y

0.0 0.1 02 03 04 05 0.6 0J

Regression
Python

tutorialspoint

S I MPLY EASY LEARNINDLG

04 05 06 0

www.tutorialspoint.com

n https://www.facebook.com/tutorialspointindia J https://twitter.com/tutorialspoint

Logistic Regression in Python

About the Tutorial

Logistic Regression is a statistical method of classification of objects. In this tutorial, we
will focus on solving binary classification problem using logistic regression technique.

This tutorial also presents a case study that will let you learn how to code and apply
Logistic Regression in Python.

Audience

This tutorial has been prepared for students as well as professionals to gain a knowledge
on performing Logistic Regression in Python.

Prerequisites

This tutorial is written with an assumption that the learner is familiar with Python and its
libraries, such as Pandas, Numpy, and Matplotlib.

If you are new to Python or these libraries, we suggest you pick a tutorial based on them
before you start your journey with Logistic Regression.

Copyright & Disclaimer

@Copyright 2019 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)
Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish
any contents or a part of contents of this e-book in any manner without written consent
of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as
possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.
Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our
website or its contents including this tutorial. If you discover any errors on our website or
in this tutorial, please notify us at contact@tutorialspoint.com

'@j Mtutorialspoint

EIMPLYEAEYLEARNINE ii

mailto:contact@tutorialspoint.com

Logistic Regression in Python

Table of Contents
PAY T UL o 4 T T o] o T | PO Rt i
F X0 1= Vol U TRt i
o T =T o [0 LT 1 =N ii
COPYIight & DiSCIAIMET.....uuuiiiiiiiiiiiiiiiiiiiiiiiisisisiss ii
B IE] o] (=0 T 0 4} =T 3 £
1. LOGISTIC REGRESSION IN PYTHON — INTRODUCTION.......uuuuieeeeeee e 1
(0] =T33 7= o3 TR 1
2. LOGISTIC REGRESSION IN PYTHON — CASE STUDY ...oiiiieieieieeeeeecceceeccccccceeeeeee e 2
3. LOGISTIC REGRESSION IN PYTHON —SETTING UP APROJECTccoiiiiiiiiii, 3
(LT =1 LT T= a0 LU T <1V o =1 N 3
IMPOrting PYthoNn Packages.........eeeeeeeeeeeeeeeemeeeeemmeeeeeeeeeeeeeemmemesmsmsss 3
4. LOGISTIC REGRESSION IN PYTHON — GETTING DATA.....cooiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e e e eeeeeeee e 5
DOWNIOAAING DAtaset.....cceeeeeeeeeeeeeeeeeeeeeeeeemmmeesssns 5
[IoT- Te [T =31 0 1) - 1SN 5
5. LOGISTIC REGRESSION IN PYTHON — RESTRUCTURING DATAuceeeirieiiieeeicceeeeeeeeeerenen 7
Displaying All FIelds.....ccceeeeeeeiiiiiiiiiiieiciiiiieeiiessesereeesneesseeseeennnssssssssesesnnssssssssssesnnssssssssssssnnnssssssssssennnns 7
Eliminating Unwanted Fields.......cccuueeeeciiiiiiiiiciiiiiieeieescecsnrreeneessssssssesnnssssessesesnnssssssssssesnnnssssssssssnnnnns 7
6. LOGISTIC REGRESSION IN PYTHON — PREPARING DATA.....co oo eeee e, 9
ENCOAING DAl ...ceeeeiiiiiiiiieiiccciiiirereeesscssrreesees e se s s e e s nnssssssssssesnnssssssssesesnnssssssssssssnnnsssssssssssnnnsssssssnssnnnnns 9
Understanding Data MAPPINgeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesesesesssnssnnnns 10
Dropping the “UNKNOWNceeeeeeeeeeieeieieeeeeeeeeeeeeeeeeeeeeeessessssssesssnssnsnns 11
7. LOGISTIC REGRESSION IN PYTHON —SPLITTING DATA ..ot 13
Creating FEAtUIES AITAY.....ccciiiiiiieiuuiiiiiiiiiienmmiiiiiiiiessssssiiiimsessssssssstimesssssssssssstsssssssssssssssssssssssssssssssnsnes 13

@pqtqriglspoin‘b

10.

