| Ua

scripting language

tutorialspoint

S I MPLYEASYLEARNMNMINLILEG

www.tutorialspoint.com

ﬂ https://www.facebook.com/tutorialspointindia J https://twitter.com/tutorialspoint

Lua

About the Tutorial

Lua is an open source language built on top of C programming language. Lua has
its value across multiple platforms ranging from large server systems to small
mobile applications.

This tutorial covers various topics ranging from the basics of Lua to its scope in
various applications.

Audience

This tutorial is designed for all those readers who are looking for a starting point
to learn Lua. It has topics suitable for both beginners as well as advanced users.

Prerequisites

It is a self-contained tutorial and you should be able to grasp the concepts easily
even if you are a total beginner. However it would help if you have a basic
understanding of working with a simple text editor and command line.

Copyright & Disclaimer

© Copyright 2015 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials
Point (I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy,
distribute or republish any contents or a part of contents of this e-book in any
manner without written consent of the publisher.

We strive to update the contents of our website and tutorials as timely and as
precisely as possible, however, the contents may contain inaccuracies or errors.
Tutorials Point (I) Pvt. Ltd. provides no guarantee regarding the accuracy,
timeliness or completeness of our website or its contents including this tutorial. If
you discover any errors on our website or in this tutorial, please notify us at
contact@tutorialspoint.com

o - :
@tvtqr!alspom

mailto:contact@tutorialspoint.com

Lua

Table of Contents

Yo TU N o T Vo T N i

T E T =T o TN i

o =T =T 1 LT3 = i
(ofeY I T- L A R D TEY o - 11 41T i
Table Of CONEENTS...ccccvieiiiiiiiiitiiictee et as e e as e s s as e s s s ann e sessane e sessnneesanns i

L. OVERVIEW ...ttt ettt ettt e e s e s e s anerer e e e e e s e s samsneneneaeeesssansnsneneaeaens 1
=T 11 T =N 1
HOW LUQ iS IMPIEMENTEA?Y.......eeeeiiiiiiiisisisisses 1
LEAINING LUQ . ciiiuuiiiiiiiiiiinneiiiiniiinennssssisiinnssnsssnssssss 2
SOME USES OF LU c.cuuuniiiiiiiiiiiiiniiiiiintiiiinneiiinteissseeesssssnessesssnessesssnesesssneesesssnessesssnesssssssesesssnessesssnessessnne 2

B 1 AV 1200 1Y 1 | R 3
Try it OPtion ONIINEceeseeseesssaeeseasaassaasassssssssssssssssssssssnsnnssnsnnnnnnnnnnnnnnnn 3
LOCAl ENVIFONMENT SELUP ..eeveeeeeeeeiiiinnininnnnnnssnes 3
L= o =T 11 o T 3
LI T L3N =TT =] = SO PP 4
The LU COMPIIET ... e ettt st sse e e s e s eenns s e s s s e e s nassssssssseesnnssssssssssesnnnssssssssessnnnnsssssssnsennnnns 4
INStallation 0N WINAOWSeeiiiiiiiiiiiiiiiiiiiiiiiiiiieinieteiisieeiseieissseesesnesiesssnesssssssesessssessessssesssssssesesss 4
INSEAllation ON LiNUX...cccceiiiiiiiiiiiiiniiiiieieiiiieiiiieieiiiseeeiessneeiessnesiessteisssseesesssnesssssssesesssnessesssnessssssnesenss 4
INStallation 0N IMAC OS X..cocoueiiiiiiiniiiiiiitiiiiiieiiiiieiiineeeiisneeiesetesissteiinsseeiesstesssstesessssessesssnesssssssesenss 5

LU IDE ..uueiiiiineeiiiitneiiineteiissneeiesssnesisssntesessnessesssnessssssnesesssnessesssnesssssssesesssnessesssnesssssnnesessanessesssnesssssnnssonse 5

3. BASIC SYNTAX ettt ettt e e e s e st r s e s e s e s e ssbstsereseaese s snsseneseaesssesnsnsnenesenenssasnsnens 7
First LU PrOZram.....cccciceceeeiiiiiiieeiienceesseseenanssssessseeennssssssssseesnnssssssssssesnnsssssssssssennnssssssssssennnnsssssssesennnnnsnnns 7

