

MariaDB

i

About the Tutorial

MariaDB is a fork of the MySQL relational database management system. The original

developers of MySQL created MariaDB after concerns raised by Oracle's acquisition of

MySQL.

This tutorial will provide a quick introduction to MariaDB and aid you in achieving a high

level of comfort with MariaDB programming and administration.

Audience

This tutorial targets novice developers and those new to MariaDB. It guides them in

understanding basic through more advanced concepts in MariaDB. After completing this

tutorial, your firm foundation in MariaDB and level of expertise will allow you to begin

developing and easily build on your knowledge.

Prerequisites

The tutorial assumes that you are familiar with relational database management systems,

querying languages, MySQL, and general programming. It also assumes familiarity with

typical database operations in an application.

Copyright & Disclaimer

 Copyright 2016 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

MariaDB

ii

Table of Contents

About the Tutorial .. i
Audience ... i
Prerequisites ... i
Copyright & Disclaimer ... i
Table of Contents .. ii

1. MariaDB – Introduction .. 1
RDBMS Terminology .. 1
MARIA Database .. 2

2. MariaDB – Installation .. 3
Installing on LINUX/UNIX ... 3
Installing on Windows ... 4
Testing the Installation .. 4
Post- Installation .. 4
Upgrading on Windows ... 5

3. MariaDB – Administration .. 6
Creating a User Account .. 6
The Configuration File ... 6
Administration Commands .. 8

4. MariaDB – PHP Syntax .. 9

5. MariaDB – Connection .. 10
MYSQL Binary .. 10
PHP Connection Script ... 10

6. MariaDB – Create Database .. 13
mysqladmin Binary .. 13
PHP Create Database Script ... 13

7. MariaDB – Drop Database ... 15
mysqladmin Binary .. 15
PHP Drop Database Script ... 15

8. MariaDB – Select Database ... 17
The Command Prompt .. 17
PHP Select Database Script .. 17

9. MariaDB – Data Types ... 19
Numeric Data Types .. 19
Date and Time Data Types ... 20
String DataTypes .. 20

10. MariaDB – Create Tables ... 22
The Command Prompt .. 22
PHP Create Table Script ... 23

MariaDB

iii

11. MariaDB – Drop Tables ... 25
The Command Prompt .. 25
PHP Drop Table Script.. 25

12. MariaDB – Insert Query .. 27
The Command Prompt .. 27
PHP Insertion Script ... 28

13. MariaDB – Select Query .. 30
The Command Prompt .. 30
PHP Select Script.. 31

14. MariaDB – Where Clause .. 34
The Command Prompt .. 34
PHP Scripts Using Where Clause ... 35

15. MariaDB – Update Query .. 37
The Command Prompt .. 37
PHP Update Query Script... 37

16. MariaDB – Delete Query ... 39
The Command Prompt .. 39
PHP Delete Query Script .. 39

17. MariaDB – Like Clause ... 41
The Command Prompt .. 41
PHP Script Using Like Clause .. 42

18. MariaDB – Order By Clause ... 44
The Command Prompt .. 44
PHP Script Using Order By Clause .. 45

19. MariaDB – Join .. 47
The Command Prompt .. 47
PHP Script Using JOIN .. 48

20. MariaDB – Null Values .. 50
NULL Operators ... 50
Sorting NULL Values .. 50
NULL Functions .. 51
Inserting NULL Values .. 51

21. MariaDB – Regular Expression .. 52

22. MariaDB – Transactions .. 54
Structure of a Transaction ... 54

23. MariaDB – Alter Command ... 56
Using ALTER to Modify Columns ... 56
Using ALTER to Modify Tables ... 57

MariaDB

iv

24. MariaDB – Indexes and Statistics Tables ... 58
Create an Index ... 58
Drop an Index .. 58
Rename an Index ... 59
Managing Indexes.. 59
Table Statistics ... 59

25. MariaDB – Temporary Tables .. 60
Create a Temporary Table ... 60
Administration ... 60
Drop a Temporary Table .. 61

26. MariaDB – Table Cloning ... 62

27. MariaDB – Sequences ... 63
Installating the Sequence Engine .. 63
Creating Sequence ... 63

28. MariaDB – Managing Duplicates ... 65
Strategies and Tools .. 65
Using INSERT.. 65
Using DISTINCT .. 66
Using INSERT IGNORE .. 66

29. MariaDB – SQL Injection Protection .. 67

30. MariaDB – Backup Methods.. 69
Backup Tools .. 69
Using THE SELECT...INTO OUTFILE Statement ... 70
Using CONNECT in Backups ... 70
Other Tools .. 71

31. MariaDB – Backup Loading Methods .. 72
Using LOAD DATA .. 72
Using MYSQLIMPORT .. 73
Using MYSQLDUMP ... 73

32. MariaDB – Useful Functions .. 74
MariaDB Aggregate Functions ... 74
MariaDB Age Calculation ... 74
MariaDB String Concatenation .. 75
MariaDB Date/Time Functions .. 75
MariaDB Numeric Functions.. 77
MariaDB String Functions .. 78

MariaDB

1

A database application exists separate from the main application and stores data

collections. Every database employs one or multiple APIs for the creation, access,

management, search, and replication of the data it contains.

Databases also use non-relational data sources such as objects or files. However,

databases prove the best option for large datasets, which would suffer from slow retrieval

and writing with other data sources.

Relational database management systems, or RDBMS, store data in various tables.

Relationships between these tables are established using primary keys and foreign keys.

RDBMS offers the following features-

 They enable you to implement a data source with tables, columns, and indices.

 They ensure the integrity of references across rows of multiple tables.

 They automatically update indices.

 They interpret SQL queries and operations in manipulating or sourcing data from

tables.

RDBMS Terminology

Before we begin our discussion of MariaDB, let us review a few terms related to databases.

 Database – A database is a data source consisting of tables holding related data.

 Table – A table, meaning a spreadsheet, is a matrix containing data.

 Column – A column, meaning data element, is a structure holding data of one

type; for example, shipping dates.

 Row – A row is a structure grouping related data; for example, data for a customer.

It is also known as a tuple, entry, or record.

 Redundancy – This term refers to storing data twice in order to accelerate the

system.

 Primary Key – This refers to a unique, identifying value. This value cannot appear

twice within a table, and there is only one row associated with it.

 Foreign Key – A foreign key serves as a link between two tables.

 Compound Key – A compound key, or composite key, is a key that refers to

multiple columns. It refers to multiple columns due to a column lacking a unique

quality.

1. MariaDB – Introduction

MariaDB

2

 Index – An index is virtually identical to the index of a book.

 Referential Integrity – This term refers to ensuring all foreign key values point

to existing rows.

MARIA Database

MariaDB is a popular fork of MySQL created by MySQL's original developers. It grew out

of concerns related to MySQL's acquisition by Oracle. It offers support for both small data

processing tasks and enterprise needs. It aims to be a drop-in replacement for MySQL

requiring only a simple uninstall of MySQL and an install of MariaDB. MariaDB offers the

same features of MySQL and much more.

Key Features of MariaDB

The important features of MariaDB are-

 All of MariaDB is under GPL, LGPL, or BSD.

 MariaDB includes a wide selection of storage engines, including high-performance

storage engines, for working with other RDBMS data sources.

 MariaDB uses a standard and popular querying language.

 MariaDB runs on a number of operating systems and supports a wide variety of

programming languages.

 MariaDB offers support for PHP, one of the most popular web development

languages.

 MariaDB offers Galera cluster technology.

 MariaDB also offers many operations and commands unavailable in MySQL, and

eliminates/replaces features impacting performance negatively.

Getting Started

Before you begin this tutorial, make sure you have some basic knowledge of PHP and

HTML, specifically material discussed in our PHP and HTML tutorials.

This guide focuses on use of MariaDB in a PHP environment, so our examples will be most

useful for PHP developers.

We strongly recommend reviewing our PHP Tutorial if you lack familiarity or need to

review.

MariaDB

3

All downloads for MariaDB are located in the Download section of the official MariaDB

foundation website. Click the link to the version you would like, and a list of downloads for

multiple operating systems, architectures, and installation file types is displayed.

Installing on LINUX/UNIX

If you have intimate knowledge of Linux/Unix systems, simply download source to build

your install. Our recommended way of installing is to utilize distribution packages. MariaDB

offers packages for the following Linux/Unix distributions-

 RedHat/CentOS/Fedora

 Debian/Ubuntu

The following distributions include a MariaDB package in their repositories-

 openSUSE

 Arch Linux

 Mageia

 Mint

 Slackware

Follow these steps to install in an Ubuntu environment-

Step 1: Login as a root user.

Step 2: Navigate to the directory containing the MariaDB package.

Step 3: Import the GnuPG signing key with the following code-

sudo apt-key adv --recv-keys --keyserver keyserver.ubuntu.com 0xcbcb082a1bb943db

Step 4: Add MariaDB to the sources.list file. Open the file, and add the following code-

sudo add-apt-repository 'deb http://ftp.osuosl.org/pub/mariadb/repo/5.5/ubuntu

precise main'

Step 5: Refresh the system with the following-

sudo apt-get update

Step 6: Install MariaDB with the following-

sudo apt-get install mariadb-server

2. MariaDB – Installation

https://downloads.mariadb.org/

MariaDB

4

Installing on Windows

After locating and downloading an automated install file (MSI), simply double click the file

to start the installation. The installation wizard will walk you through every step of

installation and any necessary settings.

Test the installation by starting it from the command prompt. Navigate to the location of

the installation, typically in the directory, and type the following at the prompt-

mysqld.exe --console

If the installation is successful, you will see messages related to startup. If this does not

appear, you may have permission issues. Ensure that your user account can access the

application. Graphical clients are available for MariaDB administration in the Windows

environment. If you find the command line uncomfortable or cumbersome, be sure to

experiment with them.

Testing the Installation

Perform a few simple tasks to confirm the functioning and installation of MariaDB.

Use the Admin Utility to Get Server Status

View the server version with the mysqladmin binary.

[root@host]# mysqladmin --version

It should display the version, distribution, operating system, and architecture. If you do

not see the output of that type, examine your installation for issues.

Execute Simple Commands with a Client

Bring up the command prompt for MariaDB. This should connect you to MariaDB and allow

execution of commands. Enter a simple command as follows-

mysql> SHOW DATABASES;

Post- Installation

After successful installation of MariaDB, set a root password. A fresh install will have a

blank password. Enter the following to set the new password-

mysqladmin -u root password "[enter your password here]";

Enter the following to connect to the server with your new credentials-

mysql -u root -p

Enter password:*******

MariaDB

5

Upgrading on Windows

If you already have MySQL installed on your Windows system, and want to upgrade to

MariaDB; do not uninstall MySQL and install MariaDB. This will cause a conflict with the

existing database. You must instead install MariaDB, and then use the upgrade wizard in

the Windows installation file.

The options of your MySQL my.cnf file should work with MariaDB. However, MariaDB has

many features, which are not found in MySQL.

Consider the following conflicts in your my.cnf file-

 MariaDB uses Aria storage engine by default for temporary files. If you have a lot

of temporary files, modify key buffer size if you do not use MyISAM tables.

