

HTTP

i

About the Tutorial

The Hypertext Transfer Protocol (HTTP) is an application-level protocol for

distributed, collaborative, hypermedia information systems. This is the foundation

for data communication for the World Wide Web (i.e. internet) since 1990. HTTP

is a generic and stateless protocol which can be used for other purposes as well

using extensions of its request methods, error codes, and headers.

This tutorial is based on RFC-2616 specification, which defines the protocol

referred to as HTTP/1.1. HTTP/1.1 is a revision of the original HTTP (HTTP/1.0). A

major difference between HTTP/1.0 and HTTP/1.1 is that HTTP/1.0 uses a new

connection for each request/response exchange, whereas HTTP/1.1 connection

may be used for one or more request/response exchanges.

Audience

This tutorial has been prepared for computer science graduates and web

developers to help them understand the basic-to-advanced level concepts related

to Hypertext Transfer Protocol (HTTP).

Prerequisites

Before proceeding with this tutorial, it is good to have a basic understanding of

web concepts, web browsers, web servers, client and server architecture based

softwares.

Copyright & Disclaimer

 Copyright 2014 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials

Point (I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy,

distribute or republish any contents or a part of contents of this e-book in any

manner without written consent of the publisher.

We strive to update the contents of our website and tutorials as timely and as

precisely as possible, however, the contents may contain inaccuracies or errors.

Tutorials Point (I) Pvt. Ltd. provides no guarantee regarding the accuracy,

timeliness or completeness of our website or its contents including this tutorial. If

you discover any errors on our website or in this tutorial, please notify us at

contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

HTTP

ii

Table of Contents

About the Tutorial ··· i

Audience ·· i

Prerequisites ·· i

Copyright & Disclaimer ·· i

Table of Contents ·· ii

1. OVERVIEW ··· 1

Basic Features ··· 1

Basic Architecture ··· 1
Client ·· 2
Server ··· 2

2. PARAMETERS ·· 3

HTTP Version ·· 3

Uniform Resource Identifiers ·· 3

Date/Time Formats ··· 4

Character Sets ··· 4

Content Encodings ·· 4

Media Types ··· 5

Language Tags ··· 5

3. MESSAGES ··· 7

Message Start-Line ··· 8

Header Fields ·· 8

Message Body ··· 9

4. REQUESTS ··· 10

Request-Line ··· 10

Request Method ··· 10

HTTP

iii

Request-URI ·· 11

Request Header Fields ·· 12

Examples of Request Message ·· 13

5. RESPONSES ·· 15

Message Status-Line ··· 15

HTTP Version ·· 15

Status Code ··· 16

Response Header Fields ·· 16

Examples of Response Message ·· 17

6. METHODS ·· 19

GET Method ·· 20

HEAD Method ··· 20

POST Method ·· 21

PUT Method ·· 22

DELETE Method··· 23

CONNECT Method ··· 24

OPTIONS Method ·· 24

TRACE Method ·· 25

7. STATUS CODES ·· 26

1xx: Information ··· 26

2xx: Successful ·· 27

3xx: Redirection ·· 27

4xx: Client Error ·· 28

5xx: Server Error ··· 29

8. HEADER FIELDS ·· 31

HTTP

iv

General Headers ··· 31
Cache-Control ··· 31
Connection ··· 33
Date ·· 34
Pragma ··· 34
Trailer ··· 34
Transfer-Encoding ·· 35
Upgrade ·· 35
Via ··· 35
Warning ·· 35

Client Request Headers ··· 36
Accept ··· 36
Accept-Charset ··· 36
Accept-Encoding ··· 36
Accept-Language ·· 37
Authorization ·· 37
Cookie ··· 37
Expect ··· 38
From ··· 38
Host ·· 38
If-Match ·· 38
If-Modified-Since ·· 39
If-None-Match ·· 39
If-Range ·· 40
If-Unmodified-Since ··· 40
Max-Forwards ·· 40
Proxy-Authorization ··· 41
Range ·· 41
Referer ·· 42
TE ·· 42
User-Agent ··· 42