JLICe LT T T 1 T 8
(00T 0 04 1T 0| (N 9

ii

ASYLEARNINEG

o . -
@ tutorialspoint

L L=y = SN 9
KEYWOKASeeeeeeeennnnnnnnnnnssnnsssnsssnnnsns 9
ATV T o Tl T T - TNt 10
VARIABLES ...ttt ettt e s et e e e e s e s e st st ae e e e e e e se s e neaeneeeeeaesannnsneneneeens 11
Variable Definition iN LU@.......cccovveeeiiiiiiiiiiiiiiiiiiiniiereennsssnssee s ssssse s ssss e e s s s asss e s s s ss s anns 11
Variable Declaration in LUcccccceeeeiiiiiiiiiieieeiiiiiinereessissssssee s sssssee s ss s sssss s e s s sssssssssssessssssssnnns 12
Lvalues and RVAlUES iN LUceeeiiiiiiiiieeieiiiiiiieereeniissssnssee s ssssssssse s s sssssse s s s sssssssssssessssssssssnnnnenns 13
DATATYPES ...ttt ettt e ettt ee e e e s e s ettt e e s e s e sansseneaeaeee s ansneneneaesesssansnsnene 14
TYPE FUNCHION e ccirireeeessseesrseennnssssssssssesnnssssssssssesnnssssssssssssnnssssssssssssnnnssssssssssnnnnnsssssssssnnnnns 14
OPERATORS ...ttt ettt ettt e e e e s s st et et e e e e s s ans st et aeeeee s sansnbneeeaeeesssansnsneneaeaens 16
PN oY T A To 0o 1] -1 o] Nt 16
RelatioNal OPErators......ccccceccsrsrrrsss 17
LOGICAl OPEIatOrS.....uuuueeeeeeneennss 20
LY o0 « 1= g 1 o T 22
Operators Preced@nce iN LUAccccciiiiiiiiiiiiiiiiiiiiiiisiss 22
100 o PP PPPPPPRN 25
L1V 11 L= [o « 0SSO TPRRN 26
1 (o1 gl (e Yo « J TNt 27
(=Y =T LT T 1] N [To T 2SO TTTS 29
(RT3 £ =T I [Yo o L3 SO PPR 31
LOOP CONLrOl STAt@MENT......cuueeeeeiiiirssississns 32
break statemMeENtccoeiiiiiiiiiiiiii e s s e e aa e e ban e e 33
The INFiNIte LOOP cccvveeiiiiiiieieeieieeieeeeeeeeeeeeeeeeseeesssnnnnns 34
DECISION MAKINGceiiirimireririirerereireresesneneseseenesesetresessssnsnesssensnesssessnnnesessnsnesssonsnenssennns 35
I SEAtEMENT .. s aaan e 36

ifi

ASYLEARNINEG

o . -
@ tutorialspoint

Lua

if...€1SE STATEMENT ..ceeiiiiiiiitiictt e s s s as e s aanee 37
The if...else if...else StateMENt.....ccivcueiiiiieiiitei e 39
nested if StAtEMENTESceiiiiiiiiiiiic e s 40
FUNCGTIONS ...ttt ettt et e e et s s et e e e s e s e st seneneeeaesa s nsneneneaeaenenansnenens 42

[0 7=l 01T = T ¥ T Tt o o 42
FUNCHION AFGUMENTS....cuuuiiiiiiiiiiii s s s b0 43

[0 11T T= 2 T oL ot T 43
Assigning and Passing FUNCHIONSccciiiiiiiiiiiiiiiiciiinneiernnnnesnnseesseesse s s s s s s e s s s s s s s s s s s s sssssssssesesssessnssssnsnnnns 44
Function with Variable ArBUMENTeeiiiiiciccccrrsrsrsrsssnnnnnnnnes 45

FO. STRINGS ..ttt ettt e e e e s s sttt e e e e s s st bereaeeeeesasansnsneneaeeesssansnsneneaeeens 46
Y 1T =TT] 10T 14 o] IRt 47

[0 LY |V T 1 10T - 1o o 48
RePIACING @ SUDBSEIING ...uuueeeeeeiiiinsssssissississes 48
FINAING @NA REVEISING ...uuuvuuereeinniriss 49
FOrmatting STrINES ...ccviiiiiiuiiiiiiiiiiiiiiiiiiiiinriiiiessinresisesssssrnsssssssssssssnesssssssssssssnsssssssssssssssssssssssssssssssnnes 49
Character and Byte Representations.......ccciiiiiiiiiiiiiiiiiiiiniiss 50
Other COMMON FUNCHIONSuueeeiiiiiiiiiiieeteeiiicienre e nssees e ass e sssss s e s s s s s s sans e e e s ss s sssnnnnnns 51

L1 ARRAYS Lttt e e s st e e e e s e s st r e e e e e s s s bbbt s e e e s e s et reneaeaene s anbnereneaens 52
ONE-DIMENSIONAl AFTaY.....cciiiiiiieeeeiiiiiiiieneneieeetieeennsssssessseeesnssssssssssssnnnssssssssssssnnssssssssssssnnnsssssssssssnnnnssnnss 52
MUlti-DIimeNnSioNal ArTay.......cciiiiiieieeiiiiiiiiieeeeiieeireeenenssseessesesnmssssssssssesnnssssssssssssnnsssssssssssssnnssssssssssssnnnns 53

0 I I 1 27 1 T 56
[CT=Ta =T g ol o T gl LT | TP 56

R 2 1= L LT o TN 56

R 1= I =T - 1o N 58

iv

ASYLEARNINEG

o . -
@ tutorialspoint

Lua

L3 TABLES ...ttt s er s e et s s st s e s e e s e nan e s s s n e e senrnen e s e s e ne s e s nrnenesans 60
Lo T T T 60
Representation and USAEEcccccceeeeiririesisssnnnns 60
Table Manipulation.........ceeeeeeeeeeeeeeeeeeeeeeimeeeieeeiieeeeeeeeeseeeesess 62
Table CoNCateNationeeeeiiiiiiiiiiiitiiiiirr s aa e e 62
INSErt AN REMOVE......ciiiiiiereiiiiiiiiiineret i sss e s s s ass s e e s s s s s sans s e e s s ss s ssssnnsenssssssssssnnnnnes 63
SOFtING TADIES ..ceiiiiieeitccc s anas 64

L4, IMODULES..... ettt ettt ettt e e e s et rer e e e s e s e st reneeeeesssesamsneneneaeaesssasnsnenenesens 66
What is @ MOAUIE?eeiiiiiiittticten ittt sas s s as e s s as e s as e e s s an e s s s sanessnns 66
Specialty of LUa MOAUIEScccoeeieiiiccccccccccereerrrrrrrrrrr s e e e s s e s s s e e s s s e s s s e s s s s s s s s s s s sssesssesessssssnssnnnannnes 66
I L=l =T [V LT =l 0Ty Lot Lo 4 TN 67
Things t0 REMEMDETccvveviiiiiiiiiiiiniiiiitieieieeeeeeeeeeeeeeeseseeseseesssessnss 68
Old Way of Implementing MOAUIESccccoiiiiiiiiiiiiiiiiiiiiininissisississ 68