 If your applications connect/disconnect frequently, alter the thread cache size.

 If you use over 100 connections, use the thread pool.

Compatibility
MySQL and MariaDB are essentially identical. However, there are enough differences to

create issues in upgradation. Review more of these key differences in the MariaDB
Knowledge Base.

https://mariadb.com/kb/en/mariadb/mariadb-vs-mysql-compatibility/
https://mariadb.com/kb/en/mariadb/mariadb-vs-mysql-compatibility/

MariaDB

6

Before attempting to run MariaDB, first determine its current state, running or shutdown.

There are three options for starting and stopping MariaDB-

 Run mysqld (the MariaDB binary).

 Run the mysqld_safe startup script.

 Run the mysql.server startup script.

If you installed MariaDB in a non-standard location, you may have to edit location

information in the script files. Stop MariaDB by simply adding a “stop” parameter with the

script.

If you would like to start it automatically under Linux, add startup scripts to your init

system. Each distribution has a different procedure. Refer to your system documentation.

Creating a User Account

Create a new user account with the following code-

 'newusername'@'localhost' IDENTIFIED BY 'userpassword';

This code adds a row to the user table with no privileges. You also have the option to use

a hash value for the password. Grant the user privileges with the following code-

GRANT SELECT, INSERT, UPDATE, DELETE ON database1 TO 'newusername'@'localhost';

Other privileges include just about every command or operation possible in MariaDB. After

creating a user, execute a “FLUSH PRIVILEGES” command in order to refresh grant tables.

This allows the user account to be used.

The Configuration File

After a build on Unix/Linux, the configuration file “/etc/my.conf” should be edited to appear

as follows-

Example mysql config file.

You can copy this to one of:

/etc/my.cnf to set global options,

/mysql-data-dir/my.cnf to get server specific options or

~/my.cnf for user specific options.

One can use all long options that the program supports.

Run the program with --help to get a list of available options

3. MariaDB – Administration

MariaDB

7

This will be passed to all mysql clients

[client]

#password=my_password

#port=3306

#socket=/tmp/mysql.sock

Here is entries for some specific programs

The following values assume you have at least 32M ram

The MySQL server

[mysqld]

#port=3306

#socket=/tmp/mysql.sock

temp-pool

The following three entries caused mysqld 10.0.1-MariaDB (and possibly other

versions) to abort...

skip-locking

set-variable = key_buffer=16M

set-variable = thread_cache=4

loose-innodb_data_file_path = ibdata1:1000M

loose-mutex-deadlock-detector

gdb

######### Fix the two following paths

Where you want to have your database

data=/path/to/data/dir

Where you have your mysql/MariaDB source + sql/share/english

language=/path/to/src/dir/sql/share/english

[mysqldump]

quick

set-variable = max_allowed_packet=16M

MariaDB

8

[mysql]

no-auto-rehash

[myisamchk]

set-variable= key_buffer=128M

Edit the lines “data= ” and “language= ” to match your environment.

After file modification, navigate to the source directory and execute the following-

./scripts/mysql_install_db --srcdir=$PWD --datadir=/path/to/data/dir --

user=$LOGNAME

Omit the “$PWD” variable if you added datadir to the configuration file. Ensure

“$LOGNAME” is used when running version 10.0.1 of MariaDB.

Administration Commands

Review the following list of important commands you will regularly use when working with

MariaDB-

 USE [database name] – Sets the current default database.

 SHOW DATABASES – Lists the databases currently on the server.

 SHOW TABLES – Lists all non-temporary tables.

 SHOW COLUMNS FROM [table name] – Provides column information pertaining to

the specified table.

 SHOW INDEX FROM TABLENAME [table name] – Provides table index information

relating to the specified table.

 SHOW TABLE STATUS LIKE [table name]\G – Provides tables with information

about non-temporary tables, and the pattern that appears after the LIKE clause is

used to fetch table names.

MariaDB

9

MariaDB partners well with a wide variety of programming languages and frameworks such

as PHP, C#, JavaScript, Ruby on Rails, Django, and more. PHP remains the most popular

of all available languages due to its simplicity and historical footprint. This guide will focus

on PHP partnered with MariaDB.

PHP provides a selection of functions for working with the MySQL database. These

functions perform tasks like accessing it or performing operations, and they are fully

compatible with MariaDB. Simply call these functions as you would call any other PHP

function.

The PHP functions you will use for MariaDB conform to the following format-

mysql_function(value,value,...);

The second part of the function specifies its action. Two of the functions used in this guide

are as follows-

mysqli_connect($connect);

mysqli_query($connect,"SQL statement");

The following example demonstrates the general syntax of a PHP call to a MariaDB

function-

<html>

<head>

<title>PHP and MariaDB</title>

</head>

<body>

<?php

 $retval = mysql_function(value, [value,...]);

 if(!$retval)

 {

 die ("Error: Error message here");

 }

 // MariaDB or PHP Statements

?>

</body>

</html>

In the next section, we will examine essential MariaDB tasks, using PHP functions.

4. MariaDB – PHP Syntax

MariaDB

10

One way to establish a connection with MariaDB consists of using the mysql binary at the

command prompt.

MYSQL Binary

Review an example given below.

[root@host]# mysql -u root -p

Enter password:******

The code given above connects to MariaDB and provides a command prompt for executing

SQL commands. After entering the code, a welcome message should appear indicating a

successful connection, with the version number displayed.

Welcome to the MariaDB monitor. Commands end with ; or \g.

Your MariaDB connection id is 122323232

Server version: 5.5.40-MariaDB-log

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql>

The example uses root access, but any user with privileges can of course access the

MariaDB prompt and perform operations.

Disconnect from MariaDB through the exit command as follows-

mysql> exit

PHP Connection Script

Another way to connect to and disconnect from MariaDB consists of employing a PHP

script. PHP provides the mysql_connect() function for opening a database connection.

It uses five optional parameters, and returns a MariaDB link identifier after a successful

connection, or a false on unsuccessful connection. It also provides the mysql_close()

function for closing database connections, which uses a single parameter.

Syntax

Review the following PHP connection script syntax-

connection mysql_connect(server,user,passwd,new_link,client_flag);

5. MariaDB – Connection

MariaDB

11

The description of the parameters is given below-

Parameter Description

server
This optional parameter specifies the host name running the

database server. Its default value is “localhost:.3036.”

user
This optional parameter specifies the username accessing the

database. Its default value is the owner of the server.

passwd
This optional parameter specifies the user's password. Its default

value is blank.

new_link

This optional parameter specifies that on a second call to

mysql_connect() with identical arguments, rather than a new

connection, the identifier of the current connection will be returned.

client flags

This optional parameter uses a combination of the following constant

values-

 MYSQL_CLIENT_SSL – It uses ssl encryption.

 MYSQL_CLIENT_COMPRESS – It uses compression protocol.

 MYSQL_CLIENT_IGNORE_SPACE – It permits space after

function names.

 MYSQL_CLIENT_INTERACTIVE – It permits interactive

timeout seconds of inactivity prior to closing the connection.

Review the PHP disconnection script syntax given below-

bool mysql_close (resource $link_identifier);

If you omit the resource, the most recent opened resource will close. It returns a value of

true on a successful close, or false.

Try the following example code to connect with a MariaDB server-

<html>

<head>

<title>Connect to MariaDB Server</title>

</head>

<body>

<?php

 $dbhost = 'localhost:3036';

 $dbuser = 'guest1';

 $dbpass = 'guest1a';

 $conn = mysql_connect($dbhost, $dbuser, $dbpass);

 if(! $conn)

MariaDB

12

 {

 die('Could not connect: ' . mysql_error());

 }

 echo 'Connected successfully';

 mysql_close($conn);

?>

</body>

</html>

On successful connection, you will see the following output:

mysql> Connected successfully

MariaDB

13

Creation or deletion of databases in MariaDB requires privileges typically only given to root

users or admins. Under these accounts, you have two options for creating a database –

the mysqladmin binary and a PHP script.

mysqladmin Binary

The following example demonstrates the use of the mysqladmin binary in creating a

database with the name Products-

[root@host]# mysqladmin -u root -p create PRODUCTS

Enter password:******

PHP Create Database Script

PHP employs the mysql_query function in creating a MariaDB database. The function

uses two parameters, one optional, and returns either a value of “true” when successful,

or “false” when not.

Syntax

Review the following create database script syntax-

bool mysql_query (sql, connection);

The description of the parameters is given below-

Parameter Description

sql
This required parameter consists of the SQL query needed to

perform the operation.

connection
When not specified, this optional parameter uses the most recent

connection used.

6. MariaDB – Create Database

MariaDB

14

Try the following example code for creating a database-

<html>

<head>

<title>Create a MariaDB Database</title>

</head>

<body>

<?php

$dbhost = 'localhost:3036';

$dbuser = 'root';

$dbpass = 'rootpassword';

$conn = mysql_connect($dbhost, $dbuser, $dbpass);

if(! $conn)

{

 die('Could not connect: ' . mysql_error());

}

echo 'Connected successfully
';

$sql = 'CREATE DATABASE PRODUCTS';

$retval = mysql_query($sql, $conn);

if(! $retval)

{

 die('Could not create database: ' . mysql_error());

}

echo "Database PRODUCTS created successfully\n";

mysql_close($conn);

?>

</body>

</html>

On successful creation, you will see the following output:

mysql> Database PRODUCTS created successfully

mysql> SHOW DATABASES;

+--------------------+

| Database |

+--------------------+

| PRODUCTS |

+--------------------+

MariaDB

15

Creation or deletion of databases in MariaDB requires privileges, typically, only given to

root users or admins. Under these accounts, you have two options for deleting a database:

the mysqladmin binary and a PHP script.

Note that deleted databases are irrecoverable, so exercise care in performing this

operation. Furthermore, PHP scripts used for deletion do not prompt you with a

confirmation before the deletion.

mysqladmin Binary

The following example demonstrates how to use the mysqladmin binary to delete an

existing database-

[root@host]# mysqladmin -u root -p drop PRODUCTS

Enter password:******

mysql> DROP PRODUCTS

ERROR 1008 (HY000): Can't drop database 'PRODUCTS'; database doesn't exist

PHP Drop Database Script

PHP employs the mysql_query function in deleting MariaDB databases. The function uses

two parameters, one optional, and returns either a value of “true” when successful, or

“false” when not. y

Syntax

Review the following drop database script syntax-

bool mysql_query(sql, connection);

The description of the parameters is given below-

Parameter Description

sql
This required parameter consists of the SQL query needed to

perform the operation.

connection
When not specified, this optional parameter uses the most recent

connection used.

7. MariaDB – Drop Database

MariaDB

16

Try the following example code for deleting a database-

<html>

<head>

<title>Delete a MariaDB Database</title>

</head>

<body>

<?php

$dbhost = 'localhost:3036';

$dbuser = 'root';

$dbpass = 'rootpassword';

$conn = mysql_connect($dbhost, $dbuser, $dbpass);

if(! $conn)

{

 die('Could not connect: ' . mysql_error());

}

echo 'Connected successfully
';

$sql = 'DROP DATABASE PRODUCTS';

$retval = mysql_query($sql, $conn);

if(! $retval)

{

 die('Could not delete database: ' . mysql_error());

}

echo "Database PRODUCTS deleted successfully\n";

mysql_close($conn);

?>

</body>

</html>

On successful deletion, you will see the following output:

mysql> Database PRODUCTS deleted successfully

MariaDB

17

After connecting to MariaDB, you must select a database to work with because many

databases may exist. There are two ways to perform this task: from the command prompt

or through a PHP script.

