
MEAN.JS

 i

MEAN.JS

 ii

About the Tutorial

The term MEAN.js refers to full stack JavaScript framework, used for building dynamic

websites and web applications. MEAN is an acronym that stands

for MongoDB, Express, Node.js and AngularJS, which are the key components of the

MEAN stack.

Audience

This tutorial is designed for software programmers who want to learn the basics of MEANjs

and its programming concepts in simple and easy ways. This tutorial will give you enough

understanding on components of MEANjs with suitable examples.

Prerequisites

Before proceeding with this tutorial, we are assuming that you are already aware of the

basics of HTML, CSS, and JavaScript.

Copyright & Disclaimer

 Copyright 2019 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

MEAN.JS

 iii

Table of Contents

About the Tutorial ... ii

Audience .. ii

Prerequisites .. ii

Copyright & Disclaimer .. ii

Table of Contents ... iii

1. MEAN.JS ― Overview ... 1

What is MEAN.js? .. 1

History ... 1

Why to use MEAN.js? .. 1

Introduction to MongoDB ... 1

Introduction to Express ... 2

Introduction to AngularJS .. 2

Introduction to Node.js ... 2

2. MEAN.JS — Architecture ... 3

BUILD NODE WEB APP .. 6

3. MEAN.JS — MEAN Project Setup .. 7

Prerequisites .. 7

Creating Express Project .. 7

Running Application .. 10

4. MEAN.JS ― Building Static Route Node Express ... 12

Setting Up Routes .. 12

Running Application .. 12

5. MEAN.JS ― Build Data Model ... 14

Adding Mongoose to Application .. 14

Setting up Connection File ... 15

6. MEAN.JS ― REST API .. 18

MEAN.JS

 iv

RESTful API Routes .. 18

FRONT END WITH ANGULAR ... 23

7. MEAN.JS — Angular Components in App .. 24

Getting to know AngularJS .. 24

Angular Application as a Module... 24

Defining Controller .. 25

Defining Scope ... 25

8. MEAN.JS ― Building Single Page with Angular .. 27

Setting Up Our Angular Application .. 27

Bower and Pulling in Components .. 27

Angular Controllers .. 29

Angular Routes .. 29

View File .. 30

Running Application .. 31

9. MEAN.JS — Building an SPA: The next level .. 33

Defining Frontend Route ... 36

Running Application .. 39

MEAN.JS

 1

What is MEAN.js?

The term MEAN.js is a full stack JavaScript open-source solution, used for building

dynamic websites and web applications. MEAN is an acronym that stands

for MongoDB, Express, Node.js and AngularJS, which are the key components of the

MEAN stack.

It was basically developed to solve the common issues with connecting those frameworks

(Mongo, Express Nodejs, AngularJS), build a robust framework to support daily

development needs, and help developers use better practices while working with popular

JavaScript components.

Stack means using the database and web server in the back end, in the middle you will

have logic and control for the application and interaction of user at the front end.

 MongoDB: Database System

 Express: Back-end Web Framework

 Node.js: Web Server Platform

 AngularJS: Front-end Framework

History

MEAN name was coined by Valeri Karpov, a MongoDB developer.

Why to use MEAN.js?
 It is an open source framework which is free to use.

 It can be used as standalone solution in a whole application.

 It provides lower development cost and increases the developer flexibility and

efficiency.

 It supports MVC pattern and uses the JSON for transferring data.

 It provides additional frameworks, libraries and reusable modules to increase the

development speed.

Before we begin with further concepts, we will see the basic building blocks

of MEAN.JS application.

Introduction to MongoDB

In MEAN acronym, M stands for MongoDB, which is an open source NoSQL database that

saves the data in JSON format. It uses the document oriented data model to store the

data instead of using table and rows as we use in the relational databases. It stores data

1. MEAN.JS ― Overview

MEAN.JS

 2

in binary JSON (JavaScript Serialized Object Notation) format to pass the data easily

between client and server. MongoDB works on concept of collection and document. For

more information, refer to this link.