11.

@pqtqr‘i@lspoin‘b

Logistic Regression in Python

Creating OULPUL AITaY ..cccciiiiiiiiiienmiiiiiiiiienmssiiiiiimessssssssiimsssssssisstimssssssssssssttsssssssssssssssssssssssssssssssnnnes 14
LOGISTIC REGRESSION IN PYTHON — BUILDING CLASSIFIER.......ccooeiiiiiiiinee, 15
The SKIEArn ClasSifier.....cccceiiiiiiiiinineeiiiiiiiiiineieiiiiiiissseesisissssssssesssasssssssssss 15
LOGISTIC REGRESSION IN PYTHON —TESTING ..o, 16
L =T TTot AT T =T N 0 T 1 - 16
VErifyiNg ACCUIACY . .cciiiiiiiiiiiiiiiiiiiiiiiiiisiiiiiisiiisiiisissns 17

LOGISTIC REGRESSION IN PYTHON — LIMITATIONSuu e 18

LOGISTIC REGRESSION IN PYTHON —SUMMARY ...t 19

1. Logistic Regression in Python — Introduction

Logistic Regression is a statistical method of classification of objects. This chapter will give
an introduction to logistic regression with the help of some examples.

Classification

To understand logistic regression, you should know what classification means. Let us
consider the following examples to understand this better:

e A doctor classifies the tumor as malignant or benign.

e A bank transaction may be fraudulent or genuine.

For many years, humans have been performing such tasks - albeit they are error-prone.
The question is can we train machines to do these tasks for us with a better accuracy?

One such example of machine doing the classification is the email Client on your machine
that classifies every incoming mail as “spam” or “not spam” and it does it with a fairly
large accuracy. The statistical technique of logistic regression has been successfully
applied in email client. In this case, we have trained our machine to solve a classification
problem.

Logistic Regression is just one part of machine learning used for solving this kind of binary
classification problem. There are several other machine learning techniques that are
already developed and are in practice for solving other kinds of problems.

If you have noted, in all the above examples, the outcome of the predication has only two
values - Yes or No. We call these as classes - so as to say we say that our classifier
classifies the objects in two classes. In technical terms, we can say that the outcome or
target variable is dichotomous in nature.

There are other classification problems in which the output may be classified into more
than two classes. For example, given a basket full of fruits, you are asked to separate
fruits of different kinds. Now, the basket may contain Oranges, Apples, Mangoes, and so
on. So when you separate out the fruits, you separate them out in more than two classes.
This is a multivariate classification problem.

w ' tutorialspoint .

EIMPLYEAEYLEARMINEG

2. Logistic Regression in Python — Case Study

Consider that a bank approaches you to develop a machine learning application that will
help them in identifying the potential clients who would open a Term Deposit (also called
Fixed Deposit by some banks) with them. The bank regularly conducts a survey by means
of telephonic calls or web forms to collect information about the potential clients. The
survey is general in nature and is conducted over a very large audience out of which many
may not be interested in dealing with this bank itself. Out of the rest, only a few may be
interested in opening a Term Deposit. Others may be interested in other facilities offered
by the bank. So the survey is not necessarily conducted for identifying the customers
opening TDs. Your task is to identify all those customers with high probability of opening
TD from the humongous survey data that the bank is going to share with you.

Fortunately, one such kind of data is publicly available for those aspiring to develop
machine learning models. This data was prepared by some students at UC Irvine with
external funding. The database is available as a part of UCI Machine Learning
Repository and is widely used by students, educators, and researchers all over the world.
The data can be downloaded from here.