The Command Prompt

In choosing a database at the command prompt, simply utilize the SQL command ‘use’-

[root@host]# mysql -u root -p

Enter password:******

mysql> use PRODUCTS;

Database changed

mysql> SELECT database();

+--------------------+

| Database |

+--------------------+

| PRODUCTS |

+--------------------+

Once you select a database, all subsequent commands will operate on the chosen

database.

Note : All names (e.g., database, table, fields) are case sensitive. Ensure commands

conform to the proper case.

PHP Select Database Script

PHP provides the mysql_select_db function for database selection. The function uses

two parameters, one optional, and returns a value of “true” on successful selection, or

false on failure.

Syntax

Review the following select database script syntax.

bool mysql_select_db(db_name, connection);

8. MariaDB – Select Database

MariaDB

18

The description of the parameters is given below-

Parameter Description

db_name
This required parameter specifies the name of the database to

use.

connection
When not specified, this optional parameter uses the most recent

connection used.

Try the following example code for selecting a database-

<html>

<head>

<title>Select a MariaDB Database</title>

</head>

<body>

<?php

$dbhost = 'localhost:3036';

$dbuser = 'guest1';

$dbpass = 'guest1a';

$conn = mysql_connect($dbhost, $dbuser, $dbpass);

if(! $conn)

{

 die('Could not connect: ' . mysql_error());

}

echo 'Connected successfully';

mysql_select_db('PRODUCTS');

mysql_close($conn);

?>

</body>

</html>

On successful selection, you will see the following output:

mysql> Connected successfully

MariaDB

19

Good field definitions are essential for the optimization of your database. The ideal

approach requires that you exclusively use a field of the type and size needed. For

example, if you will only use a field, five-characters wide, do not define a field, 20-

characters wide. Field (or column) types are also known as data types given the data

types stored within the field.

MariaDB data types can be categorized as numeric, date and time, and string values.

Numeric Data Types

The numeric data types supported by MariaDB are as follows-

 TINYINT – This data type represents small integers falling within the signed range

of -128 to 127, and the unsigned range of 0 to 255.

 BOOLEAN – This data type associates a value 0 with “false,” and a value 1 with

“true.”

 SMALLINT – This data type represents integers within the signed range of -32768

to 32768, and the unsigned range of 0 to 65535.

 MEDIUMINT – This data type represents integers in the signed range of -8388608

to 8388607, and the unsigned range of 0 to 16777215.

 INT(also INTEGER) – This data type represents an integer of normal size. When

marked as unsigned, the range spans 0 to 4294967295. When signed (the default

setting), the range spans -2147483648 to 2147483647. When a column is set to

ZEROFILL(an unsigned state), all its values are prepended by zeros to place M

digits in the INT value.

 BIGINT – This data type represents integers within the signed range of

9223372036854775808 to 9223372036854775807, and the unsigned range of 0

to 18446744073709551615.

 DECIMAL(also DEC, NUMERIC, FIXED) – This data type represents precise fixed-

point numbers, with M specifying its digits and D specifying the digits after the

decimal. The M value does not add “-” or the decimal point. If D is set to 0, no

decimal or fraction part appears and the value will be rounded to the nearest

DECIMAL on INSERT. The maximum permitted digits is 65, and the maximum for

decimals is 30. Default value for M on omission is 10, and 0 for D on omission.

 FLOAT – This data type represents a small, floating-point number of the value 0

or a number within the following ranges-

o -3.402823466E+38 to -1.175494351E-38

o 1.175494351E-38 to 3.402823466E+38

9. MariaDB – Data Types

MariaDB

20

 DOUBLE (also REAL and DOUBLE PRECISION)– This data type represents

normal-size, floating-point numbers of the value 0 or within the following ranges-

o -1.7976931348623157E+308 to -2.2250738585072014E-308

o 2.2250738585072014E-308 to 1.7976931348623157E+308

 BIT – This data type represents bit fields with M specifying the number of bits per

value. On omission of M, the default is 1. Bit values can be applied with “ b’[value]’

” in which value represents bit value in 0s and 1s. Zero-padding occurs

automatically from the left for full length; for example, “10” becomes “0010.”

Date and Time Data Types

The date and time data types supported by MariaDB are as follows-

 DATE – This data type represents a date range of “1000-01-01” to “9999-12-31,”

and uses the “YYYY-MM-DD” date format.

 TIME – This data type represents a time range of “-838:59:59.999999” to

“838:59:59.999999.”

 DATETIME – This data type represents the range “1000-01-01 00:00:00.000000”

to “9999-12-31 23:59:59.999999.” It uses the “YYYY-MM-DD HH:MM:SS” format.

 TIMESTAMP – This data type represents a timestamp of the “YYYY-MM-DD

HH:MM:DD” format. It mainly finds use in detailing the time of database

modifications, e.g., insertion or update.

 YEAR – This data type represents a year in 4-digit format. The four-digit format

allows values in the range of 1901 to 2155, and 0000.

String DataTypes

The string type values supported by MariaDB are as follows-

 String literals – This data type represents character sequences enclosed by

quotes.

 CHAR – This data type represents a right-padded, fixed-length string containing

spaces of specified length. M represents column length of characters in a range of

0 to 255, its default value is 1.

 VARCHAR – This data type represents a variable-length string, with an M range

(maximum column length) of 0 to 65535.

 BINARY – This data type represents binary byte strings, with M as the column

length in bytes.

 VARBINARY – This data type represents binary byte strings of variable length,

with M as column length.

MariaDB

21

 TINYBLOB – This data type represents a blob column with a maximum length of

255 (28 - 1) bytes. In storage, each uses a one-byte length prefix indicating the

byte quantity in the value.

 BLOB – This data type represents a blob column with a maximum length of 65,535

(216 - 1) bytes. In storage, each uses a two-byte length prefix indicating the byte

quantity in the value.

 MEDIUMBLOB – This data type represents a blob column with a maximum length

of 16,777,215 (224 - 1) bytes. In storage, each uses a three-byte length prefix

indicating the byte quantity in the value.

 LONGBLOB – This data type represents a blob column with a maximum length of

4,294,967,295(232 - 1) bytes. In storage, each uses a four-byte length prefix

indicating the byte quantity in the value.

 TINYTEXT – This data type represents a text column with a maximum length of

255 (28 - 1) characters. In storage, each uses a one-byte length prefix indicating

the byte quantity in the value.

 TEXT – This data type represents a text column with a maximum length of 65,535

(216 - 1) characters. In storage, each uses a two-byte length prefix indicating the

byte quantity in the value.

 MEDIUMTEXT – This data type represents a text column with a maximum length

of 16,777,215 (224 - 1) characters. In storage, each uses a three-byte length prefix

indicating the byte quantity in the value.

 LONGTEXT – This data type represents a text column with a maximum length of

4,294,967,295 or 4GB (232 - 1) characters. In storage, each uses a four-byte

length prefix indicating the byte quantity in the value.

 ENUM – This data type represents a string object having only a single value from

a list.

 SET – This data type represents a string object having zero or more values from a

list, with a maximum of 64 members. SET values present internally as integer

values.

MariaDB

22

In this chapter, we will learn how to create tables. Before creating a table, first determine

its name, field names, and field definitions.

Following is the general syntax for table creation-

CREATE TABLE table_name (column_name column_type);

Review the command applied to creating a table in the PRODUCTS database-

products_tbl(

 product_id INT NOT NULL AUTO_INCREMENT,

 product_name VARCHAR(100) NOT NULL,

 product_manufacturer VARCHAR(40) NOT NULL,

 submission_date DATE,

 PRIMARY KEY (product_id)

);

The above example uses “NOT NULL” as a field attribute to avoid errors caused by a null

value. The attribute “AUTO_INCREMENT” instructs MariaDB to add the next available value

to the ID field. The keyword primary key defines a column as the primary key. Multiple

columns separated by commas can define a primary key.

The two main methods for creating tables are using the command prompt and a PHP script.

The Command Prompt

Utilize the CREATE TABLE command to perform the task as shown below-

root@host# mysql -u root -p

Enter password:*******

mysql> use PRODUCTS;

Database changed

mysql> CREATE TABLE products_tbl(

 -> product_id INT NOT NULL AUTO_INCREMENT,

 -> product_name VARCHAR(100) NOT NULL,

 -> product_manufacturer VARCHAR(40) NOT NULL,

 -> submission_date DATE,

 -> PRIMARY KEY (product_id)

 ->);

10. MariaDB – Create Tables

MariaDB

23

mysql> SHOW TABLES;

+--------------------+

| PRODUCTS |

+--------------------+

| products_tbl |

+--------------------+

Ensure all commands are terminated with a semicolon.

PHP Create Table Script

PHP provides mysql_query() for table creation. Its second argument contains the

necessary SQL command-

<html>

<head>

<title>Create a MariaDB Table</title>

</head>

<body>

<?php

$dbhost = 'localhost:3036';

$dbuser = 'root';

$dbpass = 'rootpassword';

$conn = mysql_connect($dbhost, $dbuser, $dbpass);

if(! $conn)

{

 die('Could not connect: ' . mysql_error());

}

echo 'Connected successfully
';

$sql = "CREATE TABLE products_tbl(".

 "product_id INT NOT NULL AUTO_INCREMENT, ".

 "product_name VARCHAR(100) NOT NULL, ".

 "product_manufacturer VARCHAR(40) NOT NULL, ".

 "submission_date DATE, ".

 "PRIMARY KEY (product_id)); ";

mysql_select_db('PRODUCTS');

$retval = mysql_query($sql, $conn);

if(! $retval)

MariaDB

24

{

 die('Could not create table: ' . mysql_error());

}

echo "Table created successfully\n";

mysql_close($conn);

?>

</body>

</html>

On successful table creation, you will see the following output:

mysql> Table created successfully

MariaDB

25

In this chapter, we will learn to delete tables.

Table deletion is very easy, but remember all deleted tables are irrecoverable. The general

syntax for table deletion is as follows-

DROP TABLE table_name ;

Two options exist for performing a table drop: use the command prompt or a PHP script.

The Command Prompt

At the command prompt, simply use the DROP TABLE SQL command-

root@host# mysql -u root -p

Enter password:*******

mysql> use PRODUCTS;

Database changed

mysql> DROP TABLE products_tbl

mysql> SELECT * from products_tbl

ERROR 1146 (42S02): Table 'products_tbl' doesn't exist

PHP Drop Table Script

PHP provides mysql_query() for dropping tables. Simply pass its second argument the

appropriate SQL command-

<html>

<head>

<title>Create a MariaDB Table</title>

</head>

<body>

<?php

$dbhost = 'localhost:3036';

$dbuser = 'root';

$dbpass = 'rootpassword';

$conn = mysql_connect($dbhost, $dbuser, $dbpass);

if(! $conn)

11. MariaDB – Drop Tables

MariaDB

26

{

 die('Could not connect: ' . mysql_error());

}

echo 'Connected successfully
';

$sql = "DROP TABLE products_tbl";

mysql_select_db('PRODUCTS');

$retval = mysql_query($sql, $conn);

if(! $retval)

{

 die('Could not delete table: ' . mysql_error());

}

echo "Table deleted successfully\n";

mysql_close($conn);

?>

</body>

</html>

On successful table deletion, you will see the following output:

mysql> Table deleted successfully

MariaDB

27

In this chapter, we will learn how to insert data in a table.

