Perc Contribution and Keywords for every document: 

        for j, (topic_num, prop_topic) in enumerate(row): 

            if j == 0:  # => dominant topic 

                wp = ldamodel.show_topic(topic_num) 

                topic_keywords = ", ".join([word for word, prop in wp]) 

                sent_topics_df = 

sent_topics_df.append(pd.Series([int(topic_num), round(prop_topic,4), 

topic_keywords]), ignore_index=True) 

            else: 

                break 

    sent_topics_df.columns = ['Dominant_Topic', 'Perc_Contribution', 

'Topic_Keywords'] 

With the help of following code, we will add the original text to the end of the output:         

contents = pd.Series(texts) 

    sent_topics_df = pd.concat([sent_topics_df, contents], axis=1) 
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    return(sent_topics_df) 

df_topic_sents_keywords = dominant_topics(ldamodel=optimal_model, 

corpus=corpus, texts=data) 

Now, do the formatting of topics in the sentences as follows: 

df_dominant_topic = df_topic_sents_keywords.reset_index() 

df_dominant_topic.columns = ['Document_No', 'Dominant_Topic', 

'Topic_Perc_Contrib', 'Keywords', 'Text'] 

Finally, we can show the dominant topics as follows: 

df_dominant_topic.head(15) 

Output 

 

Finding most representative document 

In order to understand more about the topic, we can also find the documents, a given 

topic has contributed to the most. We can infer that topic by reading that particular 

document(s). 

sent_topics_sorteddf_mallet = pd.DataFrame() 

sent_topics_outdf_grpd = df_topic_sents_keywords.groupby('Dominant_Topic') 

for i, grp in sent_topics_outdf_grpd: 

    sent_topics_sorteddf_mallet = pd.concat([sent_topics_sorteddf_mallet,  
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grp.sort_values(['Perc_Contribution'], ascending=[0]).head(1)],  

                                            axis=0) 

sent_topics_sorteddf_mallet.reset_index(drop=True, inplace=True) 

sent_topics_sorteddf_mallet.columns = ['Topic_Number', "Contribution_Perc", 

"Keywords", "Text"] 

sent_topics_sorteddf_mallet.head() 

Output 

 

Volume & distribution of topics 

Sometimes we also want to judge how widely the topic is discussed in documents. For this 

we need to understand the volume and distribution of topics across the documents. 

First calculate the number of documents for every Topic as follows: 

topic_counts = df_topic_sents_keywords['Dominant_Topic'].value_counts() 

Next, calculate the percentage of Documents for every Topic as follows: 

topic_contribution = round(topic_counts/topic_counts.sum(), 4) 

Now find the topic Number and Keywords as follows: 

topic_num_keywords = df_topic_sents_keywords[['Dominant_Topic', 

'Topic_Keywords']] 

Now, concatenate then Column wise as follows: 

df_dominant_topics = pd.concat([topic_num_keywords, topic_counts, 

topic_contribution], axis=1) 

Next, we will change the Column names as follows: 
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df_dominant_topics.columns = ['Dominant-Topic', 'Topic-Keywords', 

'Num_Documents', 'Perc_Documents'] 

df_dominant_topics 

Output 
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This chapter deals with creating Latent Semantic Indexing (LSI) and Hierarchical Dirichlet 

Process (HDP) topic model with regards to Gensim.  

The topic modeling algorithms that was first implemented in Gensim with Latent Dirichlet 

Allocation (LDA) is Latent Semantic Indexing (LSI). It is also called Latent Semantic 

Analysis (LSA). It got patented in 1988 by Scott Deerwester, Susan Dumais, George 

Furnas, Richard Harshman, Thomas Landaur, Karen Lochbaum, and Lynn Streeter.  

In this section we are going to set up our LSI model. It can be done in the same way of 

setting up LDA model. we need to import LSI model from gensim.models. 

Role of LSI 

Actually, LSI is a technique NLP, especially in distributional semantics. It analyses the 

relationship between a set of documents and the terms these documents contain. If we 

talk about its working, then it constructs a matrix that contains word counts per document 

from a large piece of text.  

Once constructed, to reduce the number of rows, LSI model use a mathematical technique 

called singular value decomposition (SVD). Along with reducing the number of rows, it also 

preserves the similarity structure among columns.  

In matrix, the rows represent unique words and the columns represent each document. It 

works based on distributional hypothesis, i.e. it assumes that the words that are close in 

meaning will occur in same kind of text.  

Implementation with Gensim 

Here, we are going to use LSI (Latent Semantic Indexing) to extract the naturally 

discussed topics from dataset.     