Introduction to Express

In MEAN acronym, E stands for Express, which is a flexible Node.js web application

framework used to make development process easier. It is easy to configure and

customize, that allows building secure, modular and fast applications. It specifies the

routes of an application depending on the HTTP methods and URLs. You can connect to

databases such as MongoDB, MySQL, Redis easily. For more information, refer to this link.

Introduction to AngularJS

In MEAN acronym, A stands for AngularJS, which is a web frontend JavaScript framework.

It allows creating dynamic, single page applications in a clean Model View Controller (MVC)

way. AngularJS automatically handles JavaScript code suitable for each browser. For more

information, refer to this link.

Introduction to Node.js

In MEAN acronym, N stands for Node.js, which is a server side platform used for

development of web applications like video streaming sites, single-page applications, and

other web applications. It provides a rich library of various JavaScript modules which

simplifies the development of web applications using Node.js to a great extent. It is built

on Google Chrome's V8 JavaScript Engine, so it is very fast in code execution. For more

information, refer to this link.

https://www.tutorialspoint.com/mongodb/mongodb_overview.htm
https://www.tutorialspoint.com/nodejs/nodejs_express_framework.htm
https://www.tutorialspoint.com/angularjs/angularjs_overview.htm
https://www.tutorialspoint.com/nodejs/nodejs_introduction.htm

MEAN.JS

 3

MEAN is an open source JavaScript framework, used for building dynamic websites and

web applications. It includes following four building blocks to build an application.

 MongoDB: It is a document database, that stores data in flexible, JSON-like

documents.

 Express: It is web application framework for Nodejs.

 Node.js: It is Web Server Platform. It provides rich library of various JavaScript

modules which simplifies the development of web applications.

 AngularJS: It is a web frontend JavaScript framework. It allows creating dynamic,

single page applications in a clean Model View Controller (MVC) way.

For more information on these, you can refer the overview chapter. The below diagram

depicts architecture of MEAN stack application.

2. MEAN.JS — Architecture

file:///C:/Users/User/Downloads/meanjs_overview.htm

MEAN.JS

 4

As shown in the above image, we have AngularJS as client side language which processes

the request of a client.

 Whenever a user makes a request, it is first processed by AngularJS.

 Next, request enters second stage, where we have Node.js as server side language

and ExpressJS as backend web framework.

 Node.js handles the client/server requests and ExpressJS makes request to the

database.

MEAN.JS

 5

 In the last stage, MongoDB (database) retrieves the data and sends the response

to ExpressJS.

 ExpressJS returns the response to Nodejs and in turn to AngularJS and then

displays the response to user.

MEAN.JS

 6

Build Node Web App

MEAN.JS

 7

This chapter includes creating and setting up a MEAN application. We are using NodeJS

and ExpressJS together to create the project.

Prerequisites

Before we begin with creating a MEAN application, we need to install required

prerequisites.

You can install latest version of Node.js by visiting the Node.js website

at https://nodejs.org/ (This is for Windows users). When you download Node.js, npm will

get installed automatically on your system. Linux users can install the Node and npm by

using this link.

Check the version of Node and npm by using the below commands:

$ node --version

$ npm --version

The commands will display the versions as shown in the below image:

Creating Express Project

Create a project directory by using mkdir command as shown below:

$ mkdir mean-demo //this is name of repository

The above directory is the root of node application. Now, to create package.json file, run

the below command:

$ cd webapp-demo

$ npm init

The init command will walk you through creating a package.json file:

This utility will walk you through creating a package.json file. It only covers the most

common items, and tries to guess sensible defaults.

3. MEAN.JS — MEAN Project Setup

https://nodejs.org/en/
https://github.com/nodesource/distributions/blob/master/README.md

MEAN.JS

 8

See `npm help json` for definitive documentation on these fields and exactly

what they do.

Use `npm install --save` afterwards to install a package and save it as a

dependency in the package.json file.