Inserting data into a table requires the INSERT command. The general syntax of the

command is INSERT followed by the table name, fields, and values.

Review its general syntax given below-

INSERT INTO tablename (field,field2,...) VALUES (value, value2,...);

The statement requires the use of single or double quotes for string values. Other options

for the statement include “INSERT...SET” statements, “INSERT...SELECT” statements, and

several other options.

Note: The VALUES() function that appears within the statement, only applies to INSERT

statements and returns NULL if used elsewhere.

Two options exist for performing the operation: use the command line or use a PHP script.

The Command Prompt

At the prompt, there are many ways to perform a select operation. A standard statement

is given below-

mysql> INSERT INTO products_tbl (ID_number, Nomenclature) VALUES (12345,

“Orbitron 4000”);

mysql> SHOW COLUMNS FROM products_tbl;

+-------------+-------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+-------------+-------------+------+-----+---------+-------+

| ID_number | int(5) | | | | |

| Nomenclature| char(13) | | | | |

+-------------+-------------+------+-----+---------+-------+

You can insert multiple rows-

INSERT INTO products VALUES (1, “first row”), (2, “second row”);

You can also employ the SET clause-

INSERT INTO products SELECT * FROM inventory WHERE status = 'available';

12. MariaDB – Insert Query

MariaDB

28

PHP Insertion Script

Employ the same “INSERT INTO...” statement within a PHP function to perform the

operation. You will use the mysql_query() function once again.

Review the example given below-

<?php

if(isset($_POST['add']))

{

$dbhost = 'localhost:3036';

$dbuser = 'root';

$dbpass = 'rootpassword';

$conn = mysql_connect($dbhost, $dbuser, $dbpass);

if(! $conn)

{

 die('Could not connect: ' . mysql_error());

}

if(! get_magic_quotes_gpc())

{

 $product_name = addslashes ($_POST['product_name']);

 $product_manufacturer = addslashes ($_POST['product_name']);

}

else

{

 $product_name = $_POST['product_name'];

 $product_manufacturer = $_POST['product_manufacturer'];

}

$ship_date = $_POST['ship_date'];

$sql = "INSERT INTO products_tbl ".

 "(product_name,product_manufacturer, ship_date) ".

 "VALUES ".

 "('$product_name','$product_manufacturer','$ship_date')";

mysql_select_db('PRODUCTS');

$retval = mysql_query($sql, $conn);

if(! $retval)

{

MariaDB

29

 die('Could not enter data: ' . mysql_error());

}

echo "Entered data successfully\n";

mysql_close($conn);

}

else

{

?>

On successful data insertion, you will see the following output:

mysql> Entered data successfully

You will also collaborate validation statements with insert statements such as checking to

ensure correct data entry. MariaDB includes a number of options for this purpose, some

of which are automatic.

MariaDB

30

In this chapter, we will learn how to select data from a table.

SELECT statements retrieve selected rows. They can include UNION statements, an

ordering clause, a LIMIT clause, a WHERE clause, a GROUP BY...HAVING clause, and

subqueries.

Review the following general syntax-

SELECT field, field2,... FROM table_name, table_name2,... WHERE...

A SELECT statement provides multiple options for specifying the table used-

 database_name.table_name

 table_name.column_name

 database_name.table_name.column_name

All select statements must contain one or more select expressions. Select expressions

consist of one of the following options-

 A column name.

 An expression employing operators and functions.

 The specification “table_name.*” to select all columns within the given table.

 The character “*” to select all columns from all tables specified in the FROM clause.

The command prompt or a PHP script can be employed in executing a select statement.

The Command Prompt

At the command prompt, execute statements as follows-

root@host# mysql -u root -p password;

Enter password:*******

mysql> use PRODUCTS;

Database changed

mysql> SELECT * from products_tbl

+-------------+---------------+

| ID_number | Nomenclature |

+-------------+---------------+

13. MariaDB – Select Query

MariaDB

31

| 12345 | Orbitron 4000 |

+-------------+---------------+

PHP Select Script

Employ the same SELECT statement(s) within a PHP function to perform the operation.

You will use the mysql_query() function once again. Review an example given below-

<?php

$dbhost = 'localhost:3036';

$dbuser = 'root';

$dbpass = 'rootpassword';

$conn = mysql_connect($dbhost, $dbuser, $dbpass);

if(! $conn)

{

 die('Could not connect: ' . mysql_error());

}

$sql = 'SELECT product_id, product_name,

 product_manufacturer, ship_date

 FROM products_tbl';

mysql_select_db('PRODUCTS');

$retval = mysql_query($sql, $conn);

if(! $retval)

{

 die('Could not get data: ' . mysql_error());

}

while($row = mysql_fetch_array($retval, MYSQL_ASSOC))

{

 echo "Product ID :{$row['product_id']}
 ".

 "Name: {$row['product_name']}
 ".

 "Manufacturer: {$row['product_manufacturer']}
 ".

 "Ship Date : {$row['ship_date']}
 ".

 "--------------------------------
";

}

echo "Fetched data successfully\n";

mysql_close($conn);

MariaDB

32

?>

On successful data retrieval, you will see the following output:

Product ID: 12345

Nomenclature: Orbitron 4000

Manufacturer: XYZ Corp

Ship Date: 01/01/17

--

Product ID: 12346

Nomenclature: Orbitron 3000

Manufacturer: XYZ Corp

Ship Date: 01/02/17

--

mysql> Fetched data successfully

Best practices suggest releasing cursor memory after every SELECT statement. PHP

provides the mysql_free_result() function for this purpose. Review its use as shown

below-

<?php

$dbhost = 'localhost:3036';

$dbuser = 'root';

$dbpass = 'rootpassword';

$conn = mysql_connect($dbhost, $dbuser, $dbpass);

if(! $conn)

{

 die('Could not connect: ' . mysql_error());

}

$sql = 'SELECT product_id, product_name,

 product_manufacturer, ship_date

 FROM products_tbl';

mysql_select_db('PRODUCTS');

$retval = mysql_query($sql, $conn);

if(! $retval)

{

 die('Could not get data: ' . mysql_error());

}

MariaDB

33

while($row = mysql_fetch_array($retval, MYSQL_NUM))

{

 echo "Product ID :{$row[0]}
 ".

 "Name: {$row[1]}
 ".

 "Manufacturer: {$row[2]}
 ".

 "Ship Date : {$row[3]}
 ".

 "--------------------------------
";

}

mysql_free_result($retval);

echo "Fetched data successfully\n";

mysql_close($conn);

?>

MariaDB

34

WHERE clauses filter various statements such as SELECT, UPDATE, DELETE, and INSERT.

They present criteria used to specify action. They typically appear after a table name in a

statement, and their condition follows. The WHERE clause essentially functions like an if

statement.

Review the general syntax of WHERE clause given below-

[COMMAND] field,field2,... FROM table_name,table_name2,... WHERE [CONDITION]

Note the following qualities of the WHERE clause-

 It is optional.

 It allows any condition to be specified.

 It allows for the specification of multiple conditions through using an AND or OR

operator.

 Case sensitivity only applies to statements using LIKE comparisons.

The WHERE clause permits the use of the following operators-

Operator

= !=

> <

>= <=

WHERE clauses can be utilized at the command prompt or within a PHP script.

The Command Prompt

At the command prompt, simply use a standard command-

root@host# mysql -u root -p password;

Enter password:*******

mysql> use PRODUCTS;

Database changed

mysql> SELECT * from products_tbl WHERE product_manufacturer='XYZ Corp';

+-------------+----------------+----------------------+

| ID_number | Nomenclature | product_manufacturer |

+-------------+----------------+----------------------+

| 12345 | Orbitron 4000 | XYZ Corp |

14. MariaDB – Where Clause

MariaDB

35

+-------------+----------------+----------------------+

| 12346 | Orbitron 3000 | XYZ Corp |

+-------------+----------------+----------------------+

| 12347 | Orbitron 1000 | XYZ Corp |

+-------------+----------------+----------------------+

Review an example using the AND condition-

SELECT *

FROM products_tbl

WHERE product_name = 'Bun Janshu 3000';

AND product_id <= 344;

This example combines both AND and OR conditions:

SELECT *

FROM products_tbl

WHERE (product_name = 'Bun Janshu 3000' AND product_id < 344)

OR (product_name = 'Bun Janshu 3000');

PHP Scripts Using Where Clause

Employ the mysql_query() function in operations using a WHERE clause-

<?php

$dbhost = 'localhost:3036';

$dbuser = 'root';

$dbpass = 'rootpassword';

$conn = mysql_connect($dbhost, $dbuser, $dbpass);

if(! $conn)

{

 die('Could not connect: ' . mysql_error());

}

$sql = 'SELECT product_id, product_name,

 product_manufacturer, ship_date

 FROM products_tbl

 WHERE product_manufacturer="XYZ Corp"';

mysql_select_db('PRODUCTS');

MariaDB

36

$retval = mysql_query($sql, $conn);

if(! $retval)

{

 die('Could not get data: ' . mysql_error());

}

while($row = mysql_fetch_array($retval, MYSQL_ASSOC))

{

 echo "Product ID :{$row['product_id']}
 ".

 "Name: {$row['product_name']}
 ".

 "Manufacturer: {$row['product_manufacturer']}
 ".

 "Ship Date: {$row['ship_date']}
 ".

 "--------------------------------
";

}

echo "Fetched data successfully\n";

mysql_close($conn);

?>

On successful data retrieval, you will see the following output:

Product ID: 12345

Nomenclature: Orbitron 4000

Manufacturer: XYZ Corp

Ship Date: 01/01/17

--

Product ID: 12346

Nomenclature: Orbitron 3000

Manufacturer: XYZ Corp

Ship Date: 01/02/17

--

Product ID: 12347

Nomenclature: Orbitron 1000

Manufacturer: XYZ Corp

Ship Date: 01/02/17

--

mysql> Fetched data successfully

MariaDB

37

The UPDATE command modifies existing fields by changing values. It uses the SET clause

to specify columns for modification, and to specify the new values assigned. These values

can be either an expression or the default value of the field. Setting a default value requires

using the DEFAULT keyword. The command can also employ a WHERE clause to specify

conditions for an update and/or an ORDER BY clause to update in a certain order.

Review the following general syntax-

UPDATE table_name SET field=new_value, field2=new_value2,...

[WHERE ...]

Execute an UPDATE command from either the command prompt or using a PHP script.