In the next chapters, let us now perform the application development using the same data.

w tutorialspoint

EIMPLYEAEBEYLEARNINEG 2

https://archive.ics.uci.edu/ml/datasets/bank+marketing

3. Logistic Regression in Python — Setting Up a

Project

In this chapter, we will understand the process involved in setting up a project to perform
logistic regression in Python, in detail.

Installing Jupyter

We will be using Jupyter - one of the most widely used platforms for machine learning. If
you do not have Jupyter installed on your machine, download it from here. For installation,
you can follow the instructions on their site to install the platform. As the site suggests,
you may prefer to use Anaconda Distribution which comes along with Python and many
commonly used Python packages for scientific computing and data science. This will
alleviate the need for installing these packages individually.

After the successful installation of Jupyter, start a new project, your screen at this stage
would look like the following ready to accept your code.

: J u pyter Untitled Last Checkpoint: a few seconds ago (unsaved changes) F Logout

File Edit View Insert Cell Kernel Widgets Help Trusted = & ‘Pwhona o}

B+ = A B 4+ ¥+ MWRin B C W Code =

In[]:

Now, change the name of the project from Untitled1 to “"Logistic Regression” by clicking
the title name and editing it.

First, we will be importing several Python packages that we will need in our code.

Importing Python Packages

For this purpose, type or cut-and-paste the following code in the code editor:

In [1]: # import statements
import pandas as pd
import numpy as np

import matplotlib.pyplot as plt

from sklearn import preprocessing
from sklearn.linear_model import LogisticRegression

from sklearn.model selection import train_test_split

w tutorialspoint

EIMPLYEAEBEYLEARNINEG 3

https://jupyter.org/

Logistic Regression in Python

Your Notebook should look like the following at this stage:

In [1]: # import statements
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn import preprocessing
from sklearn.linear model import LogisticRegression
from sklearn.model_selection import train_test_split

Run the code by clicking on the Run button. If no errors are generated, you have
successfully installed Jupyter and are now ready for the rest of the development.

The first three import statements import pandas, numpy and matplotlib.pyplot packages
in our project. The next three statements import the specified modules from sklearn.

Our next task is to download the data required for our project. We will learn this in the
next chapter.

w tutorialspoint .

EIMPLYEAEBEYLEARNINEG

4. Logistic Regression in Python — Getting Data

The steps involved in getting data for performing logistic regression in Python are
discussed in detail in this chapter.

Downloading Dataset

If you have not already downloaded the UCI dataset mentioned earlier, download it now
from here. Click on the Data Folder. You will see the following screen:

Index of /ml/machine-learning-databases/00222

o Parent Directory
o bank-additional.zip
e bank.zip

Download the bank.zip file by clicking on the given link. The zip file contains the following

files:

Name A Date Modified Size |
bank-full.csv 14-Feb-2012 at 8:10 PM 4.6 MB (
bank-names.txt 14-Feb-2012 at 8:40 PM 4 KB F
bank.csv 14-Feb-2012 at 8:08 PM 461 KB ¢

We will use the bank.csv file for our model development. The bank-names.txt file contains
the description of the database that you are going to need later. The bank-full.csv contains
a much larger dataset that you may use for more advanced developments.

Here we have included the bank.csv file in the downloadable source zip. This file contains
the comma-delimited fields. We have also made a few modifications in the file. It is
recommended that you use the file included in the project source zip for your learning.

Loading Data

To load the data from the csv file that you copied just now, type the following statement
and run the code.