Loading Data set 

The dataset which we are going to use is the dataset of ’20 Newsgroups’ having 

thousands of news articles from various sections of a news report. It is available under 

Sklearn data sets. We can easily download with the help of following Python script: 

from sklearn.datasets import fetch_20newsgroups 

newsgroups_train = fetch_20newsgroups(subset='train') 

Let’s look at some of the sample news with the help of following script: 

newsgroups_train.data[:4] 

 ["From: lerxst@wam.umd.edu (where's my thing)\nSubject: WHAT car is 

this!?\nNntp-Posting-Host: rac3.wam.umd.edu\nOrganization: University of 

Maryland, College Park\nLines: 15\n\n I was wondering if anyone out there could 

enlighten me on this car I saw\nthe other day. It was a 2-door sports car, 

14. Gensim — Creating LSI & HDP Topic Model 
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looked to be from the late 60s/\nearly 70s. It was called a Bricklin. The doors 

were really small. In addition,\nthe front bumper was separate from the rest of 

the body. This is \nall I know. If anyone can tellme a model name, engine 

specs, years\nof production, where this car is made, history, or whatever info 

you\nhave on this funky looking car, please e-mail.\n\nThanks,\n- IL\n   ---- 

brought to you by your neighborhood Lerxst ----\n\n\n\n\n", 

 "From: guykuo@carson.u.washington.edu (Guy Kuo)\nSubject: SI Clock Poll - 

Final Call\nSummary: Final call for SI clock reports\nKeywords: 

SI,acceleration,clock,upgrade\nArticle-I.D.: 

shelley.1qvfo9INNc3s\nOrganization: University of Washington\nLines: 11\nNNTP-

Posting-Host: carson.u.washington.edu\n\nA fair number of brave souls who 

upgraded their SI clock oscillator have\nshared their experiences for this 

poll. Please send a brief message detailing\nyour experiences with the 

procedure. Top speed attained, CPU rated speed,\nadd on cards and adapters, 

heat sinks, hour of usage per day, floppy disk\nfunctionality with 800 and 1.4 

m floppies are especially requested.\n\nI will be summarizing in the next two 

days, so please add to the network\nknowledge base if you have done the clock 

upgrade and haven't answered this\npoll. Thanks.\n\nGuy Kuo 

<guykuo@u.washington.edu>\n", 

 'From: twillis@ec.ecn.purdue.edu (Thomas E Willis)\nSubject: PB 

questions...\nOrganization: Purdue University Engineering Computer 

Network\nDistribution: usa\nLines: 36\n\nwell folks, my mac plus finally gave 

up the ghost this weekend after\nstarting life as a 512k way back in 1985.  

sooo, i\'m in the market for a\nnew machine a bit sooner than i intended to 

be...\n\ni\'m looking into picking up a powerbook 160 or maybe 180 and have a 

bunch\nof questions that (hopefully) somebody can answer:\n\n* does anybody 

know any dirt on when the next round of powerbook\nintroductions are expected?  

i\'d heard the 185c was supposed to make an\nappearence "this summer" but 

haven\'t heard anymore on it - and since i\ndon\'t have access to macleak, i 

was wondering if anybody out there had\nmore info...\n\n* has anybody heard 

rumors about price drops to the powerbook line like the\nones the duo\'s just 

went through recently?\n\n* what\'s the impression of the display on the 180?  

i could probably swing\na 180 if i got the 80Mb disk rather than the 120, but i 

don\'t really have\na feel for how much "better" the display is (yea, it looks 

great in the\nstore, but is that all "wow" or is it really that good?).  could 

i solicit\nsome opinions of people who use the 160 and 180 day-to-day on if its 

worth\ntaking the disk size and money hit to get the active display?  (i 

realize\nthis is a real subjective question, but i\'ve only played around with 

the\nmachines in a computer store breifly and figured the opinions of 

somebody\nwho actually uses the machine daily might prove helpful).\n\n* how 

well does hellcats perform?  ;)\n\nthanks a bunch in advance for any info - if 

you could email, i\'ll post a\nsummary (news reading time is at a premium with 

finals just around the\ncorner... :( )\n--\nTom Willis  \\  

twillis@ecn.purdue.edu    \\    Purdue Electrical Engineering\n----------------

-----------------------------------------------------------\n"Convictions are 

more dangerous enemies of truth than lies."  - F. W.\nNietzsche\n', 

 'From: jgreen@amber (Joe Green)\nSubject: Re: Weitek P9000 ?\nOrganization: 

Harris Computer Systems Division\nLines: 14\nDistribution: world\nNNTP-Posting-

Host: amber.ssd.csd.harris.com\nX-Newsreader: TIN [version 1.1 PL9]\n\nRobert 

J.C. Kyanko (rob@rjck.UUCP) wrote:\n> abraxis@iastate.edu writes in article 

<abraxis.734340159@class1.iastate.edu>:\n> > Anyone know about the Weitek P9000 

graphics chip?\n> As far as the low-level stuff goes, it looks pretty nice.  