Press ^C at any time to quit.

name: (mean-demo) mean_tutorial

version: (1.0.0)

description: this is basic tutorial example for MEAN stack

entry point: (index.js) server.js

test command: test

git repository:

keywords: MEAN,Mongo,Express,Angular,Nodejs

author: Manisha

license: (ISC)

About to write to /home/mani/work/rnd/mean-demo/package.json:

{

 "name": "mean_tutorial",

 "version": "1.0.0",

 "description": "this is basic tutorial example for MEAN stack",

 "main": "server.js",

 "scripts": {

 "test": "test"

 },

 "keywords": [

 "MEAN",

 "Mongo",

 "Express",

 "Angular",

 "Nodejs"

],

 "author": "Manisha",

 "license": "ISC"

}

MEAN.JS

 9

Is this ok? (yes) yes

Click yes and a folder structure as below will be generated:

 -mean-demo

 -package.json

The package.json file will have the following info:

 {

 "name": "mean_tutorial",

 "version": "1.0.0",

 "description": "this is basic tutorial example for MEAN stack",

 "main": "server.js",

 "scripts": {

 "test": "test"

 },

 "keywords": [

 "MEAN",

 "Mongo",

 "Express",

 "Angular",

 "Nodejs"

],

 "author": "Manisha",

 "license": "ISC"

}

Now to configure the Express project into current folder and install configuration options

for the framework, use the below command:

npm install express --save

Go to your project directory and open package.json file, you will see the below

information:

 {

 "name": "mean_tutorial",

 "version": "1.0.0",

 "description": "this is basic tutorial example for MEAN stack",

 "main": "server.js",

MEAN.JS

 10

 "scripts": {

 "test": "test"

 },

 "keywords": [

 "MEAN",

 "Mongo",

 "Express",

 "Angular",

 "Nodejs"

],

 "author": "Manisha",

 "license": "ISC",

 "dependencies": {

 "express": "^4.17.1"

 }

 }

Here you can see express dependency is added to the file. Now, the project structure is

as below:

-mean-demo

 --node_modules created by npm install

 --package.json tells npm which packages we need

 --server.js set up our node application

Running Application

Navigate to your newly created project directory and create a server.js file with below

contents.

 // modules ===

 const express = require('express');

 const app = express();

 // set our port

 const port = 3000;

 app.get('/', (req, res) => res.send('Welcome to Tutorialspoint!'));

 // startup our app at http://localhost:3000

 app.listen(port, () => console.log(`Example app listening on port

${port}!`));

MEAN.JS

 11

Next, run the application with the below command:

$ npm start

You will get a confirmation as shown in the image below:

It informs that Express application is running. Open any browser and access the application

using http://localhost:3000. You will see Welcome to Tutorialspoint! text as shown

below:

You can download the source code of the above example from here.

file:///D:/1%20Full%20tutorials/MeanJS/MEAN-js-tutorial/files/meanjs_build_node_webapp.zip

MEAN.JS

 12

This chapter demonstrates building route for an application with Node and Express.

In the previous chapter, we created a node-express application. Navigate to project

directory called mean-demo. Go to the directory by using below command:

$ cd mean-demo

Setting Up Routes

Routes are used as mapping service by using URL of an incoming request. Open

the server.js file and setup the routing as shown below:

 // modules ===

 const express = require('express');

 const app = express();

 // set our port

 const port = 3000;

 app.get('/', (req, res) => res.send('Welcome to Tutorialspoint!'));

 //defining route

 app.get('/tproute', function (req, res) {

 res.send('This is routing for the application developed using Node and

Express...');

 });

 // startup our app at http://localhost:3000

 app.listen(port, () => console.log(`Example app listening on port

${port}!`));

Running Application

Next, run the application with the below command:

$ npm start

You will get a confirmation as shown in the image below:

4. MEAN.JS ― Building Static Route Node
Express

MEAN.JS

 13

Now, go to browser and type http://localhost:3000/myroute. You will get the page as

shown in the image below:

You can download the source code for this application in this link.

file:///D:/1%20Full%20tutorials/MeanJS/MEAN-js-tutorial/files/meanjs_building_static_route_node_express.zip

MEAN.JS

 14

In this chapter, we shall demonstrate how to use data model in our Node-express

application.