In [2]: df = pd.read_csv('bank.csv', header=0)

You will also be able to examine the loaded data by running the following code statement:

IN [3]: df.head()

w tutorialspoint

EIMPLYEAEBEYLEARNINEG 5

https://archive.ics.uci.edu/ml/datasets/bank+marketing

Logistic Regression in Python

Once the command is run, you will see the following output:

In [2]: # loading the data from csv file
df = pd.read ecsv('bank.csv', header=0)

In [3]: df .head ()|

Out[3]: age job marital education default housing loan contact month day of week .. campaign pdays previous poutcome emp_var_rate
0 44 biue-collar married basic.dy unknown yes no cellular aug thu .. 1 999 0 nonexistent 14
1 53 technician married unknown no no no cellular nov fi .. 1 998 0 nonexistent 0.1
2 28 management single university.degree no yes no cellular jun thu .. 3 6 2 success -1.7
3 2 services married high.school no no no cellular apr fi .. 2 999 0 nonexistent -1.8
4 55 refired married basic.dy no yes no cellular aug fi .. 1 3 1 Success 29

5 rows x 21 columns

Basically, it has printed the first five rows of the loaded data. Examine the 21 columns
present. We will be using only few columns from these for our model development.

Next, we need to clean the data. The data may contain some rows with NaN. To eliminate
such rows, use the following command:

IN [4]: df = df.dropna()

Fortunately, the bank.csv does not contain any rows with NaN, so this step is not truly
required in our case. However, in general it is difficult to discover such rows in a huge
database. So it is always safer to run the above statement to clean the data.

Note: You can easily examine the data size at any point of time by using the following
statement:

IN [5]: print (df.shape)
(41188, 21)

The number of rows and columns would be printed in the output as shown in the second
line above.

Next thing to do is to examine the suitability of each column for the model that we are
trying to build.

EYLEARNINEG

§P)tutorialspoint :

5. Logistic Regression in Python — Restructuring

Data

Whenever any organization conducts a survey, they try to collect as much information as
possible from the customer, with the idea that this information would be useful to the
organization one way or the other, at a later point of time. To solve the current problem,
we have to pick up the information that is directly relevant to our problem.

Displaying All Fields

Now, let us see how to select the data fields useful to us. Run the following statement in
the code editor.

In [6]: print(list(df.columns))

You will see the following output:

["age', 'job', 'marital’', 'education', ‘'default', 'housing', 'loan', 'contact’,
'month', 'day_of week', ‘'duration', ‘'campaign', 'pdays', ‘'previous’,
'poutcome’', ‘'emp_var_rate', 'cons_price_idx', 'cons_conf_idx', 'euribor3m’',
"'nr_employed', 'y']

The output shows the names of all the columns in the database. The last column “y” is a
Boolean value indicating whether this customer has a term deposit with the bank. The

values of this field are either “y” or *n”. You can read the description and purpose of each
column in the banks-name.txt file that was downloaded as part of the data.

Eliminating Unwanted Fields

Examining the column names, you will know that some of the fields have no significance
to the problem at hand. For example, fields such as month, day_of_week, campaign,
etc. are of no use to us. We will eliminate these fields from our database. To drop a column,
we use the drop command as shown below:

In [8]: #drop columns which are not needed.
df.drop(df.columns[[e, 3, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17,
18, 19]], axis=1, inplace=True)

The command says that drop column number 0, 3, 7, 8, and so on. To ensure that the
index is properly selected, use the following statement:

In [7]: df.columns[9]

Out[7]: 'day of week'

This prints the column name for the given index.

w tutorialspoint

EIMPLYEAEBEYLEARNINEG 7

Logistic Regression in Python

After dropping the columns which are not required, examine the data with the head
statement. The screen output is shown here:

In [9]: df.head()
Out[9]:
job marital default housing loan poutcome y
(%] blue-collar married unknown yes no nonexistent ©
1 technician married no no no nonexistent @
2 management single no yes no success 1
3 services married no no no nonexistent @
4 retired married no yes no success 1

Now, we have only the fields which we feel are important for our data analysis and
prediction. The importance of Data Scientist comes into picture at this step. The data
scientist has to select the appropriate columns for model building.