L5, METATABLES ...ttt e e e e s e st e e e e e e e se s b e aeneeeaenesananenenenaeens 70

1o =) 70
_ NEWINGOEX ceeeerrerereeeeeeeeeeeeeeeeeeseesssnnnnnns 71
Adding Operator BEhavior t0 TabIesccoiiiiiiieiiiiiiiiieicccenrireereeesses s e s e ernnssssesssssennnssssssssssennnnsssssssanes 72
ot | | N 74
BN o 13 4 T - PO TUTS 75

16. COROUTINES.....oeeeteiiieeeeeiircrtt e et ce e e e s e st rer e s e s e s s sbnenesesesesesansnsnenesesesssasnsnenenesens 76
Lo T U T o T 76
Functions Available in COroutings.........cccvviieeiiiiitiiiinetiiiete e sssse e e sasne e 76
What Does the Above EXample DO?......cccciiiiiiiiiiiiiiiiiiiininiiiinniessisssnns 78
Another Corouting EXample......cccciiiiiiiiiiiiiiiiiiiiiiiiiiriisssssss s s s s s s s s s s s s s s s s s ssssssssssssssssssnssanns 78

Vv

ASYLEARNINEG

o . -
@ tutorialspoint

L7 FILE 1/O i

Implicit File DESCrIPLOrScccceeeerrrrrrcrrrrsssssssssssssssssssssssssssssssssssssssnes

EXpliCit File DeSCriptorsccceeererrrrrssrssnes

18. ERROR HANDLING.......coriirirriririircnrie e,

Need for Error Handlingeeeeeiiiiiiiieeeeiiiiiiiinineneennnnneeeeeennnnns
Assert and Error FUNCHIONScueeeuiiieenieieeeeereeeseerennseerennsserennsserennnes

PCall and XPCAlleueeeeerei s sssssses

19. DEBUGGING......cctiiiiiiiiiiiiiiiiciii

Debugging — EXample.......cceeeeeerrrrcirccccrrssssssssssssssssssssssssssssssnnnes
DEbUEEING TYPES..uuueeennnnnnnnnnsssssssssssssssssssssssssssssssssssssssnnnes

Graphical DEbUEEING......ccccviiiiirrrrccccccccrccrcrrrrr s nenes

20. GARBAGE COLLECTIONcovririiirriiiniin e

Garbage Collector PAUSEeccccevviiiiiiiinnnisnssssssssssssssssssssssssssssssssssnsns

Garbage Collector Step Multiplier

Garbage Collector FUNCEIONSccccciiiiiiiiiinininnnnnsssssssssssssssssssssssssnsnes

21. OBJECT ORIENTED....cetttiereriniririrererenninircreeesesesinereneneeens
Introduction t0 OOP........cccovvereeiiiiiiiiierreennerree e
FEatures of OOP........cccveiiiiieiiiiiieeinsre s ase e
(01077 TN T T T
A Real World Example......ccooveeeeeieiiiiiiieeecccnnineeneeesscessesesnnsssssesnenes
Creating @ SIMple Classcccccviiiiiiiiiiniiniininnnnsssssssssssssssssssssssssssssnnns
Creating an ObBjectccccciiiiiiiiiiiiiiiiinisssssssssssssssssssssssssssssssssssssssnes
ACCeSSING Propertiescccuiiiieeuniiiiniiniennniiiiniiienmmesss.
Accessing Member FUNCLioNccccevviiiiiiiiiiiiiiiiiinnnnnnnnneesseseseenes

Complete EXample ... eeeeecciieireeeeecccerrrrerceeese s s e seennns e e e s e s e e nnnnnnanns

ASYLEARNINEG

o . -
@ tutorialspoint

Lua

L4 LT T Yo T T S 102
OVerriding Base FUNCLIONScccciiiiiiiiiiiiiiiiiisiisssnnes 103
Inheritance COMPIEte EXAMPIEeeeeeiririiirrciissscsssnnnns 103
22. WEB PROGRAMMING ..ottt ettt et e e e e s st n e s e e e s e s sassnenenesenesennnnnne 106
Applications and FrameWorKs........cccuiiiiiiiiiiiiiiiiiiissnns 106
L0 < 1 N 106
Creating FOIMS... i s s s 109
LT N 110
D 1 = 1 | =TTt 111
LU WED COMPONENTES......ueeeeeeeeeeieennsssnnsnnns 113
ENAING NOTE «..ceeeeiciiiiiitiiccccitretneessce s rreesenssseessseesnnssssssssssesnnssssssssasssnnssssssssssesnnssssssssssssnnnssssssssssnnnnns 113
23, DATABASE ACCESSccetttiiiiiiiiitieee e e ettt et e e e e satrereee s e s s s ssnerereeeeesesanansneneneaesesesennnne 115
IMYSQL Ab SETUP ..covvrrrerinnnnnnnnisss 115
IMPOrting MYSQL.....coiiiiiiiuiiiiiiiiiiiiniiiniiiieianiiiiiiisssssssssiirsmsssssssstisssnes 115
Setting UP CONNECLION.....coiiiiriiriiiiiiiiiiiitiiiiiniiinrisssssssiirnsssssssssssinssnnsssssss 115
EXECULE FUNCHION....cciiiiiiiiiiiiiiiiiiniiiieenincciiiinessssssssssnssesssssssssssnseesssssssssssnnsessssssssssssnasssssssssssnnanee 116
Create Table EXamMPIe ciiiiieeeecciiiiiietieseesrrreereesssse s s s e eennsssssssseesnnssssssssssesnnsssssssssssennnssssssssasennnnssnnns 116
Insert Statement EXamPIe..... ..o ieeeeeiiiiiiiiiiiecccenreeereeeseesseseennsssssessesennnssssssssesesnnssssssssssesnnnsssssssssssnnnns 117
Update Statement EXamPlecccceeeeeeiiiiiiiiiiieiiciniiiereeeseessesesnnsssssssesennsssssssssesesnnssssssssssssnnssssssssssssnnnns 117
Delete Statement EXamPIecooceeeeeeiiiiiiiiiieeciccnsieeereeesseesrereennsssssssesennnssssssssssesnnssssssssssesnnnssssssssssennnns 117
Select Statement EXamPleccciiiiiiiiiiiiiiiiiiiissssssssssss s s s s s s s s e s s e e e 117
A Complete EXamPle ... e e s s s s s s s e e s s e s s e s e e e e 118
Performing TranSACtIONScccciirrrirssrsss 119
] =L I = T - Lot o TP PP 119
(0e] | ol Q1 T Y- Tt T S 119
L0a Ty T T4 I = T =Tt o T N 119
vii