MongoDB is an open source NoSQL database that saves the data in JSON format. It uses

the document oriented data model to store the data instead of using table and rows as we

use in the relational databases. In this chapter, we are using Mongodb to build data model.

Data model specifies what data is present in a document, and what data should be there

in a document. Refer the Official Mongodb installation, to install the MongoDB.

We shall use our previous chapter code. You can download the source code in this link.

Download the zip file; extract it in your system. Open the terminal and run the below

command to install npm module dependencies.

$ cd mean-demo

$ npm install

Adding Mongoose to Application

Mongoose is a data modelling library that specifies environment and structure for the data

by making MongoDB powerful. You can install Mongoose as an npm module through the

command line. Go to your root folder and run the below command:

$ npm install --save mongoose

The above command will download the new package and install it into

the node_modules folder. The --save flag will add this package to package.json file.

 {

 "name": "mean_tutorial",

 "version": "1.0.0",

 "description": "this is basic tutorial example for MEAN stack",

 "main": "server.js",

 "scripts": {

 "test": "test"

 },

 "keywords": [

 "MEAN",

 "Mongo",

 "Express",

5. MEAN.JS ― Build Data Model

https://docs.mongodb.com/manual/installation/
file:///D:/1%20Full%20tutorials/MeanJS/MEAN-js-tutorial/files/meanjs_building_static_route_node_express.zip

MEAN.JS

 15

 "Angular",

 "Nodejs"

],

 "author": "Manisha",

 "license": "ISC",

 "dependencies": {

 "express": "^4.17.1",

 "mongoose": "^5.5.13"

 }

 }

Setting up Connection File

To work with data model, we will be using app/models folder. Let's create

model students.js as below:

 var mongoose = require('mongoose');

 // define our students model

 // module.exports allows us to pass this to other files when it is called

 module.exports = mongoose.model('Student', {

 name : {type : String, default: ''}

 });

You can setup the connection file by creating the file and using it in the application. Create

a file called db.js in config/db.js. The file contents are as below:

module.exports = {

 url : 'mongodb://localhost:27017/test'

}

Here test is the database name.

Here it is assumed that you have installed MongoDB locally. Once installed start Mongo

and create a database by name test. This db will have a collection by name students.

Insert some data to this colection. In our case, we have inserted a record using

db.students.insertOne({ name: 'Manisha' , place: 'Pune', country: 'India'});

Bring the db.js file into application, i.e., in server.js. Contents of the file are as shown

below:

 // modules ===

 const express = require('express');

MEAN.JS

 16

 const app = express();

 var mongoose = require('mongoose');

 // set our port

 const port = 3000;

 // configuration ===

 // config files

 var db = require('./config/db');

 console.log("connecting--",db);

 mongoose.connect(db.url); //Mongoose connection created

 // frontend routes ===

 app.get('/', (req, res) => res.send('Welcome to Tutorialspoint!'));

 //defining route

 app.get('/tproute', function (req, res) {

 res.send('This is routing for the application developed using Node and

Express...');

 });

 // sample api route

 // grab the student model we just created

 var Student = require('./app/models/student');

 app.get('/api/students', function(req, res) {

 // use mongoose to get all students in the database

 Student.find(function(err, students) {

 // if there is an error retrieving, send the error.

 // nothing after res.send(err) will execute

 if (err)

 res.send(err);

 res.json(students); // return all students in JSON format

 });

 });

 // startup our app at http://localhost:3000

 app.listen(port, () => console.log(`Example app listening on port

${port}!`));

MEAN.JS

 17

Next, run the application with the below command:

$ npm start

You will get a confirmation as shown in the image below:

Now, go to browser and type http://localhost:3000/api/students. You will get the

page as shown in the image below:

You can download the source code for this application in the link.

file:///D:/1%20Full%20tutorials/MeanJS/MEAN-js-tutorial/files/mean-demo-with-data-model.zip

MEAN.JS

 18

In this chapter, we will see our application interacting via a REST API with our database

by using HTTP methods. The term REST stands for REpresentational State Transfer, which

is an architectural style designed to communicate with web services and API stands for

Application Program Interface that allows interacting applications with each other.