For example, the type of job though at the first glance may not convince everybody for
inclusion in the database, it will be a very useful field. Not all types of customers will open
the TD. The lower income people may not open the TDs, while the higher income people
will usually park their excess money in TDs. So the type of job becomes significantly
relevant in this scenario. Likewise, carefully select the columns which you feel will be
relevant for your analysis.

In the next chapter, we will prepare our data for building the model.

w tutorialspoint .

EIMPLYEAEBEYLEARNINEG

6. Logistic Regression in Python — Preparing Data

For creating the classifier, we must prepare the data in a format that is asked by the
classifier building module. We prepare the data by doing One Hot Encoding.

Encoding Data

We will discuss shortly what we mean by encoding data. First, let us run the code. Run the
following command in the code window.

In [1@]: # creating one hot encoding of the categorical columns.

data = pd.get _dummies(df, columns =['job', 'marital', 'default', 'housing',
'loan', 'poutcome'])

As the comment says, the above statement will create the one hot encoding of the data.
Let us see what has it created? Examine the created data called “data” by printing the
head records in the database.

In [11]: data.head()

You will see the following output:

In [11]: 1 data.head()

out(ll]:
Jjob_blue- job_self-
collar Job_ leb.

job_services job_student .. default_yes housing no h¢

job_admin. Jjob_r Jjob_retired

y
0 1]
0 o
1]
0 1
1 0

o o o o o

o
1
o
1
0

o o o o o
o o o o o
o o = o o
- o o o o
o o o o o
o o o o o

[} o
1 o
2 o
3 0
4 0

o o o o

5 rows x 29 columns

To understand the above data, we will list out the column names by running the
data.columns command as shown below:

In [12]: data.columns

Out[12]: Index(['y', 'job_admin.', 'job_blue-collar’',
'job_entrepreneur', 'job_housemaid', 'job_management’,
'job_retired', 'job_self-employed', 'job_services',
'job_student', 'job_technician', 'job_unemployed’,
'job_unknown', 'marital_divorced', ‘'marital_married’,
'marital_single', 'marital_unknown', ‘'default_no’,

'default_unknown', 'default_yes', 'housing_no’,

w tutorialspoint

EIMPLYEAEBEYLEARNINEG 9

Logistic Regression in Python

"housing_unknown', 'housing yes', 'loan_no',
'loan_unknown', 'loan_yes', 'poutcome_failure',
"poutcome_nonexistent', 'poutcome_success'],

dtype="object')

Now, we will explain how the one hot encoding is done by the get_dummies command.
The first column in the newly generated database is “y” field which indicates whether this
client has subscribed to a TD or not. Now, let us look at the columns which are encoded.
The first encoded column is “job”. In the database, you will find that the “job” column has
many possible values such as “admin”, “blue-collar”, “entrepreneur”, and so on. For each
possible value, we have a new column created in the database, with the column name

appended as a prefix.

” \\

Thus, we have columns called “job_admin”, “job_blue-collar”, and so on. For each encoded
field in our original database, you will find a list of columns added in the created database
with all possible values that the column takes in the original database. Carefully examine
the list of columns to understand how the data is mapped to a new database.

Understanding Data Mapping

To understand the generated data, let us print out the entire data using the data
command. The partial output after running the command is shown below.

In [13]: data

In [13]: data

Out[13]:
job_blue-
collar

job_self-

job_admin. job_s job | job 1 job_retired job_services job student .. default yes housing r

1

o o o o - o o ©o o © o o o
o © o o o © O © © O 6 o o
o o o 6 o O O o o 6 o6 o o

0
0
0
1]
0
1
1
0
1
0
0
0

o © © o © © © © © © © ©o °o
o © - © © © © © © © © ©o o°o

0
[}
1
0
]
1
0
]
[}
0
0
1
1

©c © o 6 © © 06 © - © © o o
o o o o o o o o o © o o o
o © © o © © © © © = © ©o o

The above screen shows the first twelve rows. If you scroll down further, you would see
that the mapping is done for all the rows.