ASYLEARNINEG

o . -
@ tutorialspoint

IMPOrEiNG SQLITEiiiiiiiiiiiiiiiiiietiiiiniiieesseiistiiessssssissstitssssssssssssisesssssssssssssssnsssssssssssssssssssssssssssnnnns
Setting UP CONNECHIONcoiiiiiieeiiiiiiiiitineeiiistiineenessisesiinesnnsssssssssnsssnsssssssssssssnsssssssssssssnnnsssssssssssnnnnssssss
EXECULE FUNCHION....cciiiiiiiiititiiiiiiictntect et sssssere e ssssee e s s s ssssss e e s sessssssssseeesssssssssnnnnnes
Create Table EXamMPIEccciiiiiiiiiiiiiiiiiiiiiniiiinsiisisses
Insert StatemMeENnt EXamMPle.... . e iinnissnss
Select Statement EXamplecccvviiiiiiiiiiiiiiiiissnens

A Complete EXample....ccoiiiiiiiiiiiiiiiiiiiisssanes

24. GAME PROGRAMINGooviiiiiiiiiiiiiiiicci s s

(00T 0T T T 0.1 oS
LT =T o R0\ (] « 1| =3

LY T - 5] 0

CPYENGINE . iiiiieiiiiiiiiiiiiiiiiiiiiiretusissstiirsssssssssssssrsssessssssssssssssssssssssssssssssnnnes

AN ENAING NOTEooiiiiieiiiiiiiiiiiiree e ssssss e ss s sass s s s s s s s ssans s e s s s sssssssnnsesssssssssssnnsnnnssses

25. STANDARD LIBRARIES......eciiiiitie ettt et s s e s n e s s men e e sennne

L T Lol T =T P TTPP
IMOAUIES LIDrarycoiiieieeeciiiiiiceicrcccnrireeieesse s s e seenenssssessesesnnnsssssssssesnnssssssssssssnnssssssssssesnnnsssssssssssnnnns
String MaNIPUIAtION ...t erres s e e s e s e e nn s s s e s s sasennnssssssssesssnnnssssssssnesnnnnssnnns
Table MaNIPUIAtION ...t s e s s e s e ene s s e s s e s e s nassssssssssssnnnssssssssesennnnssssssnnnns
File INPUL aNd QUEPULcoeeeeeiiiiissnses

DEbUE FACHlItIES ..euvveeeenrnnnnririisisirssiisssisssnsnss

26. MATH LIBRARY ...cooutiitiiiiiiiiiiiiiii it sne s sanesane s

TrigonomMetric FUNCHIONS c.cccuueiiiiiiiiiiiiiiiiiiiiiininiiisiiiiiesssssssssiineesssssssssiinesssnes

Other ComMmON Math FUNCHIONSiiiiiiiieeiiieeeitieeieereeeeeeeeeeesseeeeteeeenesssseseseeesnasssssssssssssnnssssssssessnnnnns

ASYLEARNINEG

o . -
@ tutorialspoint

27. OPERATING SYSTEM FACILITIES...cevvuriietterieeeriereeeerireerereseeesrseseressseserrsseseressssserssssssersanes 138
COMMON OS FUNCHIONS ..ccuuviiiiiiiieeniiieeiiteeeeneieeetteeeeesssssesseeessasssssesseesssasssssssssssssasssssssssssssnnsssssssssssnnnnsssnns 139
ix

o - :
@tutq"!alspc"nt

1. OVERVIEW

Lua is an extensible, lightweight programming language written in C. It started as an
in-house project in 1993 by Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and
Waldemar Celes.

It was designed from the beginning to be a software that can be integrated with the
code written in C and other conventional languages. This integration brings many
benefits. It does not try to do what C can already do but aims at offering what C is
not good at: a good distance from the hardware, dynamic structures, no
redundancies, ease of testing and debugging. For this, Lua has a safe environment,
automatic memory management, and good facilities for handling strings and other
kinds of data with dynamic size.

Features

Lua provides a set of unique features that makes it distinct from other languages.
These include:

e Extensible

e Simple
o Efficient
e Portable

e Free and open

Example Code

print("Hello World!")

How Lua is Implemented?