The Command Prompt

At the command prompt, simply use a standard command-

root@host# mysql -u root -p password;

Enter password:*******

mysql> use PRODUCTS;

Database changed

mysql> UPDATE products_tbl

 SET nomenclature='Fiber Blaster 300Z'

 WHERE ID_number=112;

mysql> SELECT * from products_tbl WHERE ID_number='112';

+-------------+---------------------+----------------------+

| ID_number | Nomenclature | product_manufacturer |

+-------------+---------------------+----------------------+

| 112 | Fiber Blaster 300Z | XYZ Corp |

+-------------+---------------------+----------------------+

PHP Update Query Script

Employ the mysql_query() function in UPDATE command statements-

<?php

$dbhost = ‘localhost:3036’;

15. MariaDB – Update Query

MariaDB

38

$dbuser = ‘root’;

$dbpass = ‘rootpassword’;

$conn = mysql_connect($dbhost, $dbuser, $dbpass);

if(! $conn)

{

 die(‘Could not connect: ‘ . mysql_error());

}

$sql = ‘UPDATE products_tbl

 SET product_name=”Fiber Blaster 300z”

 WHERE product_id=112’;

mysql_select_db(‘PRODUCTS’);

$retval = mysql_query($sql, $conn);

if(! $retval)

{

 die(‘Could not update data: ‘ . mysql_error());

}

echo “Updated data successfully\n”;

mysql_close($conn);

?>

On successful data update, you will see the following output:

mysql> Updated data successfully

MariaDB

39

The DELETE command deletes table rows from the specified table, and returns the quantity

deleted. Access the quantity deleted with the ROW_COUNT() function. A WHERE clause

specifies rows, and in its absence, all rows are deleted. A LIMIT clause controls the number

of rows deleted.

In a DELETE statement for multiple rows, it deletes only those rows satisfying a condition;

and LIMIT and WHERE clauses are not permitted. DELETE statements allow deleting rows

from tables in different databases, but do not allow deleting from a table and then selecting

from the same table within a subquery.

Review the following DELETE syntax-

DELETE FROM table_name [WHERE …]

Execute a DELETE command from either the command prompt or using a PHP script.

The Command Prompt

At the command prompt, simply use a standard command-

root@host# mysql –u root –p password;

Enter password:*******

mysql> use PRODUCTS;

Database changed

mysql> DELETE FROM products_tbl WHERE product_id=133;

mysql> SELECT * from products_tbl WHERE ID_number='133';

ERROR 1032 (HY000): Can't find record in 'products_tbl'

PHP Delete Query Script

Use the mysql_query() function in DELETE command statements-

<?php

$dbhost = 'localhost:3036';

$dbuser = 'root';

$dbpass = 'rootpassword';

$conn = mysql_connect($dbhost, $dbuser, $dbpass);

if(! $conn)

{

 die('Could not connect: ' . mysql_error());

16. MariaDB – Delete Query

MariaDB

40

}

$sql = 'DELETE FROM products_tbl

 WHERE product_id=261';

mysql_select_db('PRODUCTS');

$retval = mysql_query($sql, $conn);

if(! $retval)

{

 die('Could not delete data: ' . mysql_error());

}

echo "Deleted data successfully\n";

mysql_close($conn);

?>

On successful data deletion, you will see the following output:

mysql> Deleted data successfully

mysql> SELECT * from products_tbl WHERE ID_number='261';

ERROR 1032 (HY000): Can't find record in 'products_tbl'

MariaDB

41

The WHERE clause provides a way to retrieve data when an operation uses an exact match.

In situations requiring multiple results with shared characteristics, the LIKE clause

accommodates broad pattern matching.

A LIKE clause tests for a pattern match, returning a true or false. The patterns used for

comparison accept the following wildcard characters: “%”, which matches numbers of

characters (0 or more); and “_”, which matches a single character. The “_” wildcard

character only matches characters within its set, meaning it will ignore latin characters

when using another set. The matches are case-insensitive by default requiring additional

settings for case sensitivity.

A NOT LIKE clause allows for testing the opposite condition, much like the not operator.

If the statement expression or pattern evaluate to NULL, the result is NULL.

Review the general LIKE clause syntax given below-

SELECT field, field2,... FROM table_name, table_name2,...

WHERE field LIKE condition

Employ a LIKE clause either at the command prompt or within a PHP script.

The Command Prompt

At the command prompt, simply use a standard command-

root@host# mysql -u root -p password;

Enter password:*******

mysql> use TUTORIALS;

Database changed

mysql> SELECT * from products_tbl

 WHERE product_manufacturer LIKE 'XYZ%';

+-------------+----------------+----------------------+

| ID_number | Nomenclature | product_manufacturer |

+-------------+----------------+----------------------+

| 12345 | Orbitron 4000 | XYZ Corp |

+-------------+----------------+----------------------+

| 12346 | Orbitron 3000 | XYZ Corp |

+-------------+----------------+----------------------+

| 12347 | Orbitron 1000 | XYZ Corp |

17. MariaDB – Like Clause

MariaDB

42

+-------------+----------------+----------------------+

PHP Script Using Like Clause

Use the mysql_query() function in statements employing the LIKE clause-

<?php

$dbhost = 'localhost:3036';

$dbuser = 'root';

$dbpass = 'rootpassword';

$conn = mysql_connect($dbhost, $dbuser, $dbpass);

if(! $conn)

{

 die('Could not connect: ' . mysql_error());

}

$sql = 'SELECT product_id, product_name,

 product_manufacturer, ship_date

 FROM products_tbl

 WHERE product_manufacturer LIKE "xyz%"';

mysql_select_db('PRODUCTS');

$retval = mysql_query($sql, $conn);

if(! $retval)

{

 die('Could not get data: ' . mysql_error());

}

while($row = mysql_fetch_array($retval, MYSQL_ASSOC))

{

 echo "Product ID:{$row['product_id']}
 ".

 "Name: {$row['product_name']}
 ".

 "Manufacturer: {$row['product_manufacturer']}
 ".

 "Ship Date: {$row['ship_date']}
 ".

 "--------------------------------
";

}

echo "Fetched data successfully\n";

mysql_close($conn);

?>

MariaDB

43

On successful data retrieval, you will see the following output:

Product ID: 12345

Nomenclature: Orbitron 4000

Manufacturer: XYZ Corp

Ship Date: 01/01/17

--

Product ID: 12346

Nomenclature: Orbitron 3000

Manufacturer: XYZ Corp

Ship Date: 01/02/17

--

Product ID: 12347

Nomenclature: Orbitron 1000

Manufacturer: XYZ Corp

Ship Date: 01/02/17

--

mysql> Fetched data successfully

MariaDB

44

The ORDER BY clause, as mentioned in previous discussions, sorts the results of a

statement. It specifies the order of the data operated on, and includes the option to sort

in ascending (ASC) or descending (DESC) order. On omission of order specification, the

default order is ascending.

ORDER BY clauses appear in a wide variety of statements such as DELETE and UPDATE.

They always appear at the end of a statement, not in a subquery or before a set function,

because they operate on the final resulting table. You also cannot use an integer to identify

a column.

Review the general syntax of the ORDER BY clause given below-

SELECT field, field2,... [or column] FROM table_name, table_name2,...

ORDER BY field, field2,... ASC[or DESC]

Use an ORDER BY clause either at the command prompt or within a PHP script.

The Command Prompt

At the command prompt, simply use a standard command-

root@host# mysql -u root -p password;

Enter password:*******

mysql> use PRODUCTS;

Database changed

mysql> SELECT * from products_tbl ORDER BY product_manufacturer ASC

+-------------+----------------+----------------------+

| ID_number | Nomenclature | product_manufacturer |

+-------------+----------------+----------------------+

| 56789 | SuperBlast 400 | LMN Corp |

+-------------+----------------+----------------------+

| 67891 | Zoomzoom 5000 | QFT Corp |

+-------------+----------------+----------------------+

| 12347 | Orbitron 1000 | XYZ Corp |

+-------------+----------------+----------------------+

18. MariaDB – Order By Clause

MariaDB

45

PHP Script Using Order By Clause

Utilize the mysql_query() function, once again, in statements employing the ORDER BY

clause-

<?php

$dbhost = 'localhost:3036';

$dbuser = 'root';

$dbpass = 'rootpassword';

$conn = mysql_connect($dbhost, $dbuser, $dbpass);

if(! $conn)

{

 die('Could not connect: ' . mysql_error());

}

$sql = 'SELECT product_id, product_name,

 product_manufacturer, ship_date

 FROM products_tbl

 ORDER BY product_manufacturer DESC';

mysql_select_db('PRODUCTS');

$retval = mysql_query($sql, $conn);

if(! $retval)

{

 die('Could not get data: ' . mysql_error());

}

while($row = mysql_fetch_array($retval, MYSQL_ASSOC))

{

 echo "Product ID :{$row['product_id']}
 ".

 "Name: {$row['product_name']}
 ".

 "Manufacturer: {$row['product_manufacturer']}
 ".

 "Ship Date : {$row['ship_date']}
 ".

 "--------------------------------
";

}

echo "Fetched data successfully\n";

mysql_close($conn);

?>

MariaDB

46

On successful data retrieval, you will see the following output:

Product ID: 12347

Nomenclature: Orbitron 1000

Manufacturer: XYZ Corp

Ship Date: 01/01/17

--

Product ID: 67891

Nomenclature: Zoomzoom 5000

Manufacturer: QFT Corp

Ship Date: 01/01/17

--

Product ID: 56789

Nomenclature: SuperBlast 400

Manufacturer: LMN Corp

Ship Date: 01/04/17

--

mysql> Fetched data successfully

MariaDB

47

In previous discussions and examples, we examined retrieving from a single table, or

retrieving multiple values from multiple sources. Most real-world data operations are much

more complex, requiring aggregation, comparison, and retrieval from multiple tables.

JOINs allow merging of two or more tables into a single object. They are employed

through SELECT, UPDATE, and DELETE statements.

Review the general syntax of a statement employing a JOIN as shown below-

SELECT column

FROM table_name1

INNER JOIN table_name2

ON table_name1.column = table_name2.column;

Note the old syntax for JOINS used implicit joins and no keywords. It is possible to use a

WHERE clause to achieve a join, but keywords work best for readability, maintenance, and

best practices.

JOINs come in many forms such as a left join, right join, or inner join. Various join types

offer different types of aggregation based on shared values or characteristics.

Employ a JOIN either at the command prompt or with a PHP script.

The Command Prompt

At the command prompt, simply use a standard statement-

root@host# mysql -u root -p password;

Enter password:*******

mysql> use PRODUCTS;

Database changed

mysql> SELECT products.ID_number, products.Nomenclature, inventory.inventory_ct

 FROM products

 INNER JOIN inventory

 ON products.ID_number = inventory.ID_number;

+-------------+----------------+-----------------+

| ID_number | Nomenclature | Inventory Count |

+-------------+----------------+-----------------+

| 12345 | Orbitron 4000 | 150 |

+-------------+----------------+-----------------+

19. MariaDB – Join

MariaDB

48

| 12346 | Orbitron 3000 | 200 |

+-------------+----------------+-----------------+

| 12347 | Orbitron 1000 | 0 |

+-------------+----------------+-----------------+

PHP Script Using JOIN

Use the mysql_query() function to perform a join operation-

<?php

$dbhost = 'localhost:3036';

$dbuser = 'root';

$dbpass = 'rootpassword';

$conn = mysql_connect($dbhost, $dbuser, $dbpass);

if(! $conn)

{

 die('Could not connect: ' . mysql_error());

}

$sql = 'SELECT a.product_id, a.product_manufacturer, b.product_count

 FROM products_tbl a, pcount_tbl b

 WHERE a.product_manufacturer = b.product_manufacturer';

mysql_select_db('PRODUCTS');

$retval = mysql_query($sql, $conn);

if(! $retval)

{

 die('Could not get data: ' . mysql_error());

}

while($row = mysql_fetch_array($retval, MYSQL_ASSOC))

{

 echo "Manufacturer:{$row['product_manufacturer']}
 ".