A partial screen output further down the database is shown here for your quick reference.

w tutorialspoint 0

EIMPLYEAEBEYLEARNINEG

Logistic Regression in Python

23 0] 0 0 0 []] o "]] o
24 0 0 1 0 0 0 0 0 1]] 0
25 0 0 0 1 0 0 0 0 1] 0 0
2% 0 0 1] 1] 0 0 0 o (1] 1] o
2T 0 1 0 0 0] 0 o "] 0 o
28 0 0 1 0 0] 0 o] 0 o
29 0 0 1 0 0] 0 o '] 0 o
41158 0 0 0 0 0] 0 o 1 0 o
41159 0 1 1] 1] 0 0] o "] 0 o
41160 0 0 0 0 0 1 0 o0 1]] o0
41161 0 0 1 0 0 [] 0 0 1]] 0
41162 0 0 0 0 0 0 0 1 1]] o
4163 0 0 1 0 0 0 0 0 0 0 0
41164 0 0 0 0 0] 0 o "] 0 o
To understand the mapped data, let us examine the first row.
Qut[13]:
y job_admin. J“h-:;::; job_entrep job_ Job._ job_retired E{::[::;L Job_services job_student ... default yes housing r

o0 0 1 0 0 0 0 0 0 0 o 0

A\ W/

It says that this customer has not subscribed to TD as indicated by the value in the “y
field. It also indicates that this customer is a “blue-collar” customer. Scrolling down
horizontally, it will tell you that he has a “housing” and has taken no “loan”.

After this one hot encoding, we need some more data processing before we can start
building our model.

Dropping the “unknown”

If we examine the columns in the mapped database, you will find the presence of few
columns ending with “unknown”. For example, examine the column at index 12 with the
following command shown in the screenshot:

In [14]: data.columns[1l2]

Out[14]: '"job unknown'

This indicates the job for the specified customer is unknown. Obviously, there is no point
in including such columns in our analysis and model building. Thus, all columns with the
“unknown” value should be dropped. This is done with the following command:

In [15]: data.drop(data.columns[[12, 16, 18, 21, 24]], axis=1, inplace=True)

Ensure that you specify the correct column numbers. In case of a doubt, you can examine
the column name anytime by specifying its index in the columns command as described
earlier.

I§ > tutorialspoint »

Logistic Regression in Python

After dropping the undesired columns, you can examine the final list of columns as shown
in the output below:

In [16]: data.columns

Out[l6]: Index(['y', 'Job admin.', 'Jjob blue-collar',
'job_entrepreneur', 'Jjob housemaid', 'job management',
'job _retired', 'job self-employed', 'job services',
'job_student', 'job technician', 'job unemployed',
'marital divorced', 'marital married',

'marital single', 'default no', 'default yes',
'housing no', 'housing yes', 'loan no', 'loan yes',
'poutcome failure', 'poutcome nonexistent',

'poutcome success'],

dtype='object')

At this point, our data is ready for model building.

I§ > tutorialspoint 2

7. Logistic Regression in Python — Splitting Data

We have about forty-one thousand and odd records. If we use the entire data for model
building, we will not be left with any data for testing. So generally, we split the entire data
set into two parts, say 70/30 percentage. We use 70% of the data for model building and
the rest for testing the accuracy in prediction of our created model. You may use a different
splitting ratio as per your requirement.

Creating Features Array

Before we split the data, we separate out the data into two arrays X and Y. The X array
contains all the features (data columns) that we want to analyze and Y array is a single
dimensional array of boolean values that is the output of the prediction. To understand
this, let us run some code.

Firstly, execute the following Python statement to create the X array:

In [17]: X = data.iloc[:,1:]

To examine the contents of X use head to print a few initial records. The following screen
shows the contents of the X array.