First, we will create RESTful API to get all items, create the item and delete an item. For

each item, _id will be generated automatically by MongoDB. The below table describes

how application should request data from API:

HTTP

Method
URL Path Description

GET /api/students
It is used to get all the students from collection

Student.

POST /api/students/send
It is used to create a student record in collection

Student.

DELETE /api/students/student_id
It is used to delete a student record from

collection Student.

RESTful API Routes

We will first discuss Post Method in RESTful API Routes.

POST

First let's create a record in the collection Student via our REST API. The code for this

particular case can be found in server.js file. For reference, a part of code is pasted here:

 app.post('/api/students/send', function (req, res) {

 var student = new Student(); // create a new instance of the

student model

 student.name = req.body.name; // set the student name (comes from the

request)

 student.save(function(err) {

 if (err)

 res.send(err);

 res.json({ message: 'student created!' });

 });

6. MEAN.JS ― REST API

MEAN.JS

 19

 });

Execution
You can download the source code for this application in this link. Download the zip file;

extract it in your system. Open the terminal and run the below command to install npm

module dependencies.

$ cd mean-demon-consuming_rest_api

$ npm install

To parse the request, we would need body parser package. Hence, run the below command

to include in your application.

npm install --save body-parser

The attached source code already has this dependency, hence no need to run the above

command, it is just for your info.

To run the application, navigate to your newly created project directory and run with the

command given below:

npm start

You will get a confirmation as shown in the image below:

There are many tools to test the API calls, here we are using one of the user friendly

extensions for Chrome called Postman REST Client.

Open the Postman REST Client, enter the URL

as http://localhost:3000/api/students/send, select the POST method. Next, enter

request data as shown below:

file:///D:/1%20Full%20tutorials/MeanJS/MEAN-js-tutorial/files/mean-demon-consuming_rest_api.zip

MEAN.JS

 20

Notice that we are sending the name data as x-www-form-urlencoded. This will send all

of our data to the Node server as query strings.

Click on the Send button to create a student record. A success message will appear as

shown below:

GET

Next, let’s get all the student records from the mongodb. Following route needs to be

written. You can find full code in server.js file.

 app.get('/api/students', function(req, res) {

MEAN.JS

 21

 // use mongoose to get all students in the database

 Student.find(function(err, students) {

 // if there is an error retrieving, send the error.

 // nothing after res.send(err) will execute

 if (err)

 res.send(err);

 res.json(students); // return all students in JSON format

 });

 });

Next, open the Postman REST Client, enter the URL

as http://localhost:3000/api/students, select the GET method and click on

the Send button to get all the students.

DELETE

Next, let's see how to delete a record from our mongo collection via REST api call.

Following route needs to be written. You can find full code in server.js file.

 app.delete('/api/students/:student_id', function (req, res) {

 Student.remove({

 _id: req.params.student_id

 }, function(err, bear) {

MEAN.JS

 22

 if (err)

 res.send(err);

 res.json({ message: 'Successfully deleted' });

 });

 });

Next, open the Postman REST Client, enter the URL

as http://localhost:3000/api/students/5d1492fa74f1771faa61146d (here

5d1492fa74f1771faa61146d is the record we will be deleting from the collection Student).

Select the DELETE method and click on the Send button to get all the students.

You can check the MongoDB for the deleted data, by making GET call

to http://localhost:3000/api/students.

MEAN.JS

 23

Front End with Angular

MEAN.JS

 24

In this chapter, we will add angular components to an application. It is a web front end

JavaScript framework, which allows creating dynamic, single page applications by using

Model View Controller (MVC) pattern. In the MEAN.JS architecture chapter, you have seen

how AngularJS will process the client request and get the result from database.

Getting to know AngularJS

AngularJS is an open-source web application framework that uses HTML as template

language and extends the HTML's syntax to express your application components clearly.

AngularJS provides some basic features such as data binding, model, views, controllers,

services etc. For more information on AngularJS, refer to this link.