 "Count: {$row['product_count']}
 ".

 "Product ID: {$row['product_id']}
 ".

 "--------------------------------
";

}

echo "Fetched data successfully\n";

mysql_close($conn);

MariaDB

49

?>

On successful data retrieval, you will see the following output:

ID Number: 12345

Nomenclature: Orbitron 4000

Inventory Count: 150

ID Number: 12346

Nomenclature: Orbitron 3000

Inventory Count: 200

ID Number: 12347

Nomenclature: Orbitron 1000

Inventory Count: 0

mysql> Fetched data successfully

MariaDB

50

When working with NULL values, remember they are unknown values. They are not empty

strings or zero, which are valid values. In table creation, column specifications allow for

setting them to accept null values, or reject them. Simply utilize a NULL or NOT NULL

clause. This has applications in cases of missing record information like an ID number.

User-defined variables have a value of NULL until explicit assignment. Stored routine

parameters and local variables allow setting a value of NULL. When a local variable has no

default value, it has a value of NULL.

NULL is case-insensitive, and has the following aliases-

 UNKNOWN (a boolean value)

 \N

NULL Operators

Standard comparison operators cannot be used with NULL (e.g., =, >, >=, <=, <, or !=)

because all comparisons with a NULL value return NULL, not true or false. Comparisons

with NULL or possibly containing it must use the “<=>” (NULL-SAFE) operator.

Other available operators are-

 IS NULL – It tests for a NULL value.

 IS NOT NULL – It confirms the absence of a NULL value.

 ISNULL – It returns a value of 1 on discovery of a NULL value, and 0 in its absence.

 COALESCE – It returns the first non-NULL value of a list, or it returns a NULL value

in the absence of one.

Sorting NULL Values

In sorting operations, NULL values have the lowest value, so DESC order results in NULL

values at the bottom. MariaDB allows for setting a higher value for NULL values.

There are two ways to do this as shown below-

SELECT column1 FROM product_tbl ORDER BY ISNULL(column1), column1;

The other way-

SELECT column1 FROM product_tbl ORDER BY IF(column1 IS NULL, 0, 1), column1 DESC;

20. MariaDB – Null Values

MariaDB

51

NULL Functions

Functions generally output NULL when any parameters are NULL. However, there are

functions specifically designed for managing NULL values. They are-

 IFNULL() – If the first expression is not NULL it returns it. When it evaluates to

NULL, it returns the second expression.

 NULLIF() – It returns NULL when the compared expressions are equal, if not, it

returns the first expression.

Functions like SUM and AVG ignore NULL values.

Inserting NULL Values

On insertion of a NULL value in a column declared NOT NULL, an error occurs. In default

SQL mode, a NOT NULL column will instead insert a default value based on data type.

When a field is a TIMESTAMP, AUTO_INCREMENT, or virtual column, MariaDB manages

NULL values differently. Insertion in an AUTO_INCREMENT column causes the next number

in the sequence to insert in its place. In a TIMESTAMP field, MariaDB assigns the current

timestamp instead. In virtual columns, a topic discussed later in this tutorial, the default

value is assigned.

UNIQUE indices can hold many NULL values, however, primary keys cannot be NULL.

NULL Values and the Alter Command

When you use the ALTER command to modify a column, in the absence of NULL

specifications, MariaDB automatically assigns values.

MariaDB

52

Beyond the pattern matching available from LIKE clauses, MariaDB offers regular

expression-based matching through the REGEXP operator. The operator performs pattern

matching for a string expression based on a given pattern.

MariaDB 10.0.5 introduced PCRE Regular Expressions, which dramatically increases the

scope of matching into areas like recursive patterns, look-ahead assertions, and more.

Review the use of standard REGEXP operator syntax given below-

SELECT column FROM table_name WHERE column REGEXP '[PATTERN]';

REGEXP returns 1 for a pattern match or 0 in the absence of one.

An option for the opposite exists in the form of NOT REGEXP. MariaDB also offers synonyms

for REGEXP and NOT REGEXP, RLIKE and NOT RLIKE, which were created for compatibility

reasons.

The pattern compared can be a literal string or something else such as a table column. In

strings, it uses C escape syntax, so double any “\” characters. REGEXP is also case-

insensitive, with the exception of binary strings.

A table of possible patterns, which can be used are given below-

Pattern Description

^ It matches the start of the string.

$ It matches the string's end.

. It matches a single character.

[...] It matches any character in the brackets.

[^...] It matches any character not listed in the brackets.

p1|p2|p3 It matches any of the patterns.

* It matches 0 or more instances of the preceding element.

+ It matches 1 or more instances of the preceding element.

{n} It matches n instances of the preceding element.

{m,n} It matches m to n instances of the preceding element.

21. MariaDB – Regular Expression

MariaDB

53

Review the pattern matching examples given below-

Products starting with “pr”-

SELECT name FROM product_tbl WHERE name REGEXP '^pr';

Products ending with “na”-

SELECT name FROM product_tbl WHERE name REGEXP 'na$';

Products starting with a vowel-

SELECT name FROM product_tbl WHERE name REGEXP '^[aeiou]';

MariaDB

54

Transactions are sequential group operations. They function as a single unit, and do not

terminate until all operations within the group execute successfully. A single failure in the

group causes the entire transaction to fail, and causes it to have no impact on the

database.

Transactions conform to ACID (Atomicity, Consistency, Isolation, and Durability):

 Atomicity – It ensures the success of all operations by aborting on failures and

rolling back changes.

 Consistency – It ensures the database applies changes on a successful

transaction.

 Isolation – It enables independent transactions operation of transactions.

 Durability – It ensures the persistence of a successful transaction in the event of

system failure.

At the head of a transaction statement is the START TRANSACTION statement followed by

COMMIT and ROLLBACK statements-

 START TRANSACTION begins the transaction.

 COMMIT saves changes to data.

 ROLLBACK ends the transaction, destroying any changes.

On a successful transaction, COMMIT acts. On a failure, ROLLBACK acts.

Note: Some statements cause an implicit commit, and they also cause an error when used

within transactions. Examples of such statements include, but are not limited to CREATE,

ALTER, and DROP.

MariaDB transactions also include options like SAVEPOINT and LOCK TABLES. SAVEPOINT

sets a restore point to utilize with ROLLBACK. LOCK TABLES allows controlling access to

tables during sessions to prevent modifications during certain time periods.

The AUTOCOMMIT variable provides control over transactions. A setting of 1 forces all

operations to be considered successful transactions, and a setting of 0 causes persistence

of changes to only occur on an explicit COMMIT statement.

Structure of a Transaction

The general structure of a transaction statement consists of beginning with START

TRANSACTION. The next step is inserting one or more commands/operations, inserting

statements that check for errors, inserting ROLLBACK statements to manage any errors

discovered and finally inserting a COMMIT statement to apply changes on successful

operations.

22. MariaDB – Transactions

MariaDB

55

Review the example given below-

START TRANSACTION;

SELECT name FROM products WHERE manufacturer='XYZ Corp';

UPDATE spring_products SET item=name;

COMMIT;

MariaDB

56

The ALTER command provides a way to change an existing table's structure, meaning

modifications like removing or adding columns, modifying indices, changing data types, or

changing names. ALTER also waits to apply changes when a metadata lock is active.

Using ALTER to Modify Columns

ALTER paired with DROP removes an existing column. However, it fails if the column is the

only remaining column.

Review the example given below-

mysql> ALTER TABLE products_tbl DROP version_num;

Use an ALTER...ADD statement to add columns-

mysql> ALTER TABLE products_tbl ADD discontinued CHAR(1);

Use the keywords FIRST and AFTER to specify placement of the column-

ALTER TABLE products_tbl ADD discontinued CHAR(1) FIRST;

ALTER TABLE products_tbl ADD discontinued CHAR(1) AFTER quantity;

Note the FIRST and AFTER keywords only apply to ALTER...ADD statements. Furthermore,

you must drop a table and then add it in order to reposition it.

Change a column definition or name by using the MODIFY or CHANGE clause in an ALTER

statement. The clauses have similar effects, but utilize substantially different syntax.

Review a CHANGE example given below-

mysql> ALTER TABLE products_tbl CHANGE discontinued status CHAR(4);

In a statement using CHANGE, specify the original column and then the new column that

will replace it. Review a MODIFY example below:

mysql> ALTER TABLE products_tbl MODIFY discontinued CHAR(4);

The ALTER command also allows for changing default values. Review an example:

mysql> ALTER TABLE products_tbl ALTER discontinued SET DEFAULT N;

You can also use it to remove default constraints by pairing it with a DROP clause:

mysql> ALTER TABLE products_tbl ALTER discontinued DROP DEFAULT;

23. MariaDB – Alter Command

MariaDB

57

Using ALTER to Modify Tables

Change table type with the TYPE clause-

mysql> ALTER TABLE products_tbl TYPE = INNODB;

Rename a table with the RENAME keyword-

mysql> ALTER TABLE products_tbl RENAME TO products2016_tbl;

MariaDB

58

Indexes are tools for accelerating record retrieval. An index spawns an entry for each value

within an indexed column.

There are four types of indexes-

 Primary (one record represents all records)

 Unique (one record represents multiple records)

 Plain

 Full-Text (permits many options in text searches).

The terms “key” and “index” are identical in this usage.

Indexes associate with one or more columns, and support rapid searches and efficient

record organization. When creating an index, consider which columns are frequently used

in your queries. Then create one or multiple indexes on them. In addition, view indexes

as essentially tables of primary keys.

Though indexes accelerate searches or SELECT statements, they make insertions and

updates drag due to performing the operations on both the tables and the indexes.

Create an Index

You can create an index through a CREATE TABLE...INDEX statement or a CREATE INDEX

statement. The best option supporting readability, maintenance, and best practices is

CREATE INDEX.

Review the general syntax of Index given below-

CREATE [UNIQUE or FULLTEXT or...] INDEX index_name ON table_name column;

Review an example of its use-

CREATE UNIQUE INDEX top_sellers ON products_tbl product;

Drop an Index

You can drop an index with DROP INDEX or ALTER TABLE...DROP. The best option

supporting readability, maintenance, and best practices is DROP INDEX.

Review the general syntax of Drop Index given below-

DROP INDEX index_name ON table_name;

Review an example of its use-

DROP INDEX top_sellers ON product_tbl;

24. MariaDB – Indexes and Statistics Tables

MariaDB

59

Rename an Index

Rename an index with the ALTER TABLE statement. Review its general syntax given below-

ALTER TABLE table_name DROP INDEX index_name, ADD INDEX new_index_name;

Review an example of its use-

ALTER TABLE products_tbl DROP INDEX top_sellers, ADD INDEX top_2016sellers;

Managing Indexes

You will need to examine and track all indexes. Use SHOW INDEX to list all existing indexes

associated with a given table. You can set the format of the displayed content by using an

option such as “\G”, which specifies a vertical format.