It\'s got this\n> quadrilateral fill command that requires just the four 
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points.\n\nDo you have Weitek\'s address/phone number?  I\'d like to get some 

information\nabout this chip.\n\n--\nJoe Green\t\t\t\tHarris 

Corporation\njgreen@csd.harris.com\t\t\tComputer Systems Division\n"The only 

thing that really scares me is a person with no sense of humor."\n\t\t\t\t\t\t-

- Jonathan Winters\n'] 

Prerequisite 

We need Stopwords from NLTK and English model from Scapy. Both can be downloaded 

as follows: 

import nltk;  

nltk.download('stopwords') 

nlp = spacy.load('en_core_web_md', disable=['parser', 'ner']) 

Importing necessary packages 

In order to build LSI model we need to import following necessary package: 

import re 

import numpy as np 

import pandas as pd 

from pprint import pprint 

import gensim 

import gensim.corpora as corpora 

from gensim.utils import simple_preprocess 

from gensim.models import CoherenceModel 

import spacy 

import matplotlib.pyplot as plt 

Preparing Stopwords 

Now we need to import the Stopwords and use them: 

from nltk.corpus import stopwords 

stop_words = stopwords.words('english') 

stop_words.extend(['from', 'subject', 're', 'edu', 'use']) 

Clean up the text 

Now, with the help of Gensim’s simple_preprocess() we need to tokenise each sentence 

into a list of words. We should also remove the punctuations and unnecessary characters. 

In order to do this, we will create a function named sent_to_words(): 

def sent_to_words(sentences): 
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    for sentence in sentences: 

        yield(gensim.utils.simple_preprocess(str(sentence), deacc=True))   

data_words = list(sent_to_words(data)) 

Building Bigram & Trigram models 

As we know that bigrams are two words that are frequently occurring together in the 

document and trigram are three words that are frequently occurring together in the 

document. With the help of Gensim’s Phrases model, we can do this: 

bigram = gensim.models.Phrases(data_words, min_count=5, threshold=100)  

trigram = gensim.models.Phrases(bigram[data_words], threshold=100)   

bigram_mod = gensim.models.phrases.Phraser(bigram) 

trigram_mod = gensim.models.phrases.Phraser(trigram) 

Filter out Stopwords 

Next, we need to filter out the Stopwords. Along with that, we will also create functions to 

make bigrams, trigrams and for lemmatisation: 

def remove_stopwords(texts): 

    return [[word for word in simple_preprocess(str(doc)) if word not in 

stop_words] for doc in texts] 

def make_bigrams(texts): 

    return [bigram_mod[doc] for doc in texts] 

def make_trigrams(texts): 

    return [trigram_mod[bigram_mod[doc]] for doc in texts] 

def lemmatization(texts, allowed_postags=['NOUN', 'ADJ', 'VERB', 'ADV']): 

    texts_out = [] 

    for sent in texts: 

        doc = nlp(" ".join(sent))  

        texts_out.append([token.lemma_ for token in doc if token.pos_ in 

allowed_postags]) 

    return texts_out 

Building Dictionary & Corpus for Topic Model 

We now need to build the dictionary & corpus. We did it in the previous examples as well: 

id2word = corpora.Dictionary(data_lemmatized) 

texts = data_lemmatized 

corpus = [id2word.doc2bow(text) for text in texts] 
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Building LSI topic Model 

We already implemented everything that is required to train the LSI model. Now, it is the 

time to build the LSI topic model. For our implementation example, it can be done with 

the help of following line of codes: 

lsi_model = gensim.models.lsimodel.LsiModel(corpus=corpus,                               

id2word=id2word, num_topics=20,chunksize=100) 

Implementation Example 

Let’s see the complete implementation example to build LDA topic model: 

import re 

import numpy as np 

import pandas as pd 

from pprint import pprint 

import gensim 

import gensim.corpora as corpora 

from gensim.utils import simple_preprocess 

from gensim.models import CoherenceModel 

import spacy 

import matplotlib.pyplot as plt 

from nltk.corpus import stopwords 

stop_words = stopwords.words('english') 

stop_words.extend(['from', 'subject', 're', 'edu', 'use']) 

from sklearn.datasets import fetch_20newsgroups 

newsgroups_train = fetch_20newsgroups(subset='train') 

data = newsgroups_train.data 

data = [re.sub('\S*@\S*\s?', '', sent) for sent in data] 

data = [re.sub('\s+', ' ', sent) for sent in data] 

data = [re.sub("\'", "", sent) for sent in data] 

print(data_words[:4]) #it will print the data after prepared for stopwords 

bigram = gensim.models.Phrases(data_words, min_count=5, threshold=100)  

trigram = gensim.models.Phrases(bigram[data_words], threshold=100)   

bigram_mod = gensim.models.phrases.Phraser(bigram) 

trigram_mod = gensim.models.phrases.Phraser(trigram) 

def remove_stopwords(texts): 

    return [[word for word in simple_preprocess(str(doc)) if word not in 

stop_words] for doc in texts] 
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def make_bigrams(texts): 

    return [bigram_mod[doc] for doc in texts] 

 

def make_trigrams(texts): 

    return [trigram_mod[bigram_mod[doc]] for doc in texts] 