Server Response Headers ·· 43
Accept-Ranges ·· 43
Age·· 43
ETag ·· 43
Location ·· 44
Proxy-Authenticate ·· 44
Retry-After ·· 44
Server ··· 45
Set-Cookie ·· 45
Vary ·· 46
WWW-Authenticate ··· 46

Entity Headers ·· 47
Allow ··· 47
Content-Encoding ··· 47
Content-Language ·· 47
Content-Length ·· 48

HTTP

v

Content-Location ·· 48
Content-MD5 ·· 48
Content-Range ··· 49
Content-Type ·· 49
Expires ·· 50
Last-Modified ··· 50

9. CACHING ··· 51

10. URL ENCODING ··· 54

11. SECURITY ··· 60

Personal Information Leakage ·· 60

File and Path Names Based Attack ·· 60

DNS Spoofing ·· 61

Location Headers and Spoofing ··· 61

Authentication Credentials ··· 61

Proxies and Caching ·· 61

12. MESSAGE EXAMPLES ··· 62

Example 1 ··· 62
Client request ··· 62
Server response ·· 62

Example 2 ··· 63
Client request ··· 63
Server response ·· 63

Example 3 ··· 64
Client request ··· 64
Server response ·· 64

Example 4 ··· 65
Client request ··· 65
Server response ·· 65

HTTP

1

The Hypertext Transfer Protocol (HTTP) is an application-level protocol for distributed,

collaborative, hypermedia information systems. This is the foundation for data communication

for the World Wide Web (i.e. internet) since 1990. HTTP is a generic and stateless protocol

which can be used for other purposes as well using extensions of its request methods, error

codes, and headers.

Basically, HTTP is a TCP/IP based communication protocol that is used to deliver data (HTML

files, image files, query results, etc.) on the World Wide Web. The default port is TCP 80, but

other ports can be used as well. It provides a standardized way for computers to communicate

with each other. HTTP specification specifies how clients’ request data will be constructed and

sent to the server, and how the servers respond to these requests.

Basic Features

There are three basic features that make HTTP a simple but powerful protocol:

 HTTP is connectionless: The HTTP client, i.e., a browser initiates an HTTP request

and after a request is made, the client disconnects from the server and waits for a

response. The server processes the request and re-establishes the connection with the

client to send a response back.

 HTTP is media independent: It means, any type of data can be sent by HTTP as

long as both the client and the server know how to handle the data content. It is

required for the client as well as the server to specify the content type using

appropriate MIME-type.

 HTTP is stateless: As mentioned above, HTTP is connectionless and it is a direct

result of HTTP being a stateless protocol. The server and client are aware of each other

only during a current request. Afterwards, both of them forget about each other. Due

to this nature of the protocol, neither the client nor the browser can retain information

between different requests across the web pages.

HTTP/1.0 uses a new connection for each request/response exchange, whereas HTTP/1.1

connection may be used for one or more request/response exchanges.

Basic Architecture

The following diagram shows a very basic architecture of a web application and depicts where

HTTP sits:

1. OVERVIEW

HTTP

2

The HTTP protocol is a request/response protocol based on the client/server based

architecture where web browsers, robots and search engines, etc. act like HTTP clients, and

the Web server acts as a server.

Client

The HTTP client sends a request to the server in the form of a request method, URI, and

protocol version, followed by a MIME-like message containing request modifiers, client

information, and possible body content over a TCP/IP connection.

Server

The HTTP server responds with a status line, including the message's protocol version and a

success or error code, followed by a MIME-like message containing server information, entity

meta-information, and possible entity-body content.