You can make the page an Angular application by adding Angular in the page. It can be

added just by using an external JavaScript file, which can be either downloaded or can be

referenced directly with a CDN version.

Consider we have downloaded file and referenced it locally by adding to the page as

follows:

<script src="angular.min.js"></script>

Now, we need to tell Angular that this page is an Angular application. Therefore, we can

do this by adding an attribute, ng-app to the <html> or <body> tag as shown below:

<html ng-app>

or

<body ng-app>

The ng-app can be added to any element on the page, but it is often put into the <html>

or <body> tag so that Angular can work anywhere within the page.

Angular Application as a Module

To work with an Angular application, we need to define a module. It is a place where you

can group the components, directives, services, etc., which are related to the application.

The module name is referenced by ng-app attribute in the HTML. For instance, we will say

Angular application module name as myApp and can be specified in the <html> tag as

shown below:

<html ng-app="myApp">

We can create definition for the application by using below statement in an external

JavaScript file:

7. MEAN.JS — Angular Components in App

file:///D:/1%20Full%20tutorials/MeanJS/MEAN-js-tutorial/meanjs_architecture.htm
https://www.tutorialspoint.com/angularjs/angularjs_overview.htm

MEAN.JS

 25

angular.module('myApp', []); //The [] parameter specifies dependent modules in

the module definition

Defining Controller

AngularJS application relies on controllers to control the flow of data in the application. A

controller is defined by using ng-controller directive.

For instance, we will attach the controller to the body by using ng-controller directive,

along with name of the controller you want to use. In the below line, we are using name

of the controller as "myController".

<body ng-controller="myController">

You can attach a controller (myController) to an Angular module (myApp) as shown below:

angular

.module('myApp')

.controller('myController', function() {

 // controller code here

});

It is better to use named function instead of an anonymous function for readability, re-

usability, and testability. In the below code, we are using new named function

"myController" to hold the controller code:

var myController = function() {

 // controller code here

};

angular

.module('myApp')

.controller('myController', myController);

For more information on controllers, refer to this link.

Defining Scope

Scope is a special JavaScript object that connects controller with views and contains model

data. In controllers, model data is accessed via $scope object. The controller function

takes $scope parameter which has been created by Angular and it gives direct access to

the model.

The below code snippet specifies how to update controller function to receive

the $scope parameter and sets the default value:

var myController = function($scope) {

https://www.tutorialspoint.com/angularjs/angularjs_controllers.htm

MEAN.JS

 26

$scope.message = "Hello World...";

};

For more information on controllers, refer to this link. In the next chapter, we will start

creating single page application by using Angular.

https://www.tutorialspoint.com/angularjs/angularjs_scopes.htm

MEAN.JS

 27

In the MEAN stack, Angular is known as second JavaScript framework, which allows

creating single page applications in a clean Model View Controller (MVC) way.

AngularJS as a front-end Framework uses following things:

 Uses Bower to install files and libraries

 Uses controllers and services for Angular application structure

 Creates different HTML pages

 Uses ngRoute module to handle routing and services for AngularJS application

 Uses Bootstrap to make an application attractive

Setting Up Our Angular Application

Let us build a simple application that has a Node.js backend and an AngularJS frontend.

For our Angular application, we will want:

 Two different pages (Home, Student)

 A different angular controller for each

 No page refresh when switching pages

Bower and Pulling in Components

We will need certain files for our application like bootstrap and angular. We will tell bower

to fetch those components for us.

First, install bower on your machine executing the below command on your command

terminal:

 npm install -g bower

This will install bower and make it accessible globally on your system. Now place the

files .bowerrc and bower.json under your root folder. In our case it is mean-demo.

Contents of both the files are as below:

.bowerrc - This will tell Bower where to place our files:

 {

 "directory": "public/libs"

 }

bower.json - This is similar to package.json and will tell Bower which packages are

needed.

 {

8. MEAN.JS ― Building Single Page with Angular

MEAN.JS

 28

 "name": "angular",

 "version": "1.0.0",

 "dependencies": {

 "bootstrap": "latest",

 "angular": "latest",

 "angular-route": "latest"

 }

 }

Next, install Bower components by using the below command. You can see bower pull in

all the files under public/libs.