 

def lemmatization(texts, allowed_postags=['NOUN', 'ADJ', 'VERB', 'ADV']): 

    texts_out = [] 

    for sent in texts: 

        doc = nlp(" ".join(sent))  

        texts_out.append([token.lemma_ for token in doc if token.pos_ in 

allowed_postags]) 

    return texts_out 

data_words_nostops = remove_stopwords(data_words) 

data_words_bigrams = make_bigrams(data_words_nostops) 

nlp = spacy.load('en_core_web_md', disable=['parser', 'ner']) 

data_lemmatized = lemmatization(data_words_bigrams, allowed_postags=['NOUN', 

'ADJ', 'VERB', 'ADV']) 

print(data_lemmatized[:4]) #it will print the lemmatized data. 

id2word = corpora.Dictionary(data_lemmatized) 

texts = data_lemmatized 

corpus = [id2word.doc2bow(text) for text in texts] 

print(corpus[:4]) #it will print the corpus we created above. 

[[(id2word[id], freq) for id, freq in cp] for cp in corpus[:4]] #it will print 

the words with their frequencies. 

lsi_model = gensim.models.lsimodel.LsiModel(corpus=corpus,                               

id2word=id2word, num_topics=20,chunksize=100) 

We can now use the above created LSI model to get the topics.  

Viewing topics in LSI model 

The LSI model (lsi_model) we have created above can be used to view the topics from 

the documents. It can be done with the help of following script: 

pprint(lsi_model.print_topics()) 

doc_lsi = lsi_model[corpus] 

Output 

[(0, 
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  '1.000*"ax" + 0.001*"_" + 0.000*"tm" + 0.000*"part" + 0.000*"pne" + ' 

  '0.000*"biz" + 0.000*"mbs" + 0.000*"end" + 0.000*"fax" + 0.000*"mb"'), 

 (1, 

  '0.239*"say" + 0.222*"file" + 0.189*"go" + 0.171*"know" + 0.169*"people" + ' 

  '0.147*"make" + 0.140*"use" + 0.135*"also" + 0.133*"see" + 0.123*"think"')] 

Hierarchical Dirichlet Process (HPD) 

Topic models such as LDA and LSI helps in summarising and organising large archives of 

texts that is not possible to analyse by hand. Apart from LDA and LSI, one other powerful 

topic model in Gensim is HDP (Hierarchical Dirichlet Process). It’s basically a mixed-

membership model for unsupervised analysis of grouped data. Unlike LDA (its’s finite 

counterpart), HDP infers the number of topics from the data. 

Implementation with Gensim 

For implementing HDP in Gensim, we need to train corpus and dictionary (as did in the 

above examples while implementing LDA and LSI topic models) HDP topic model that we 

can import from gensim.models.HdpModel. Here also we will implement HDP topic model 

on 20Newsgroup data and the steps are also same. 

For our corpus and dictionary (created in above examples for LSI and LDA model), we can 

import HdpModel as follows: 

Hdp_model = gensim.models.hdpmodel.HdpModel(corpus=corpus, 

                                           id2word=id2word) 

Viewing topics in LSI model 

The HDP model (Hdp_model) can be used to view the topics from the documents. It can 

be done with the help of following script: 

pprint(Hdp_model.print_topics()) 

Output 

[(0, 

  '0.009*line + 0.009*write + 0.006*say + 0.006*article + 0.006*know + ' 

  '0.006*people + 0.005*make + 0.005*go + 0.005*think + 0.005*be'), 

 (1, 

  '0.016*line + 0.011*write + 0.008*article + 0.008*organization + 0.006*know ' 

  '+ 0.006*host + 0.006*be + 0.005*get + 0.005*use + 0.005*say'), 

 (2, 

  '0.810*ax + 0.001*_ + 0.000*tm + 0.000*part + 0.000*mb + 0.000*pne + ' 

  '0.000*biz + 0.000*end + 0.000*wwiz + 0.000*fax'), 
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 (3, 

  '0.015*line + 0.008*write + 0.007*organization + 0.006*host + 0.006*know + ' 

  '0.006*article + 0.005*use + 0.005*thank + 0.004*get + 0.004*problem'), 

 (4, 

  '0.004*line + 0.003*write + 0.002*believe + 0.002*think + 0.002*article + ' 

  '0.002*belief + 0.002*say + 0.002*see + 0.002*look + 0.002*organization'), 

 (5, 

  '0.005*line + 0.003*write + 0.003*organization + 0.002*article + 0.002*time ' 

  '+ 0.002*host + 0.002*get + 0.002*look + 0.002*say + 0.001*number'), 

 (6, 

  '0.003*line + 0.002*say + 0.002*write + 0.002*go + 0.002*gun + 0.002*get + ' 

  '0.002*organization + 0.002*bill + 0.002*article + 0.002*state'), 

 (7, 

  '0.003*line + 0.002*write + 0.002*article + 0.002*organization + 0.001*none ' 

  '+ 0.001*know + 0.001*say + 0.001*people + 0.001*host + 0.001*new'), 

 (8, 

  '0.004*line + 0.002*write + 0.002*get + 0.002*team + 0.002*organization + ' 