Lua consists of two parts - the Lua interpreter part and the functioning software
system. The functioning software system is an actual computer application that can
interpret programs written in the Lua programming language. The Lua interpreter is

- - .
tutorialspoint

10

Lua

written in ANSI C, hence it is highly portable and can run on a vast spectrum of
devices from high-end network servers to small devices.

Both Lua's language and its interpreter are mature, small, and fast. It has evolved
from other programming languages and top software standards. Being small in size
makes it possible for it to run on small devices with low memory.

Leaming Lua

The most important point while learning Lua is to focus on the concepts without
getting lost in its technical details.

The purpose of learning a programming language is to become a better programmer;
that is, to become more effective in designing and implementing new systems and at
maintaining old ones.

Some Uses of Lua

e Game Programming
e Scripting in Standalone Applications
e Scripting in Web

e Extensions and add-ons for databases like MySQL Proxy and MySQL
WorkBench

e Security systems like Intrusion Detection System.

11

RNINEG

o - :
§p) prutorialspoint

2. ENVIRONMENT

Try it Option Online

We have already set up the Lua Programming environment online, so that you can
build and execute all the available examples online at the same time when you are
doing your theory work. This gives you confidence in what you are reading and to
check the result with different options. Feel free to modify any example and execute
it online.

Try the following example usingour online compileroption available at
http://www.compileonline.com/

#!/usr/local/bin/lua

print("Hello World!")

For most of the examples given in this tutorial, you will find a Try it option in our
website code sections at the top right corner that will take you to the online compiler.
So, just make use of it and enjoy your learning.

Local Environment Setup

If you are still willing to set up your environment for Lua programming language, you
need the following softwares available on your computer - (a) Text Editor, (b) The
Lua Interpreter, and (c) Lua Compiler.

Text Editor

You need a text editor to type your program. Examples of a few editors include
Windows Notepad, OS Edit command, Brief, Epsilon, EMACS, and vim or vi.

Name and version of the text editor can vary on different operating systems. For
example, Notepad will be used on Windows, and vim or vi can be used on Windows
as well as Linux or UNIX.

- - .
tutorialspoint

12

http://www.compileonline.com/

Lua

The files you create with your editor are called source files and these files contain the
program source code. The source files for Lua programs are typically named with the
extension ".lua".

The Lua Interpreter

It is just a small program that enables you to type Lua commands and have them
executed immediately. It stops the execution of a Lua file in case it encounters an
error unlike a compiler that executes fully.

The Lua Compiler

When we extend Lua to other languages/applications, we need a Software
Development Kit with a compiler that is compatible with the Lua Application Program
Interface.

Installation on Windows

There is a separate IDE named "SciTE" developed for the windows environment,
which can be downloaded from http://code.google.com/p/luaforwindows/ download
section.

Run the downloaded executable to install the Lua IDE.
Since it's an IDE, you can both create and build the Lua code using the same.

In case, you are interested in installing Lua in command line mode, you need to install
MinGW or Cygwin and then compile and install Lua in windows.

Installation on Linux

To download and build Lua, use the following command:

$ wget http://www.lua.org/ftp/lua-5.2.3.tar.gz
$ tar zxf lua-5.2.3.tar.gz
$ cd lua-5.2.3

$ make linux test

13

RNINEG

o - :
§p) prutorialspoint

Lua

In order to install on other platforms like aix, ansi, bsd, generic linux, mingw, posix,
solaris by replacing Linux in make Linux, test with the corresponding platform name.

We have a helloWorld.lua, in Lua as follows:

print("Hello World!")

Now, we can build and run a Lua file say helloWorld.lua, by switching to the folder
containing the file using cd, and then using the following command:

$ lua helloWorld
We can see the following output.

hello world

Installation on Mac OS X

To build/test Lua in the Mac OS X, use the following command:

$ curl -R -0 http://www.lua.org/ftp/lua-5.2.3.tar.gz
$ tar zxf lua-5.2.3.tar.gz
$ cd lua-5.2.3

$ make macosx test

In certain cases, you may not have installed the Xcode and command line tools. In
such cases, you won't be able to use the make command. Install Xcode from mac
app store. Then go to Preferences of Xcode, and then switch to Downloads and install
the component named "Command Line Tools". Once the process is completed, make
command will be available to you.

It is not mandatory for you to execute the "make macosx test" statement. Even
without executing this command, you can still use Lua in Mac OS X.

We have a helloWorld.lua, in Lua, as follows:

print("Hello World!™")

Now, we can build and run a Lua file say helloWorld.lua by switching to the folder
containing the file using cd and then using the following command:

o - :
@tvtqr!alspom

14

Lua

$ lua helloWorld

We can see the following output:

hello world

Lua IDE

As mentioned earlier, for Windows SciTE, Lua IDE is the default IDE provided by the
Lua creator team. The alternate IDE available is from ZeroBrane Studio, which is
available across multiple platforms like Windows, Mac and Linux.

There are also plugins for eclipse that enable the Lua development. Using IDE makes
it easier for development with features like code completion and is highly
recommended. The IDE also provides interactive mode programming similar to the
command line version of Lua.

15

MPLYEASYLEARNINEG

o . -
@ tutorialspoint

3. BASICSYNTAX

Let us start creating our first Lua program!

First Lua Program

Interactive Mode Programming

Lua provides a mode called interactive mode. In this mode, you can type in
instructions one after the other and get instant results. This can be invoked in the
shell by using the lua -i or just the lua command. Once you type in this, press Enter
and the interactive mode will be started as shown below.