$ bower install

Our directory structure would be as follows:

 mean-demo

 -app

 -config

 -node_modules

 -public

 -js

 --controllers

 -MainCtrl.js

 -StudentCtrl.js

 --app.js

 --appRoutes.js

 -libs

 -views

 --home.html

 --student.html

 -index.html

 -bower.json

 -package.json

 -server.js

You can download the source code from here.

http://files/mean-demo-spa.zip

MEAN.JS

 29

Angular Controllers

Our controller (public/js/controllers/MainCtrl.js) is as follows:

 angular.module('MainCtrl', []).controller('MainController', function($scope)

{

 $scope.tagline = 'Welcome to tutorials point angular app!';

 });

Controller public/js/controllers/StudentCtrl.js is as follows:

 angular.module('StudentCtrl', []).controller('StudentController',

function($scope) {

 $scope.tagline = 'Welcome to Student section!';

 });

Angular Routes

Our routes file (public/js/appRoutes.js) is as follows:

 angular.module('appRoutes', []).config(['$routeProvider',

'$locationProvider', function($routeProvider, $locationProvider) {

 $routeProvider

 // home page

 .when('/', {

 templateUrl: 'views/home.html',

 controller: 'MainController'

 })

 // students page that will use the StudentController

 .when('/students', {

 templateUrl: 'views/student.html',

 controller: 'StudentController'

 });

 $locationProvider.html5Mode(true);

MEAN.JS

 30

 }]);

Now that we have our controllers, and routes, we will combine them all and inject these

modules into our main public/js/app.js as follows:

 angular.module('sampleApp', ['ngRoute', 'appRoutes', 'MainCtrl',

'StudentCtrl']);

View File

Angular uses the template file, which can be injected into the <div ng-view></div> in

the index.html file. The ng-view directive creates a place holder, where a corresponding

view (HTML or ng-template view) can be placed based on the configuration. For more

information on angular views, visit this link.

When you are ready with routing, create smaller template files and inject them

into index.html file. The index.html file will have following code snippet:

 <!doctype html>

 <html lang="en">

 <head>

 <meta charset="UTF-8">

 <base href="/">

 <title>Tutorialspoint Node and Angular</title>

 <!-- CSS -->

 <link rel="stylesheet" href="libs/bootstrap/dist/css/bootstrap.min.css">

 <link rel="stylesheet" href="css/style.css"> <!-- custom styles -->

 <!-- JS -->

 <script src="libs/angular/angular.min.js"></script>

 <script src="libs/angular-route/angular-route.min.js"></script>

 <!-- ANGULAR CUSTOM -->

 <script src="js/controllers/MainCtrl.js"></script>

 <script src="js/controllers/StudentCtrl.js"></script>

 <script src="js/appRoutes.js"></script>

 <script src="js/app.js"></script>

 </head>

 <body ng-app="sampleApp" ng-controller="MainController">

 <div class="container">

https://www.tutorialspoint.com/angularjs/angularjs_views.htm

MEAN.JS

 31

 <!-- HEADER -->

 <nav class="navbar navbar-inverse">

 <div class="navbar-header">

 Tutorial

 </div>

 <ul class="nav navbar-nav">

 Students

 </nav>

 <!-- ANGULAR DYNAMIC CONTENT -->

 <div ng-view></div>

 </div>

 </body>

 </html>

Running Application

Execution

You can download the source code for this application in this link. Download the zip file;

extract it in your system. Open the terminal and run the below command to install npm

module dependencies.

$ cd mean-demo

$ npm install

Next run the below command:

$ node start

You will get a confirmation as shown in the image below:

file:///D:/1%20Full%20tutorials/MeanJS/MEAN-js-tutorial/files/mean-demo-spa.zip

MEAN.JS

 32

Now, go to browser and type http://localhost:3000. You will get the page as shown in

the image below:

Click on Students link, you will see screen as below:

Our Angular frontend will use the template file and inject it into the <div ng-view></div>

in our index.html file. It will do this without a page refresh.