  '0.002*go + 0.002*think + 0.002*know + 0.002*article + 0.001*well'), 

 (9, 

  '0.004*line + 0.002*organization + 0.002*write + 0.001*be + 0.001*host + ' 

  '0.001*article + 0.001*thank + 0.001*use + 0.001*work + 0.001*run'), 

 (10, 

  '0.002*line + 0.001*game + 0.001*write + 0.001*get + 0.001*know + ' 

  '0.001*thing + 0.001*think + 0.001*article + 0.001*help + 0.001*turn'), 

 (11, 

 

  '0.002*line + 0.001*write + 0.001*game + 0.001*organization + 0.001*say + ' 

  '0.001*host + 0.001*give + 0.001*run + 0.001*article + 0.001*get'), 

 (12, 

  '0.002*line + 0.001*write + 0.001*know + 0.001*time + 0.001*article + ' 

  '0.001*get + 0.001*think + 0.001*organization + 0.001*scope + 0.001*make'), 

 (13, 

  '0.002*line + 0.002*write + 0.001*article + 0.001*organization + 0.001*make ' 

  '+ 0.001*know + 0.001*see + 0.001*get + 0.001*host + 0.001*really'), 

 (14, 

  '0.002*write + 0.002*line + 0.002*know + 0.001*think + 0.001*say + ' 

  '0.001*article + 0.001*argument + 0.001*even + 0.001*card + 0.001*be'), 
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 (15, 

  '0.001*article + 0.001*line + 0.001*make + 0.001*write + 0.001*know + ' 

  '0.001*say + 0.001*exist + 0.001*get + 0.001*purpose + 0.001*organization'), 

 (16, 

  '0.002*line + 0.001*write + 0.001*article + 0.001*insurance + 0.001*go + ' 

  '0.001*be + 0.001*host + 0.001*say + 0.001*organization + 0.001*part'), 

 (17, 

  '0.001*line + 0.001*get + 0.001*hit + 0.001*go + 0.001*write + 0.001*say + ' 

  '0.001*know + 0.001*drug + 0.001*see + 0.001*need'), 

 (18, 

  '0.002*option + 0.001*line + 0.001*flight + 0.001*power + 0.001*software + ' 

  '0.001*write + 0.001*add + 0.001*people + 0.001*organization + 

0.001*module'), 

 (19, 

  '0.001*shuttle + 0.001*line + 0.001*roll + 0.001*attitude + 0.001*maneuver + 

' 

  '0.001*mission + 0.001*also + 0.001*orbit + 0.001*produce + 

0.001*frequency')] 
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The chapter will help us understand developing word embedding in Gensim. 

Word embedding, approach to represent words & document, is a dense vector 

representation for text where words having the same meaning have a similar 

representation.  Following are some characteristics of word embedding: 

 It is a class of technique which represents the individual words as real-valued 

vectors in a pre-defined vector space. 

 This technique is often lumped into the field of DL (deep learning) because every 

word is mapped to one vector and the vector values are learned in the same way 

a NN (Neural Networks) does. 

 The key approach of word embedding technique is a dense distributed 

representation for every word. 

Different word embedding methods/algorithms 

As discussed above, word embedding methods/algorithms learn a real-valued vector 

representation from a corpus of text. This learning process can either use with the NN 

model on task like document classification or is an unsupervised process such as document 

statistics. Here we are going to discuss two methods/algorithm that can be used to learn 

a word embedding from text: 

Word2Vec by Google 

Word2Vec, developed by Tomas Mikolov, et. al. at Google in 2013, is a statistical method 

for efficiently learning a word embedding from text corpus. It’s actually developed as a 

response to make NN based training of word embedding more efficient. It has become the 

de facto standard for word embedding.  

Word embedding by Word2Vec involves analysis of the learned vectors as well as 

exploration of vector math on representation of words. Following are the two different 

learning methods which can be used as the part of Word2Vec method: 

 CBoW(Continuous Bag of Words) Model 

 Continuous Skip-Gram Model 

GloVe by Standford 

GloVe(Global vectors for Word Representation), is an extension to the Word2Vec method. 

It was developed by Pennington et al. at Stanford. GloVe algorithm is a mix of both: 

 Global statistics of matrix factorization techniques like LSA (Latent Semantic 

Analysis) 

 Local context-based learning in Word2Vec. 

15. Gensim — Developing Word Embedding 
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If we talk about its working then instead of using a window to define local context, GloVe 

constructs an explicit word co-occurrence matrix using statistics across the whole text 

corpus.   

Developing Word2Vec embedding 

Here, we will develop Word2Vec embedding by using Gensim. In order to work with a 

Word2Vec model, Gensim provides us Word2Vec class which can be imported from 

models.word2vec. For its implementation, word2vec requires a lot of text e.g. the entire 

Amazon review corpus. But here, we will apply this principle on small-in memory text. 