$ lua -i
$ Lua 5.1.4 Copyright (C) 1994-2008 Lua.org, PUC-Rio

quit to end; cd, dir and edit also available

You can print something using the following statement:

> print("test")

Once you press enter, you will get the following output:

"test’

Default Mode Programming

Invoking the interpreter with a Lua file name parameter begins execution of the file
and continues until the script is finished. When the script is finished, the interpreter
is no longer active.

Let us write a simple Lua program. All Lua files will have extension .lua. So put the
following source code in a test.lua file.

print("test")

- - .
tutorialspoint

16

Lua

Assuming, lua environment is setup correctly, let’'s run the program using the
following code:

$ lua test.lua

We will get the following output:

test

Let's try another way to execute a Lua program. Below is the modified test.lua file:

#!/usr/local/bin/1lua

print("test")

Here, we have assumed that you have Lua interpreter available in your /usr/local/bin
directory. The first line is ignored by the interpreter, if it starts with # sign. Now, try
to run this program as follows:

$ chmod a+rx test.lua

$./test.lua

We will get the following output.

test

Let us now see the basic structure of Lua program, so that it will be easy for you to
understand the basic building blocks of the Lua programming language.

Tokens in Lua

A Lua program consists of various tokens and a token is either a keyword, an
identifier, a constant, a string literal, or a symbol. For example, the following Lua
statement consists of three tokens:

io.write("Hello world, from ", VERSION,"!\n")

The individual tokens are:

17

MPLYEASYLEARNINEG

o . -
@ tutorialspoint

Lua

io.write

(
"Hello world, from ", VERSION,"!\n"

)

Comments

Comments are like helping text in your Lua program and they are ignored by the
interpreter. They start with --[[and terminates with the characters --]] as shown
below:

--[[my first program in Lua --]]

Identifiers

A Lua identifier is a name used to identify a variable, function, or any other user-
defined item. An identifier starts with a letter ‘A to Z’ or ‘a to z’ or an underscore *_’
followed by zero or more letters, underscores, and digits (0 to 9).

Lua does not allow punctuation characters such as @, $, and % within identifiers.
Lua is a case sensitive programming language. Thus Manpower and manpower are
two different identifiers in Lua. Here are some examples of the acceptable identifiers:

mohd zara abc move_name a_123
myname50 _temp j a23b9 retval
Keywords

The following list shows few of the reserved words in Lua. These reserved words may
not be used as constants or variables or any other identifier names.

and break do else

elseif end false for

o - :
@tvtqr!alspom

18

Lua

function if in local
nil not or repeat
return then true until
while

Whitespace in Lua

A line containing only whitespace, possibly with a comment, is known as a blank line,
and a Lua interpreter totally ignores it.

Whitespace is the term used in Lua to describe blanks, tabs, newline characters and
comments. Whitespace separates one part of a statement from another and enables
the interpreter to identify where one element in a statement, such as int ends, and
the next element begins. Therefore, in the following statement:

local age

There must be at least one whitespace character (usually a space) between local and
age for the interpreter to be able to distinguish them. On the other hand, in the
following statement:

fruit = apples + oranges --get the total fruit

No whitespace characters are necessary between fruit and =, or between = and
apples, although you are free to include some if you wish for readability purpose.

19

o - :
@tvtqr!alspom

4. VARIABLES

A variable is nothing but a name given to a storage area that our programs can
manipulate. It can hold different types of values including functions and tables.

The name of a variable can be composed of letters, digits, and the underscore
character. It must begin with either a letter or an underscore. Upper and lowercase
letters are distinct because Lua is case-sensitive. There are eight basic types of values
in Lua:

In Lua, though we don't have variable data types, we have three types based on the
scope of the variable.

e Global variables: All variables are considered global unless explicitly declared
as a local.

e Local variables: When the type is specified as local for a variable then its
scope is limited with the functions inside their scope.

e Table fields: This is a special type of variable that can hold anything except
nil including functions.

Variable Definition in Lua

A variable definition means to tell the interpreter where and how much to create the
storage for the variable. A variable definition have an optional type and contains a
list of one or more variables of that type as follows:

type variable list;

Here, type is optionally local or type specified making it global, and variable_list
may consist of one or more identifier names separated by commas. Some valid
declarations are shown here:

local i, j
local i
local a,c

20

- - .
tutorialspoint

Lua

The line local i, j both declares and defines the variables i and j; which instructs the
interpreter to create variables named i, j and limits the scope to be local.

Variables can be initialized (assigned an initial value) in their declaration. The
initializer consists of an equal sign followed by a constant expression as follows:

type variable_list = value_list;

Some examples are:

local d , f =5 ,10 --declaration of d and f as local variables.
d, f=25, 10; --declaration of d and f as global variables.
d, f =10 --[[declaration of d and f as global variables.

Here value of f is nil --]]

For definition without an initializer: variables with static storage duration are
implicitly initialized with nil.

Variable Declaration in Lua

As you can see in the above examples, assignments for multiples variables follows a
variable_list and value_list format. In the above example locald, f = 5,10, we have
d and f in variable_list and 5 and 10 in values list.

Value assigning in Lua takes place like first variable in the variable_list with first value
in the value_list and so on. Hence, the value of d is 5 and the value of fis 10.

Example

Try the following example, where variables have been declared at the top, but they
have been defined and initialized inside the main function:

-- Variable definition:

local a, b

-- Initialization
a = 10

b =30

21

o - :
@tvtqr!alspom

Lua

print("value of a:", a)

print("value of b:", b)

-- Swapping of variables

b, a=a, b

print("value of a:", a)

print("value of b:", b)

f =70.0/3.0
print("value of f", f)

When the above code is built and executed, it produces the following result:

value of a: 10
value of b: 30
value of a: 30
value of b: 10

value of f 23.333333333333

Lvalues and Rvalues in Lua

There are two kinds of expressions in Lua:

¢ lvalue: Expressions that refer to a memory location is called "lvalue"
expression. An Ivalue may appear as either the left-hand or right-hand side of
an assignment.