HTTP

3

This chapter is going to list down few of the important HTTP Protocol Parameters and their

syntax the way they are used in the communication. For example, format for date, format of

URL, etc. This will help you in constructing your request and response messages while writing

HTTP client or server programs. You will see the complete usage of these parameters in

subsequent chapters while learning the message structure for HTTP requests and responses.

HTTP Version

HTTP uses a <major>.<minor> numbering scheme to indicate versions of the protocol. The

version of an HTTP message is indicated by an HTTP-Version field in the first line. Here is the

general syntax of specifying HTTP version number:

HTTP-Version = "HTTP" "/" 1*DIGIT "." 1*DIGIT

Example

HTTP/1.0

or

HTTP/1.1

Uniform Resource Identifiers

Uniform Resource Identifiers (URI) are simply formatted, case-insensitive string containing

name, location, etc. to identify a resource, for example, a website, a web service, etc. A

general syntax of URI used for HTTP is as follows:

URI = "http:" "//" host [":" port] [abs_path ["?" query]]

Here if the port is empty or not given, port 80 is assumed for HTTP and an empty abs_path

is equivalent to an abs_path of "/". The characters other than those in the reserved and

unsafe sets are equivalent to their ""%" HEX HEX" encoding.

2. PARAMETERS

HTTP

4

Example

The following three URIs are equivalent:

http://abc.com:80/~smith/home.html

http://ABC.com/%7Esmith/home.html

http://ABC.com:/%7esmith/home.html

Date/Time Formats

All HTTP date/time stamps MUST be represented in Greenwich Mean Time (GMT), without

exception. HTTP applications are allowed to use any of the following three representations of

date/time stamps:

Sun, 06 Nov 1994 08:49:37 GMT ; RFC 822, updated by RFC 1123

Sunday, 06-Nov-94 08:49:37 GMT ; RFC 850, obsoleted by RFC 1036

Sun Nov 6 08:49:37 1994 ; ANSI C's asctime() format

Character Sets

We use character sets to specify the character sets that the client prefers. Multiple character

sets can be listed separated by commas. If a value is not specified, the default is the US-

ASCII.

Example

Following are the valid character sets:

US-ASCII

or

ISO-8859-1

or

HTTP

5

ISO-8859-7

Content Encodings

A content encoding value indicates that an encoding algorithm has been used to encode the

content before passing it over the network. Content coding are primarily used to allow a

document to be compressed or otherwise usefully transformed without losing the identity.

All content-coding values are case-insensitive. HTTP/1.1 uses content-coding values in the

Accept-Encoding and Content-Encoding header fields which we will see in the subsequent

chapters.

Example

Following are the valid encoding schemes:

Accept-encoding: gzip

or

Accept-encoding: compress

or

Accept-encoding: deflate

Media Types

HTTP uses Internet Media Types in the Content-Type and Accept header fields in order to

provide open and extensible data typing and type negotiation. All the Media-type values are

registered with the Internet Assigned Number Authority (IANA). The general syntax to specify

media type is as follows:

media-type = type "/" subtype *(";" parameter)

The type, subtype, and parameter attribute names are case-insensitive.

HTTP

6

Example

Accept: image/gif

Language Tags

HTTP uses language tags within the Accept-Language and Content-Language fields. A

language tag is composed of one or more parts: a primary language tag and a possibly empty

series of subtags:

language-tag = primary-tag *("-" subtag)

Whitespaces are not allowed within the tags and all tags are case-insensitive.

Example

Example tags include:

 en, en-US, en-cockney, i-cherokee, x-pig-latin

where any two-letter primary-tag is an ISO-639 language abbreviation and any two-letter

initial subtag is an ISO-3166 country code.

HTTP

7

HTTP is based on the client-server architecture model and a stateless request/response

protocol that operates by exchanging messages across a reliable TCP/IP connection.

An HTTP "client" is a program (Web browser or any other client) that establishes a connection

to a server for the purpose of sending one or more HTTP request messages. An HTTP "server"

is a program (generally a web server like Apache Web Server or Internet Information Services

IIS, etc.) that accepts connections in order to serve HTTP requests by sending HTTP response

messages.