Implementation example 

First we need to import the Word2Vec class from gensim.models as follows: 

from gensim.models import Word2Vec 

Next, we need to define the training data. Rather than taking big text file, we are using 

some sentences to implement this principal. 

sentences = [['this', 'is', 'gensim', 'tutorial', 'for', 'free'], 

   ['this', 'is', 'the', 'tutorials' 'point', 'website'], 

   ['you', 'can', 'read', 'technical','tutorials', 

'for','free'], 

   ['we', 'are', 'implementing','word2vec'], 

   ['learn', 'full', 'gensim', 'tutorial']] 

Once the training data is provided, we need to train the model. it can be done as follows: 

model = Word2Vec(sentences, min_count=1) 

We can summarise the model as follows: 

print(model) 

We can summarise the vocabulary as follows: 

words = list(model.wv.vocab) 

print(words) 

Next, let’s access the vector for one word. We are doing it for the word ‘tutorial’. 

print(model['tutorial']) 

Next, we need to save the model: 

model.save('model.bin') 

Next, we need to load the model: 
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new_model = Word2Vec.load('model.bin') 

Finally, print the saved model as follows:  

print(new_model) 

Complete implementation example 

from gensim.models import Word2Vec 

sentences = [['this', 'is', 'gensim', 'tutorial', 'for', 'free'], 

   ['this', 'is', 'the', 'tutorials' 'point', 'website'], 

   ['you', 'can', 'read', 'technical','tutorials', 

'for','free'], 

   ['we', 'are', 'implementing','word2vec'], 

   ['learn', 'full', 'gensim', 'tutorial']] 

model = Word2Vec(sentences, min_count=1) 

print(model) 

words = list(model.wv.vocab) 

print(words) 

print(model['tutorial']) 

model.save('model.bin') 

new_model = Word2Vec.load('model.bin') 

print(new_model) 

Output 

Word2Vec(vocab=20, size=100, alpha=0.025) 

['this', 'is', 'gensim', 'tutorial', 'for', 'free', 'the', 'tutorialspoint', 

'website', 'you', 'can', 'read', 'technical', 'tutorials', 'we', 'are', 

'implementing', 'word2vec', 'learn', 'full'] 

[-2.5256255e-03 -4.5352755e-03  3.9024993e-03 -4.9509313e-03 

 -1.4255195e-03 -4.0217536e-03  4.9407515e-03 -3.5925603e-03 

 -1.1933431e-03 -4.6682903e-03  1.5440651e-03 -1.4101702e-03 

  3.5070938e-03  1.0914479e-03  2.3334436e-03  2.4452661e-03 

 -2.5336299e-04 -3.9676363e-03 -8.5054158e-04  1.6443320e-03 

 -4.9968651e-03  1.0974540e-03 -1.1123562e-03  1.5393364e-03 

  9.8941079e-04 -1.2656028e-03 -4.4471184e-03  1.8309267e-03 

 

  4.9302122e-03 -1.0032534e-03  4.6892050e-03  2.9563988e-03 

  1.8730218e-03  1.5343715e-03 -1.2685956e-03  8.3664013e-04 
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  4.1721235e-03  1.9445885e-03  2.4097660e-03  3.7517555e-03 

  4.9687522e-03 -1.3598346e-03  7.1032363e-04 -3.6595813e-03 

  6.0000515e-04  3.0872561e-03 -3.2115565e-03  3.2270295e-03 

 -2.6354722e-03 -3.4988276e-04  1.8574356e-04 -3.5757164e-03 

  7.5391348e-04 -3.5205986e-03 -1.9795434e-03 -2.8321696e-03 

  4.7155009e-03 -4.3349937e-04 -1.5320212e-03  2.7013756e-03 

 -3.7055744e-03 -4.1658725e-03  4.8034848e-03  4.8594419e-03 

  3.7129463e-03  4.2385766e-03  2.4612297e-03  5.4920948e-04 

 -3.8912550e-03 -4.8226118e-03 -2.2763973e-04  4.5571579e-03 

 -3.4609400e-03  2.7903817e-03 -3.2709218e-03 -1.1036445e-03 

  2.1492650e-03 -3.0384419e-04  1.7709908e-03  1.8429896e-03 

 -3.4038599e-03 -2.4872608e-03  2.7693063e-03 -1.6352943e-03 

  1.9182395e-03  3.7772327e-03  2.2769428e-03 -4.4629495e-03 

  3.3151123e-03  4.6509290e-03 -4.8521687e-03  6.7615538e-04 

  3.1034781e-03  2.6369948e-05  4.1454583e-03 -3.6932561e-03 

 -1.8769916e-03 -2.1958587e-04  6.3395966e-04 -2.4969708e-03] 

Word2Vec(vocab=20, size=100, alpha=0.025) 

Visualising word embedding 

We can also explore the word embedding with visualisation. It can be done by using a 

classical projection method (like PCA) to reduce the high-dimensional word vectors to 2-

D plots. Once reduced, we can then plot them on graph. 