¢ rvalue: The term rvalue refers to a data value that is stored at some address
in memory. An rvalue is an expression that cannot have a value assigned to
it, which means an rvalue may appear on the right-hand side, but not on the
left-hand side of an assignment.

22

o . -
@ tutorialspoint

SIMPLYEASYLEARNINEG

Lua

Variables are lvalues and so may appear on the left-hand side of an assignment.
Numeric literals are rvalues and so may not be assigned and cannot appear on the
left-hand side. Following is a valid statement:

g = 20

But following is not a valid statement and would generate a build-time error:

10 = 20

In Lua programming language, apart from the above types of assignment, it is
possible to have multiple Ivalues and rvalues in the same single statement. It is
shown below.

g,1 = 20,30

In the above statement, 20 is assighed to g and 30 is assighed to |I.

23

o - :
@tvtqr!alspom

5. DATATYPES

Lua is a dynamically typed language, so the variables don't have types, only the
values have types. Values can be stored in variables, passed as parameters and
returned as results.

In Lua, though we don't have variable data types, but we have types for the values.
The list of data types for values are given below.

Value Type Description

nil Used to differentiate the value from having some data or no
(nil) data.

boolean Includes true and false as values. Generally used for condition
checking.

number Represents real (double precision floating point) numbers.

string Represents array of characters.

function Represents a method that is written in C or Lua.

userdata Represents arbitrary C data.

thread Represents independent threads of execution and it is used to

implement co-routines.

table Represent ordinary arrays, symbol tables, sets, records, graphs,
trees, etc., and implements associative arrays. It can hold any
value (except nil).

- - .
tutorialspoint

24

Type Function

Lua

In Lua, there is a function called ‘type’ that enables us to know the type of the

variable. Some examples are given in the following code.

print(type("What is my type"))
t=10

print(type(5.8*t))
print(type(true))
print(type(print))
print(type(type))
print(type(nil))
print(type(type(ABC)))

-->

string

number
boolean
function
function
nil

string

When you build and execute the above program, it produces the following result on

Linux:

string
number
function
function
boolean
nil

string

By default, all the variables will point to nil until they are assigned a value or
initialized. In Lua, zero and empty strings are considered to be true in case of
condition checks. Hence, you have to be careful when using Boolean operations. We
will know more using these types in the next chapters.

o - :
@tvtqr!alspom

25

6. OPERATORS

An operator is a symbol that tells the interpreter to perform specific mathematical or
logical manipulations. Lua language is rich in built-in operators and provides the
following type of operators:

e Arithmetic Operators
e Relational Operators
e Logical Operators

e Misc Operators

This tutorial will explain the arithmetic, relational, logical, and other miscellaneous
operators one by one.

Arithmetic Operators

Following table shows all the arithmetic operators supported by Lua language.
Assume variable A holds 10 and variable B holds 20, then:

Operator Description Example

+ Adds two operands A + B will give 30
- Subtracts second operand from the first A - B will give -10
* Multiply both operands A * B will give 200
/ Divide numerator by de-numerator B / A will give 2

% Modulus Operator and remainder of afteran B % A will give 0

integer division

- - .
tutorialspoint

26

Lua

N Exponent Operator takes the exponents AN2 will give 100

- Unary - operator acts as negation -A will give -10

Example

Try the following example to understand all the arithmetic operators available in the
Lua programming language:

a =21
b =10
c=a+b

print("Line 1 - Value of c is ", c)
c=a-b>b

print("Line 2 - Value of c is ", c)
c=a*hb

print("Line 3 - Value of c is ", c)
c=a/b

print("Line 4 - Value of ¢ is ", c)
c=a%b

print("Line 5 - Value of c is ", ¢)
c = an2

print("Line 6 - Value of c is ", ¢)

c=-a

print("Line 7 - Value of c is ", c)

When you execute the above program, it produces the following result:

Line 1 - Value of c is 31
Line 2 - Value of c is 11
Line 3 - Value of c is 210
Line 4 - Value of c is 2.1

27

o . -
@ tutorialspoint

SIMPLYEASYLEARNINEG

Lua

Line 5 - Value of c is 1
Line 6 - Value of c is 441
Line 7 - Value of c is -21
Relational Operators

Following table shows all the relational operators supported by Lua language. Assume
variable A holds 10 and variable B holds 20 then:

Operator

Description

Checks if the values of two operands are
equal or not, if yes then condition becomes
true.

Checks if the values of two operands are
equal or not, if values are not equal then
condition becomes true.

Checks if the value of left operand is greater
than the value of right operand, if yes then
condition becomes true.

Checks if the value of left operand is less
than the value of right operand, if yes then
condition becomes true.

Checks if the value of left operand is greater
than or equal to the value of right operand,
if yes then condition becomes true.

Checks if the value of left operand is less
than or equal to the value of right operand,
if yes then condition becomes true.

RNINEG

o - :
§p) prutorialspoint

Example

(A == B) is not true.

(A ~= B) is true.

(A > B) is not true.

(A < B) is true.

(A >= B) is not true.

(A <= B) is true.