Review the following example-

mysql> SHOW INDEX FROM products_tbl\G

Table Statistics

Indexes are used heavily to optimize queries given the faster access to records, and the

statistics provided. However, many users find index maintenance cumbersome. MariaDB

10.0 made storage engine independent statistics tables available, which calculate data

statistics for every table in every storage engine, and even statistics for columns that are

not indexed.

MariaDB

60

Some operations can benefit from temporary tables due to speed or disposable data. The

life of a temporary table ends at the termination of a session whether you employ them

from the command prompt, with a PHP script, or through a client program. It also does

not appear in the system in a typical fashion. The SHOW TABLES command will not reveal

a list containing temporary tables.

Create a Temporary Table

The TEMPORARY keyword within a CREATE TABLE statement spawns a temporary table.

Review an example given below-

mysql> CREATE TEMPORARY TABLE order (

 item_name VARCHAR(50) NOT NULL

 , price DECIMAL(7,2) NOT NULL DEFAULT 0.00

 , quantity INT UNSIGNED NOT NULL DEFAULT 0

);

In creating a temporary table, you can clone existing tables, meaning all their general

characteristics, with the LIKE clause. The CREATE TABLE statement used to spawn the

temporary table will not commit transactions as a result of the TEMPORARY keyword.

Though temporary tables stand apart from non-temporary and drop at the end of a

session, they may have certain conflicts-

 They sometimes conflict with ghost temporary tables from expired sessions.

 They sometimes conflict with shadow names of non-temporary tables.

Note: Temporary tables are permitted to have the same name as an existing non-

temporary table because MariaDB views it as a difference reference.

Administration

MariaDB requires granting privileges to users for creating temporary tables. Utilize a

GRANT statement to give this privilege to non-admin users.

GRANT CREATE TEMPORARY TABLES ON orders TO 'machine122'@'localhost';

25. MariaDB – Temporary Tables

MariaDB

61

Drop a Temporary Table

Though temporary tables are essentially removed at the end of sessions, you have the

option to delete them. Dropping a temporary table requires the use of the TEMPORARY

keyword, and best practices suggest dropping temporary tables before any non-

temporary.

mysql> DROP TABLE order;

MariaDB

62

Some situations require producing an exact copy of an existing table. The

CREATE...SELECT statement cannot produce this output because it neglects things like

indexes and default values.

The procedure for a duplicating a table is as follows-

 Utilize SHOW CREATE TABLE to produce a CREATE TABLE statement that details

the entire structure of the source table.

 Edit the statement to give the table a new name, and execute it.

 Use an INSERT INTO...SELECT statement if you also need the table data copied.

mysql> INSERT INTO inventory_copy_tbl (product_id,

 product_name,

 product_manufacturer,

 ship_date)

 SELECT product_id,product_name,

 product_manufacturer,ship_date,

 FROM inventory_tbl;

Another method for creating a duplicate uses a CREATE TABLE AS statement. The

statement copies all columns, column definitions, and populates the copy with the source

table's data.

Review its syntax given below-

CREATE TABLE clone_tbl AS

 SELECT columns

 FROM original_tbl

 [WHERE conditions];

Review an example of its use below-

CREATE TABLE products_copy_tbl AS

 SELECT *

 FROM products_tbl;

26. MariaDB – Table Cloning

MariaDB

63

In version 10.0.3, MariaDB introduced a storage engine known as sequence. Its ad hoc

generates an integer sequence for operations, and then it terminates. The sequence

contains positive integers in descending or ascending order, and uses a starting, ending,

and increment value.

It does not allow use in multiple queries, only in its original query because of its virtual

(not written to disk) nature. However, sequence tables can be converted to standard tables

through an ALTER command. If a converted table is deleted, the sequence table still exists.

Sequences also cannot produce negative numbers or rotate at the minimum/maximum.

Installating the Sequence Engine

Using sequences requires installing the sequence engine, which MariaDB distributes as a

plugin rather than binary. Install it with the following command-

INSTALL SONAME "ha_sequence";

After installation, verify it-

SHOW ENGINES\G

Remember that after engine installation, you cannot create a standard table with a name

that uses sequence syntax, but you can create a temporary table with a sequence-syntax

name.

Creating Sequence

There are two methods of sequence creation-

 Create a table and use the AUTO_INCREMENT attribute to define a column as auto-

increment.

 Use an existing database and use a sequence SELECT query to produce a sequence.

The query uses seq_ [FROM] _to_[TO] or seq_[FROM]_to_[TO]_step_STEP syntax.

Best practices prefer the use of the second method. Review an example of a sequence

creation given below-

SELECT * FROM seq_77_to_99;

27. MariaDB – Sequences

MariaDB

64

Sequences have many uses-

 Locate missing values within a column to protect against related issues in

operations-

SELECT myseq.seq FROM seq_22_to_28 myseq LEFT JOIN table1 t ON myseq.seq

= x.y WHERE x.y IS NULL;

 Construct a combination of values-

SELECT x1.seq, x2.seq FROM seq_5_to_9 x1 JOIN seq_5_to_9 x2 ORDER BY 5, 6;

 Find multiples of a number-

SELECT seq FROM seq_3_to_100_step_4;

 Construct a date sequence for use in applications like booking systems.

 Construct a time sequence.

MariaDB

65

MariaDB, as discussed in earlier lessons, allows duplicate records and tables in some

situations. Some of these duplicates are not in fact duplicates due to distinct data or object

types, or as a result of unique lifespan or storage of the operation object. These duplicates

also typically pose no problems.

In some situations, duplicates do cause problems, and they often appear due to implicit

actions or the lenient policy of a MariaDB command. There are ways to control this issue,

find duplicates, delete duplicates, and prevent duplicate creation.

Strategies and Tools

There are four key ways to manage duplicates-

 Fish for them with JOIN, and delete them with a temporary table.

 Use INSERT...ON DUPLICATE KEY UPDATE to update on discovery of a duplicate.

 Use DISTINCT to prune the results of a SELECT statement and remove duplicates.

 Use INSERT IGNORE to stop insertion of duplicates.

Using Join with a Temporary Table

Simply perform a semi-join like an inner join, and then remove the duplicates found with

a temporary table.

Using INSERT

When INSERT...ON DUPLICATE KEY UPDATE discovers a duplicate unique or primary key,

it performs an update. On discovery of multiple unique keys, it updates only the first.

Hence, do not use it on tables with multiple unique indices.

Review the following example, which reveals what happens in a table containing indexed

values on insertion into a populated field-

INSERT INTO add_dupl VALUES (1,'Apple');

ERROR 1062 (23000): Duplicate entry '1' for key 'PRIMARY'

Note: If it finds no key, an INSERT...ON DUPLICATE KEY UPDATE statement executes like

a normal insert statement.

28. MariaDB – Managing Duplicates

MariaDB

66

Using DISTINCT

DISTINCT clauses remove duplicates from results. The general syntax for a DISTINCT

clause is as follows-

SELECT DISTINCT fields

FROM table

[WHERE conditions];

Note: The results of a statement with a DISTINCT clause-

 When using one expression, it returns unique values for it.

 When using multiple expressions, it returns unique combinations.

 It does not ignore NULL values; thus, results also contain NULLs as unique values.

Review the following statement using a DISTINCT clause for a single expression-

SELECT DISTINCT product_id

FROM products

WHERE product_name = 'DustBlaster 5000';

Review the following example using multiple expressions-

SELECT DISTINCT product_name, product_id

FROM products

WHERE product_id < 30

Using INSERT IGNORE

An INSERT IGNORE statement instructs MariaDB to cancel insertion on discovery of a

duplicate record. Review an example of its use given below-

mysql> INSERT IGNORE INTO customer_tbl (LN, FN)

 VALUES('Lex', 'Luther');

Also, note the logic behind duplicates. Some tables require duplicates based on the nature

of that table data. Accommodate that need in your strategy for managing duplicate

records.

MariaDB

67

The simple act of accepting user input opens the door to exploits. The problem stems

primarily from the logical management of data, but luckily, it is fairly easy to avoid these

major flaws.

Opportunities for SQL injection typically occur on users entering data like a name, and the

code logic failing to analyze this input. The Code, instead, allows an attacker to insert a

MariaDB statement, which will run on the database.

Always consider data entered by users, suspect and are in need of strong validation prior

to any processing. Perform this validation through pattern matching. For example, if the

expected input is a username, restrict entered characters to alphanumeric chars and

underscores, and to a certain length. Review an example given below-

if (check_match("/^\w{8,20}$/", $_GET['user_name'], $matches))

{

 $result = mysql_query("SELECT * FROM system_users

 WHERE user_name=$matches[0]");

}

 else

{

 echo "Invalid username";

}

Also, utilize the REGEXP operator and LIKE clauses in creating input constraints.

Consider all types of necessary explicit control of input such as-

 Control the escape characters used.

 Control the specific appropriate data types for input. Limit input to the necessary

data type and size.

 Control the syntax of entered data. Do not allow anything outside of the needed

pattern.

 Control the terms permitted. Blacklist SQL keywords.

You may not know the dangers of injection attacks, or may consider them insignificant,

but they top the list of security concerns. Furthermore, consider the effect of these two

entries-

1=1

-or-

*

29. MariaDB – SQL Injection Protection

MariaDB

68

Code allowing either of those to be entered along with the right command may result in

revealing all user data on the database or deleting all data on the database, and neither

injection is particularly clever. In some cases, attackers do not even spend time examining

holes; they perform blind attacks with simple input.

Also, consider the pattern matching and regular expression tools provided by any

programming/scripting language paired with MariaDB, which provide more control, and

sometimes better control.

MariaDB

69

Data serves as the foundation of business and operations, and with various possible

threats (e.g., attackers, system failures, bad upgrades, and maintenance errors) out

there, backups remain critical. These backups take many forms, and many options exist

for creating them with an even wider set of options within those processes. The important

things to remember are the database type, the critical information, and the structure

involved. This information determines your best option.

OPTIONS

The main options for backups include logical backups and physical backups. Logical

backups hold SQL statements for restoring data. Physical backups contain copies of data.

 Logical backups offer the flexibility of restoring data on another machine with a

different configuration in contrast to physical backups, which are often limited to

the same machine and database type. Logical backups occur at database and table

level, and physical occur at directory and file level.

 Physical backups are smaller in size than logical, and also take less time to

perform and restore. Physical backups also include log and configuration files, but

logical backups do not.

Backup Tools

The main tool used for MariaDB backups is mysqldump. It offers logical backups and

flexibility. It also proves an excellent option for small databases. Mysqldump dumps data

into SQL, CSV, XML, and many other formats. Its output does not retain stored procedures,

views, and events without explicit instruction.