Plotting word vectors using PCA 

First, we need to retrieve all the vectors from a trained model as follows: 

Z = model[model.wv.vocab] 

Next, we need to create a 2-D PCA model of word vectors by using PCA class as follows: 

pca = PCA(n_components=2) 

result = pca.fit_transform(Z) 

Now, we can plot the resulting projection by using the matplotlib as follows: 

Pyplot.scatter(result[:,0],result[:,1]) 

We can also annotate the points on the graph with the words itself. Plot the resulting 

projection by using the matplotlib as follows: 

words = list(model.wv.vocab) 

for i, word in enumerate(words): 
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 pyplot.annotate(word, xy=(result[i, 0], result[i, 1])) 

Complete implementation example 

from gensim.models import Word2Vec 

from sklearn.decomposition import PCA 

from matplotlib import pyplot 

sentences = [['this', 'is', 'gensim', 'tutorial', 'for', 'free'], 

   ['this', 'is', 'the', 'tutorials' 'point', 'website'], 

   ['you', 'can', 'read', 'technical','tutorials', 

'for','free'], 

   ['we', 'are', 'implementing','word2vec'], 

   ['learn', 'full', 'gensim', 'tutorial']] 

model = Word2Vec(sentences, min_count=1) 

X = model[model.wv.vocab] 

pca = PCA(n_components=2) 

result = pca.fit_transform(X) 

pyplot.scatter(result[:, 0], result[:, 1]) 

words = list(model.wv.vocab) 

for i, word in enumerate(words): 

 pyplot.annotate(word, xy=(result[i, 0], result[i, 1])) 

pyplot.show() 

Output 
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Doc2Vec model, as opposite to Word2Vec model, is used to create a vectorised 

representation of a group of words taken collectively as a single unit. It doesn’t only give 

the simple average of the words in the sentence. 

Creating document vectors using Doc2Vec 

Here to create document vectors using Doc2Vec, we will be using text8 dataset which can 

be downloaded from gensim.downloader.  

Downloading the dataset 

We can download the text8 dataset by using the following commands: 

import gensim 

import gensim.downloader as api 

dataset = api.load("text8") 

data = [d for d in dataset] 

It will take some time to download the text8 dataset. 

Train the Doc2Vec 

In order to train the model, we need the tagged document which can be created by using 

models.doc2vec.TaggedDcument() as follows: 

  def tagged_document(list_of_list_of_words): 

    for i, list_of_words in enumerate(list_of_list_of_words): 

        yield gensim.models.doc2vec.TaggedDocument(list_of_words, [i]) 

 

data_for_training = list(tagged_document(data)) 

We can print the trained dataset as follows: 

print(data_for_training [:1]) 

Output 

[TaggedDocument(words=['anarchism', 'originated', 'as', 'a', 'term', 'of', 

'abuse', 'first', 'used', 'against', 'early', 'working', 'class', 'radicals', 

'including', 'the', 'diggers', 'of', 'the', 'english', 'revolution', 'and', 

'the', 'sans', 'culottes', 'of', 'the', 'french', 'revolution', 'whilst', 

'the', 'term', 'is', 'still', 'used', 'in', 'a', 'pejorative', 'way', 'to', 

'describe', 'any', 'act', 'that', 'used', 'violent', 'means', 'to', 'destroy', 

16. Gensim — Doc2Vec Model 
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'the', 'organization', 'of', 'society', 'it', 'has', 'also', 'been', 'taken', 