28

Lua

Example

Try the following example to understand all the relational operators available in the
Lua programming language:

a =21
b =10
if(a==b)
then

print("Line 1 - a is equal to b")
else

print("Line 1 - a is not equal to b")
end
if(a ~=b)
then

print(“Line 2 - a is not equal to b")
else

print("Line 2 - a is equal to b")
end
if (a<b)
then

print("Line 3 - a is less than b")
else

print("Line 3 - a is not less than b")
end
if (a>b)
then

29

o . -
@ tutorialspoint

SIMPLYEASYLEARNINEG

Lua

print("Line
else
print("Line

end

-- Lets change

a=>5

b = 20

if (a<=b)

then
print("Line

end

if (b >=a)
then
print("Line

end

4 - a is greater than b")

5 - a is not greater than b")

value of a and b

5 - a is either less than or equal to b")

6 - b is either greater than or equal to b")

When you build and execute the above program, it produces the following result:

Line 1 - a is not equal to b

Line 2 - a is not equal to b

Line 3 - a is not less than b

Line 4 - a is greater than b

Line 5 - a is either less than or equal to b

Line 6 - b is either greater than or equal to b
Logical Operators

Following table shows all the logical operators supported by Lua language. Assume

variable A holds

true and variable B holds false then:

30

o . -
@ tutorialspoint

SIMPLYEASY

LEARNINEG

Operator

and

or

not

Example

Description

Called Logical AND operator. If both the
operands are non-zero, then condition
becomes true.

Called Logical OR Operator. If any of the two
operands is non-zero, then condition
becomes true.

Called Logical NOT Operator. Used to reverse
the logical state of its operand. If a condition
is true, then Logical NOT operator will make
false.

Example

(A and B) is false.

(A or B) is true.

I(A and B) is true.

Lua

Try the following example to understand all the logical operators available in the Lua
programming language:

a=>5

20

(on
1}

if (aand b)

then

print("Line 1 - Condition is true")

end

if (aorb)

then

print("Line 2 - Condition is true")

end

--lets change the value ofa and b

[N

o - :
@tvtqr!alspom

W

Lua

if (aand b)
then

print("Line 3 - Condition
else

print(“"Line 3 - Condition

end

if (not(a and b))
then

print("Line 4 - Condition
else

print("Line 3 - Condition

end

is

is

is

is

true")

not true")

true")

not true")

When you build and execute the above program, it produces the following result:

Line 1 - Condition is true

Line 2 - Condition is true

Line 3 - Condition is true

Line 3 - Condition is not true
Misc Operators
Miscellaneous operators supported by Lua Language include concatenation and
length.

Operator Description Example

o . -
@ tutorialspoint

LEARNINEG

32

Lua

Concatenates two strings. a..b where a is "Hello " and
b is "World", will return
"Hello World".
A unary operator that returns the #"Hello" will return 5

length of the a string or a table.

Example

Try the following example to understand the miscellaneous operators available in the
Lua programming language:

= "Hello "
b = "World"

Q
|

print("Concatenation of string a with b is ", a..b)

print("Length of b is ",#b)

print("Length of b is ",#"Test")

When you build and execute the above program, it produces the following result:

Concatenation of string a with b is Hello World
Length of b is 5
Length of b is 4

Operators Precedence in Lua

Operator precedence determines the grouping of terms in an expression. This affects
how an expression is evaluated. Certain operators have higher precedence than
others; for example, the multiplication operator has higher precedence than the
addition operator:

For example, x = 7 + 3 * 2; Here x is assigned 13, not 20 because operator * has
higher precedence than + so, it first gets multiplied with 3*2 and then adds into 7.

33
@tutor'ialspoint

Lua

Here, operators with the highest precedence appear at the top of the table, those
with the lowest appear at the bottom. Within an expression, higher precedence
operators will be evaluated first.

Category Operator Associativity
Unary not # - Right to left
Concatenation . Right to left
Multiplicative */ % Left to right
Additive + - Left to right
Relational <><=>===n~= Left to right

Equality == ~= Left to right

Logical AND and Left to right

Logical OR or Left to right
Example

Try the following example to understand all the precedence of operators in Lua
programming language:

a = 20

b =10

c =15

d=>5

e=(a+b) *c/d;-- (306*15) /5

print("Value of (a + b) * c / dis :",e)

34

MPLYEASYLEARNINEG

o . -
@ tutorialspoint

Lua

e=((a+b) *c)/d; -- (36 *15) / 5
print("Value of ((a + b) * ¢) / d is :",e)

e=(a+b)* (c/ d);-- (30) * (15/5)
print("Value of (a + b) * (¢ / d) is :",e)

e=a+(b*c)/d;, --20+ (150/5)
print("Value of a + (b * ¢) / d is :",e)

When you build and execute the above program, it produces the following result:

Value of (a + b) * ¢ / d is : 90
Value of ((a + b) * ¢c) / d is : 90
Value of (a + b) * (c / d) is : 90
Value of a + (b * ¢) / d is : 50

MPLYEASYLEARNINEG

o . -
@ tutorialspoint

35

/. LOOPS

There may be a situation when you need to execute a block of code several number
of times. In general, statements are executed sequentially: the first statement in a
function is executed first, followed by the second, and so on.

Programming languages provide various control structures that allow for more
complicated execution paths.

A loop statement allows us to execute a statement or group of statements multiple
times. Following is the general form of a loop statement in most of the programming
languages:

Conditional Code

If condition
is true

If condition
is false

36

- - .
tutorialspoint

SIMPLYEASYLEARNINEG

Lua

End of ebook preview
If you liked what you saw...
Buy it from our store @ https://store.tutorialspoint.com

37

o . -
@ tutorialspoint

SIMPLYEASYLEARNINEG