There are three options for mysqldump backups-

 Raw data – Dump a table as a raw data file through the --tab option, which also

specifies the destination of the file-

$ mysqldump -u root -p --no-create-info \

 --tab=/tmp PRODUCTS products_tbl

 Data/Definitions export – This option allows a single or multiple tables to be

exported to a file, and supports backing up all existing databases on the host

machine. Examine an example of exporting contents or definitions to a file-

$ mysqldump -u root -p PRODUCTS products_tbl > export_file.txt

30. MariaDB – Backup Methods

MariaDB

70

 Transfer – You can also output databases and tables to another host-

$ mysqldump -u root -p database_name \

 | mysql -h other-host.com database_name

Using THE SELECT...INTO OUTFILE Statement

Another option for exporting data employs the SELECT...INTO OUTFILE statement. This

simple option outputs the table into a simple formatted text file-

mysql> SELECT * FROM products_tbl

 -> INTO OUTFILE '/tmp/products.txt';

Its attributes allow formatting the file to your preferred specifications.

Note the following qualities of this statement-

 The file name must specify your desired location for the output.

 You need MariaDB file privileges to execute the statement.

 The output file name must be unique.

 You need login credentials on the host.

 In a UNIX environment, the output file is world readable, but its server ownership

affects your ability to delete it. Ensure you have privileges.

Using CONNECT in Backups

The CONNECT handler allows exporting of data. This proves useful primarily in situations

when the SELECT...INTO OUTFILE operation does not support the file format.

Review the following example-

create table products

engine=CONNECT table_type=XML file_name='products.htm' header=yes

option_list='name=TABLE,coltype=HTML,attribute=border=1;cellpadding=5'

select plugin_name handler, plugin_version version, plugin_author

author, plugin_description description, plugin_maturity maturity

from information_schema.plugins where plugin_type = 'STORAGE ENGINE';

MariaDB

71

Other Tools

Other options for backups are as follows-

 XtraBackup – This option targets XtraDB/InnoDB databases and works with any

storage engine. Learn more about this tool from Percona's official site.

 Snapshots – Some filesystems allow snapshots. The process consists of flushing

the tables with read lock, mounting the snapshot, unlocking the tables, copying the

snapshot, and then unmounting the snapshot.

 LVM – This popular method employs a Perl script. It gets a read lock on every table

and flushes caches to disk. Then it gets a snapshot and unlocks the tables. Consult

the official mylvmbackup website for more information.

 TokuBackup – This solution provided by Percona provides hot backups taking into

account the problems and limitations of InnoDB backup options. It produces a

transactional sound copy of files while applications continue to manipulate them.

Consult the Percona website for more information.

INNODB Considerations

InnoDB uses a buffer pool for performance enhancement. In a backup, configure InnoDB

to avoid copying an entire table into the buffer pool because logical backups typically

perform full table scans.

MariaDB

72

In this chapter, we will learn about various backup loading methods. Restoring a database

from a backup is a simple and sometimes terribly long process.

There are three options in loading data: the LOAD DATA statement, mysqlimport, and a

simple mysqldump restore.

Using LOAD DATA

The LOAD DATA statement functions as a bulk loader. Review an example of its use that

loads a text file-

mysql> LOAD DATA LOCAL INFILE 'products_copy.txt' INTO TABLE empty_tbl;

Note the following qualities of a LOAD DATA statement-

 Use the LOCAL keyword to prevent MariaDB from performing a deep search of the

host, and use a very specific path.

 The statement assumes a format consisting of lines terminated by linefeeds

(newlines) and data values separated by tabs.

 Use the FIELDS clause to explicitly specify formatting of fields on a line. Use the

LINES clause to specify line ending. Review an example below-

mysql> LOAD DATA LOCAL INFILE 'products_copy.txt' INTO TABLE empty_tbl

 FIELDS TERMINATED BY '|'

 LINES TERMINATED BY '\n';

 The statement assumes columns within the datafile use the same order of the

table. If you need to set a different order, you can load the file as follows-

mysql> LOAD DATA LOCAL INFILE 'products_copy.txt'

 INTO TABLE empty_tbl (c, b, a);

31. MariaDB – Backup Loading Methods

MariaDB

73

Using MYSQLIMPORT

The mysqlimport tool acts as a LOAD DATA wrapper allowing the same operations from

the command line.

Load data as follows-

$ mysqlimport -u root -p --local database_name source_file.txt

Specify formatting as follows-

$ mysqlimport -u root -p --local --fields-terminated-by="|" \

 --lines-terminated-by="\n" database_name source_file.txt

Use the --columns option to specify column order-

$ mysqlimport -u root -p --local --columns=c,b,a \

 database_name source_file.txt

Using MYSQLDUMP

Restoring with mysqldump requires this simple statement for loading the dump file back

into the host-

shell> mysql database_name < source_file.sql

SPECIAL CHARACTERS AND QUOTES

In a LOAD DATA statement, quotes and special characters may not be interpreted

correctly. The statement assumes unquoted values and treats backslashes as escape

characters. Use the FIELDS clause to specify formatting. Point to quotes with “ENCLOSED

BY,” which causes the stripping of quotes from data values. Change escapes with

“ESCAPED BY.”

MariaDB

74

This chapter contains a list of the most frequently used functions, offering definitions,

explanations, and examples.

MariaDB Aggregate Functions

Most frequently used aggregate functions are given below-

Name Description

COUNT
It counts the number of records.

Example: SELECT COUNT(*) FROM customer_table;

MIN

It reveals the minimum value of a set of records.

Example: SELECT organization, MIN(account) FROM contracts GROUP BY

organization;

MAX

It reveals the maximum value of a set of records.

Example: SELECT organization, MAX(account_size) FROM contracts GROUP

BY organization;

AVG
It calculates the average value of a set of records.

Example: SELECT AVG(account_size) FROM contracts;

SUM
It calculates the sum of a set of records.

Example: SELECT SUM(account_size) FROM contracts;

MariaDB Age Calculation

The TIMESTAMPDIFF function provides a way to calculate age-

SELECT CURDATE() AS today;

SELECT ID, DOB, TIMESTAMPDIFF(YEAR,DOB,'2015-07-01') AS age

 FROM officer_info;

32. MariaDB – Useful Functions

MariaDB

75

MariaDB String Concatenation

The CONCAT function returns the resulting string after a concatenation operation. You

can utilize one or more arguments. Review its syntax given below-

SELECT CONCAT(item, item,...);

Review thefollowing example-

SELECT CONCAT('Ram', 'bu', 'tan');

Output:Rambutan

MariaDB Date/Time Functions

Given below are important date functions-

Name Description

CURDATE()
It returns the date in yyyy-mm-dd or yyyymmdd format.

Example: SELECT CURDATE();

DATE()
It returns the date in multiple formats.

Example: CREATE TABLE product_release_tbl (x DATE);

CURTIME()
It returns the time in HH:MM:SS or HHMMSS.uuuuuu format.

Example: SELECT CURTIME();

DATE_SUB()
It adds or subtracts a number of days from the specified date.

Example: SELECT DATE_SUB('2016-02-08', INTERVAL 60 DAY);

DATEDIFF()
It determines the days between two dates.

Example: SELECT DATEDIFF('2016-01-01 23:59:59','2016-01-03');

DATE ADD()

It adds or subtracts any unit of time to/from the date and time.

Example: SELECT DATE_ADD('2016-01-04 23:59:59', INTERVAL 22

SECOND);

EXTRACT()
It extracts a unit from the date.

Example: SELECT EXTRACT(YEAR FROM '2016-01-08');

MariaDB

76

NOW()

It returns the current date and time in either yyyy-mm-dd hh:mm:ss

or yyyymmddhhmmss.uuuuuu format.

Example: SELECT NOW();

DATE

FORMAT()

It formats the date in accordance with the specified format string.

Example: SELECT DATE_FORMAT('2016-01-09 20:20:00', '%W %M %Y');

Following are some important time functions-

Name Description

HOUR()
It returns the hour of the time, or the hours elapsed.

Example: SELECT HOUR('19:17:09');

LOCALTIME() It functions exactly like NOW().

MICROSECOND()
It returns the microseconds of the time.

Example: SELECT MICROSECOND('16:30:00.543876');

MINUTE()
It returns the minutes of the time.

Example: SELECT MINUTE('2016-05-22 17:22:01');

SECOND()
It returns the seconds of the date.

Example: SELECT SECOND('2016-03-12 16:30:04.000001');

TIME_FORMAT()
It formats the time in accordance with the specified format string.

Example: SELECT TIME_FORMAT('22:02:20', '%H %k %h %I %l');

TIMESTAMP()

It provides a timestamp for an activity in the format yyyy-mm-dd

hh:mm:dd.

Example: CREATE TABLE orders_ (ID INT, tmst TIMESTAMP);

MariaDB

77

MariaDB Numeric Functions

Given below are some important numeric functions in MariaDB-

Name Description

TRUNCATE()
It returns a truncated number to decimal place specification.

Example: SELECT TRUNCATE(101.222, 1);

COS()
It returns the cosine of x radians.

Example: SELECT COS(PI());

CEILING()
It returns the smallest integer not below x.

Example: SELECT CEILING(2.11);

DEGREES()
It converts radians to degrees.

Example: SELECT DEGREES(PI());

DIV()
It performs integer division.

Example: SELECT 100 DIV 4;

EXP()
It returns e to the power of x.

Example: SELECT EXP(2);

FLOOR()
It returns the largest integer not above x.

Example: SELECT FLOOR(2.01);

LN()
It returns the natural logarithm of x.

Example: SELECT LN(3);

LOG()
It returns the natural logarithm or the logarithm to a given base.

Example: SELECT LOG(3);

SQRT()
It returns the square root.

Example: SELECT SQRT(16);

MariaDB

78

MariaDB String Functions

Important string functions are given below-

Name Description

INSTR()
It returns the position of the first instance of a substring.

Example: SELECT INSTR('rambutan', 'tan');

RIGHT()
It returns the rightmost string characters.

Example: SELECT RIGHT('rambutan', 3);

LENGTH()
It returns the byte length of a string.

Example: SELECT LENGTH('rambutan');

LOCATE()
It returns the position of the first instance of a substring.

Example: SELECT LOCATE('tan', 'rambutan');

INSERT()

It returns a string, with a specified substring at a certain position,

that was modified.

Example: SELECT INSERT('ramputan', 4, 1, 'b');

LEFT()
It returns the leftmost characters.

Example: SELECT LEFT('rambutan', 3);

UPPER()
It changes characters to uppercase.

Example: SELECT UPPER(lastname);

LOWER()
It changes characters to lowercase.

Example: SELECT LOWER(lastname);

STRCMP()
It compares strings and returns 0 when they are equal.

Example: SELECT STRCMP('egg', 'cheese');

REPLACE()
It returns a string after replacing characters.

Example: SELECT REPLACE('sully', 'l', 'n');

REVERSE()
It reverses characters in a string.

Example: SELECT REVERSE('racecar');

REPEAT()
It returns a string repeating given characters x times.

Example: SELECT REPEAT('ha ', 10);

MariaDB

79

SUBSTRING()
It returns a substring from a string, starting at position x.

Example: SELECT SUBSTRING('rambutan',3);

TRIM()
It removes trailing/leading characters from a string.

Example: SELECT TRIM(LEADING '_' FROM '_rambutan');