In [18]: X.head ()

In [17]: 1 # Seprating X from data
2 X = data.iloc[:,1:]

In [18]: 1 X.head ()
out[18]:

job_blue-
collar

job_admin. Jjob_ job | job_ job_retired emy Isﬂ: job_services job student job technician .. marital_single

1 0

e & - o o
- ©o o o o

0
0
0
1
0

o o o o o

0
1
0 .
0
0

N -]
o o ©o o o
o o o o

o © o o o
o © o o o
o o o o

o o = o o

5 rows x 23 columns

The array has several rows and 23 columns.

Next, we will create output array containing “y” values.

w tutorialspoint

EIMPLYEAEBEYLEARNINEG 13

Logistic Regression in Python

Creating Output Array

To create an array for the predicted value column, use the following Python statement:

In [19]: Y = data.iloc[:,0]

Examine its contents by calling head. The screen output below shows the result:

In [20]: Y.head()

Out[20]: 0 0
1 0
2 1
3 0
4 1

Name: y, dtype: int64

Now, split the data using the following command:

In [21]: X_train, X test, Y_train, Y_test = train_test_split(X, Y,
random_state=0)

This will create the four arrays called X_train, Y_train, X_test, and Y_test. As before,
you may examine the contents of these arrays by using the head command. We will use
X_train and Y_train arrays for training our model and X_test and Y_test arrays for testing
and validating.

Now, we are ready to build our classifier. We will look into it in the next chapter.

w tutorialspoint "

EIMPLYEAEBEYLEARNINEG

8. Logistic Regression in Python — Building

Classifier

It is not required that you have to build the classifier from scratch. Building classifiers is
complex and requires knowledge of several areas such as Statistics, probability theories,
optimization techniques, and so on. There are several pre-built libraries available in the
market which have a fully-tested and very efficient implementation of these classifiers.
We will use one such pre-built model from the sklearn.

The skleamn Classifier

Creating the Logistic Regression classifier from sklearn toolkit is trivial and is done in a
single program statement as shown here:

In [22]: classifier = LogisticRegression(solver="'lbfgs"',random_state=0)

Once the classifier is created, you will feed your training data into the classifier so that it
can tune its internal parameters and be ready for the predictions on your future data. To
tune the classifier, we run the following statement:

In [23]: classifier.fit(X_train, Y_train)

The classifier is now ready for testing. The following code is the output of execution of the
above two statements:

Out[23]: LogisticRegression(C=1.0, class_weight=None, dual=False,
fit_intercept=True,
intercept_scaling=1, max_iter=100, multi_class='warn',

n_jobs=None, penalty='12"', random_state=0, solver='lbfgs',

t01=0.0001, verbose=0, warm_start=False)

Now, we are ready to test the created classifier. We will deal this in the next chapter.

w tutorialspoint

EIMPLYEAEBEYLEARNINEG 15

9. Logistic Regression in Python — Testing

We need to test the above created classifier before we put it into production use. If the
testing reveals that the model does not meet the desired accuracy, we will have to go back
in the above process, select another set of features (data fields), build the model again,
and test it. This will be an iterative step until the classifier meets your requirement of
desired accuracy. So let us test our classifier.

Predicting Test Data

To test the classifier, we use the test data generated in the earlier stage. We call the
predict method on the created object and pass the X array of the test data as shown in
the following command:

In [24]: predicted_y = classifier.predict(X_test)

This generates a single dimensional array for the entire training data set giving the
prediction for each row in the X array. You can examine this array by using the following
command:

In [25]: predicted. y

The following is the output upon the execution the above two commands:

Out[25]: array([e, @, @, ..., @, @, 0])

The output indicates that the first and last three customers are not the potential candidates
for the Term Deposit. You can examine the entire array to sort out the potential
customers. To do so, use the following Python code snippet:

In [26]: for x in range(len(predicted_y)):
if (predicted_y[x] == 1):

print(x, end="\t")

The output of running the above code is shown below:

In [26]: 1 for x im range(len(predicted y)):

2 if (predicted y[x] == 1):