'up', 'as', 'a', 'positive', 'label', 'by', 'self', 'defined', 'anarchists', 

'the', 'word', 'anarchism', 'is', 'derived', 'from', 'the', 'greek', 'without', 

'archons', 'ruler', 'chief', 'king', 'anarchism', 'as', 'a', 'political', 

'philosophy', 'is', 'the', 'belief', 'that', 'rulers', 'are', 'unnecessary', 

'and', 'should', 'be', 'abolished', 'although', 'there', 'are', 'differing', 

'interpretations', 'of', 'what', 'this', 'means', 'anarchism', 'also', 

'refers', 'to', 'related', 'social', 'movements', 'that', 'advocate', 'the', 

'elimination', 'of', 'authoritarian', 'institutions', 'particularly', 'the', 

'state', 'the', 'word', 'anarchy', 'as', 'most', 'anarchists', 'use', 'it', 

'does', 'not', 'imply', 'chaos', 'nihilism', 'or', 'anomie', 'but', 'rather', 

'a', 'harmonious', 'anti', 'authoritarian', 'society', 'in', 'place', 'of', 

'what', 'are', 'regarded', 'as', 'authoritarian', 'political', 'structures', 

'and', 'coercive', 'economic', 'institutions', 'anarchists', 'advocate', 

'social', 'relations', 'based', 'upon', 'voluntary', 'association', 'of', 

'autonomous', 'individuals', 'mutual', 'aid', 'and', 'self', 'governance', 

'while', 'anarchism', 'is', 'most', 'easily', 'defined', 'by', 'what', 'it', 

'is', 'against', 'anarchists', 'also', 'offer', 'positive', 'visions', 'of', 

'what', 'they', 'believe', 'to', 'be', 'a', 'truly', 'free', 'society', 

'however', 'ideas', 'about', 'how', 'an', 'anarchist', 'society', 'might', 

'work', 'vary', 'considerably', 'especially', 'with', 'respect', 'to', 

'economics', 'there', 'is', 'also', 'disagreement', 'about', 'how', 'a', 

'free', 'society', 'might', 'be', 'brought', 'about', 'origins', 'and', 

'predecessors', 'kropotkin', 'and', 'others', 'argue', 'that', 'before', 

'recorded', 'history', 'human', 'society', 'was', 'organized', 'on', 

'anarchist', 'principles', 'most', 'anthropologists', 'follow', 'kropotkin', 

'and', 'engels', 'in', 'believing', 'that', 'hunter', 'gatherer', 'bands', 

'were', 'egalitarian', 'and', 'lacked', 'division', 'of', 'labour', 

'accumulated', 'wealth', 'or', 'decreed', 'law', 'and', 'had', 'equal', 

'access', 'to', 'resources', 'william', 'godwin', 'anarchists', 'including', 

'the', 'the', 'anarchy', 'organisation', 'and', 'rothbard', 'find', 

'anarchist', 'attitudes', 'in', 'taoism', 'from', 'ancient', 'china', 

'kropotkin', 'found', 'similar', 'ideas', 'in', 'stoic', 'zeno', 'of', 

'citium', 'according', 'to', 'kropotkin', 'zeno', 'repudiated', 'the', 

'omnipotence', 'of', 'the', 'state', 'its', 'intervention', 'and', 

'regimentation', 'and', 'proclaimed', 'the', 'sovereignty', 'of', 'the', 

'moral', 'law', 'of', 'the', 'individual', 'the', 'anabaptists', 'of', 'one', 

'six', 'th', 'century', 'europe', 'are', 'sometimes', 'considered', 'to', 'be', 

'religious', 'forerunners', 'of', 'modern', 'anarchism', 'bertrand', 'russell', 

'in', 'his', 'history', 'of', 'western', 'philosophy', 'writes', 'that', 'the', 

'anabaptists', 'repudiated', 'all', 'law', 'since', 'they', 'held', 'that', 

'the', 'good', 'man', 'will', 'be', 'guided', 'at', 'every', 'moment', 'by', 

'the', 'holy', 'spirit', 'from', 'this', 'premise', 'they', 'arrive', 'at', 

'communism', 'the', 'diggers', 'or', 'true', 'levellers', 'were', 'an', 

'early', 'communistic', 'movement', 

(truncated…)  

Initialise the model 

Once trained we now need to initialise the model. it can be done as follows: 

model = gensim.models.doc2vec.Doc2Vec(vector_size=40, min_count=2, epochs=30) 



Gensim       

   81 

 

Now, build the vocabulary as follows: 

model.build_vocab(data_for_training) 

Now, let’s train the Doc2Vec model as follows: 

model.train(data_for_training, total_examples=model.corpus_count, 

epochs=model.epochs) 

Analysing the output 

Finally, we can analyse the output by using model.infer_vector() as follows: 

  print(model.infer_vector(['violent', 'means', 'to', 'destroy', 

'the','organization'])) 

Complete implementation example 

import gensim 

import gensim.downloader as api 

dataset = api.load("text8") 

data = [d for d in dataset] 

def tagged_document(list_of_list_of_words): 

    for i, list_of_words in enumerate(list_of_list_of_words): 

  yield gensim.models.doc2vec.TaggedDocument(list_of_words, [i]) 

 

data_for_training = list(tagged_document(data)) 

 

print(data_for_training[:1]) 

model = gensim.models.doc2vec.Doc2Vec(vector_size=40, min_count=2, epochs=30) 

model.build_vocab(data_training) 

model.train(data_training, total_examples=model.corpus_count, 

epochs=model.epochs) 

print(model.infer_vector(['violent', 'means', 'to', 'destroy', 

'the','organization'])) 

Output 

[-0.2556166   0.4829361   0.17081228  0.10879577  0.12525807  0.10077011 

 -0.21383236  0.19294572  0.11864349 -0.03227958 -0.02207291 -0.7108424 

  0.07165232  0.24221905 -0.2924459  -0.03543589  0.21840079 -0.1274817 

  0.05455418 -0.28968817 -0.29146606  0.32885507  0.14689675 -0.06913587 

 -0.35173815  0.09340707 -0.3803535  -0.04030455 -0.10004586  0.22192696 
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  0.2384828  -0.29779273  0.19236489 -0.25727913  0.09140676  0.01265439 

  0.08077634 -0.06902497 -0.07175519 -0.22583418 -0.21653089  0.00347822 

 -0.34096122 -0.06176808  0.22885063 -0.37295452 -0.08222228 -0.03148199 

 -0.06487323  0.11387568] 

  

 

 

 