HTTP makes use of the Uniform Resource Identifier (URI) to identify a given resource and to

establish a connection. Once the connection is established, HTTP messages are passed in a

format similar to that used by the Internet mail [RFC5322] and the Multipurpose Internet Mail

Extensions (MIME) [RFC2045]. These messages include requests from client to server

and responses from server to client which will have the following format:

 HTTP-message = <Request> | <Response> ; HTTP/1.1 messages

HTTP requests and HTTP responses use a generic message format of RFC 822 for transferring

the required data. This generic message format consists of the following four items.

A Start-line

Zero or more header fields followed by CRLF

An empty line (i.e., a line with nothing preceding the CRLF) indicating the

end of the header fields

Optionally a message-body

In the following sections, we will explain each of the entities used in an HTTP message.

3. MESSAGES

HTTP

8

Message Start-Line

A start-line will have the following generic syntax:

start-line = Request-Line | Status-Line

We will discuss Request-Line and Status-Line while discussing HTTP Request and HTTP

Response messages respectively. For now, let's see the examples of start line in case of

request and response:

GET /hello.htm HTTP/1.1 (This is Request-Line sent by the client)

HTTP/1.1 200 OK (This is Status-Line sent by the server)

Header Fields

HTTP header fields provide required information about the request or response, or about the

object sent in the message body. There are four types of HTTP message headers:

 General-header: These header fields have general applicability for both request and

response messages.

 Request-header: These header fields have applicability only for request messages.

 Response-header: These header fields have applicability only for response

messages.

 Entity-header: These header fields define meta-information about the entity-body or,

if no body is present, about the resource identified by the request.

All the above-mentioned headers follow the same generic format and each of the header field

consists of a name followed by a colon (:) and the field value as follows:

message-header = field-name ":" [field-value]

Following are the examples of various header fields:

User-Agent: curl/7.16.3 libcurl/7.16.3 OpenSSL/0.9.7l zlib/1.2.3

Host: www.example.com

Accept-Language: en, mi

Date: Mon, 27 Jul 2009 12:28:53 GMT

HTTP

9

Server: Apache

Last-Modified: Wed, 22 Jul 2009 19:15:56 GMT

ETag: "34aa387-d-1568eb00"

Accept-Ranges: bytes

Content-Length: 51

Vary: Accept-Encoding

Content-Type: text/plain

Message Body

The message body part is optional for an HTTP message but if it is available, then it is used

to carry the entity-body associated with the request or response. If entity body is associated,

then usually Content-Type and Content-Length headers lines specify the nature of the body

associated.

A message body is the one which carries the actual HTTP request data (including form data

and uploaded, etc.) and HTTP response data from the server (including files, images, etc.).

Shown below is the simple content of a message body:

<html>

<body>

<h1>Hello, World!</h1>

</body>

</html>

HTTP

10

An HTTP client sends an HTTP request to a server in the form of a request message which

includes the following format:

A Request-line

Zero or more header (General|Request|Entity) fields followed by CRLF

An empty line (i.e., a line with nothing preceding the CRLF) indicating the

end of the header fields

Optionally a message-body

The following sections explain each of the entities used in an HTTP request message.

Request-Line

The Request-Line begins with a method token, followed by the Request-URI and the protocol

version, and ending with CRLF. The elements are separated by space SP characters.

Request-Line = Method SP Request-URI SP HTTP-Version CRLF

Let's discuss each of the parts mentioned in the Request-Line.

Request Method

The request method indicates the method to be performed on the resource identified by the

given Request-URI. The method is case-sensitive and should always be mentioned in

uppercase. The following table lists all the supported methods in HTTP/1.1.

4. REQUESTS

HTTP

11

End of ebook preview

If you liked what you saw…
Buy it from our store @ https://store.tutorialspoint.com