3 print(x, end="\t")
12 35 41 67 94 103 117 198 203 264 275 452 566 568 601
624 656 718 727 736 748 767 800 807 818 825 854 861 883 906
919 938 990 1045 1064 1097 1180 1234 1247 1268 1277 1288 1331 1344 1371
1372 1401 1428 1437 1468 1479 1513 1557 1564 1595 1602 1610 1611 1628 1671
1699 1718 1723 1735 1758 1765 1783 1809 1849 1873 1891 1921 1955 2026 2048
2073 2078 2120 2262 2274 2309 2315 2352 2383 2451 2474 2480 2485 2529 2564
2587 2601 2615 2643 2664 2693 2724 2739 2740 2788 2834 2849 2874 2916 2928

The output shows the indexes of all rows who are probable candidates for subscribing to
TD. You can now give this output to the bank’s marketing team who would pick up the
contact details for each customer in the selected row and proceed with their job.

Before we put this model into production, we need to verify the accuracy of prediction.

w tutorialspoint

EIMPLYEAEBEYLEARNINEG 16

Logistic Regression in Python

Verifying Accuracy

To test the accuracy of the model, use the score method on the classifier as shown below:

In [27]: print('Accuracy: {:.2f}'.format(classifier.score(X_test, Y_test)))

The screen output of running this command is shown below:

Accuracy: 0.90

It shows that the accuracy of our model is 90% which is considered very good in most of
the applications. Thus, no further tuning is required. Now, our customer is ready to run
the next campaign, get the list of potential customers and chase them for opening the TD
with a probable high rate of success.

@' Mtutorialspoint

EIMPLYEAEBEYLEARNINEG 17

10. Logistic Regression in Python — Limitations

As you have seen from the above example, applying logistic regression for machine
learning is not a difficult task. However, it comes with its own limitations. The logistic
regression will not be able to handle a large number of categorical features. In the example
we have discussed so far, we reduced the number of features to a very large extent.

However, if these features were important in our prediction, we would have been forced
to include them, but then the logistic regression would fail to give us a good accuracy.
Logistic regression is also vulnerable to overfitting. It cannot be applied to a non-linear
problem. It will perform poorly with independent variables which are not correlated to the
target and are correlated to each other. Thus, you will have to carefully evaluate the
suitability of logistic regression to the problem that you are trying to solve.

There are many areas of machine learning where other techniques are specified devised.
To name a few, we have algorithms such as k-nearest neighbours (kNN), Linear
Regression, Support Vector Machines (SVM), Decision Trees, Naive Bayes, and so on.
Before finalizing on a particular model, you will have to evaluate the applicability of these
various techniques to the problem that we are trying to solve.

w tutorialspoint

EIMPLYEAEBEYLEARNINEG 18

11.Logistic Regression in Python — Summary

Logistic Regression is a statistical technique of binary classification. In this tutorial, you
learned how to train the machine to use logistic regression. Creating machine learning
models, the most important requirement is the availability of the data. Without adequate
and relevant data, you cannot simply make the machine to learn.

Once you have data, your next major task is cleansing the data, eliminating the unwanted
rows, fields, and select the appropriate fields for your model development. After this is
done, you need to map the data into a format required by the classifier for its training.
Thus, the data preparation is a major task in any machine learning application. Once you
are ready with the data, you can select a particular type of classifier.

In this tutorial, you learned how to use a logistic regression classifier provided in the
sklearn library. To train the classifier, we use about 70% of the data for training the
model. We use the rest of the data for testing. We test the accuracy of the model. If this
is not within acceptable limits, we go back to selecting the new set of features.

Once again, follow the entire process of preparing data, train the model, and test it, until
you are satisfied with its accuracy. Before taking up any machine learning project, you
must learn and have exposure to a wide variety of techniques which have been developed
so far and which have been applied successfully in the industry.

w tutorialspoint

EIMPLYEAEBEYLEARNINEG 19