MEAN.JS

 33

In the previous chapter, we have seen creation of single page meanjs application using

Angularjs. In this chapter, let's see how Angular application uses API to get the data from

Mongodb.

You can download the source code for this application in this link. Download the zip file;

extract it in your system.

Directory structure of our source code is as follows:

 mean-demo

 -app

 -models

 -student.js

 -config

 -db.js

 -public

 -js

 -controllers

 -MainCtrl.js

 -StudentCtrl.js

 -services

 -StudentService.js

 -app.js

 -appRoutes.js

 -views

 -home.html

 -student.html

 -index.html

 -.bowerrc

 -bower.json

 -package.json

 -server.js

In this application, we have created a view (home.html), which will list all students from

collection Student, allow us to create a new student record and allow us to delete the

student record. All these operations are performed via REST API calls.

Open the terminal and run the below command to install npm module dependencies.

9. MEAN.JS — Building an SPA: The next level

file:///D:/1%20Full%20tutorials/MeanJS/MEAN-js-tutorial/meanjs_building_single_page_with_angular.htm
file:///D:/1%20Full%20tutorials/MeanJS/MEAN-js-tutorial/files/mean-demo-spa-next-level.zip

MEAN.JS

 34

$ npm install

Next, install Bower components by using the below command. You can see bower pull in

all the files under public/libs.

$ bower install

The node configuration for an application will be saved in the server.js file. This is main

file of node app and will configure the entire application.

 // modules ===

 const express = require('express');

 const app = express();

 var bodyParser = require('body-parser');

 var mongoose = require('mongoose');

 var methodOverride = require('method-override');

 // set our port

 const port = 3000;

 // configuration ===

 // configure body parser

 app.use(bodyParser.json()); // parse application/json

 app.use(bodyParser.json({ type: 'application/vnd.api+json' })); // parse

application/vnd.api+json as json

 app.use(bodyParser.urlencoded({ extended: true })); // parse application/x-

www-form-urlencoded

 app.use(methodOverride('X-HTTP-Method-Override')); // override with the X-

HTTP-Method-Override header in the request. simulate DELETE/PUT

 app.use(express.static(__dirname + '/public')); // set the static files

location /public/img will be /img for users

 // config files

 var db = require('./config/db');

 console.log("connecting--",db);

 mongoose.connect(db.url); //Mongoose connection created

 // grab the student model

 var Student = require('./app/models/student');

 function getStudents(res) {

 Student.find(function (err, students) {

MEAN.JS

 35

 // if there is an error retrieving, send the error. nothing after

res.send(err) will execute

 if (err) {

 res.send(err);

 }

 res.json(students); // return all todos in JSON format

 });

 };

 app.get('/api/studentslist', function(req, res) {

 getStudents(res);

 });

 app.post('/api/students/send', function (req, res) {

 var student = new Student(); // create a new instance of the

student model

 student.name = req.body.name; // set the student name (comes from the

request)

 student.save(function(err) {

 if (err)

 res.send(err);

 getStudents(res);

 });

 });

 app.delete('/api/students/:student_id', function (req, res) {

 Student.remove({

 _id: req.params.student_id

 }, function(err, bear) {

 if (err)

 res.send(err);

 getStudents(res);

 });

 });

 // startup our app at http://localhost:3000

MEAN.JS

 36

 app.listen(port, () => console.log(`Example app listening on port

${port}!`));

Defining Frontend Route

The public/index.html file will have following code snippet:

 <!doctype html>

 <html lang="en">

 <head>

 <meta charset="UTF-8">

 <base href="/">

 <title>Tutorialspoint Node and Angular</title>

 <!-- CSS -->

 <link rel="stylesheet" href="libs/bootstrap/dist/css/bootstrap.min.css">

 <link rel="stylesheet" href="css/style.css"> <!-- custom styles -->

 <!-- JS -->

 <script src="libs/angular/angular.min.js"></script>

 <script src="libs/angular-route/angular-route.min.js"></script>

 <!-- ANGULAR CUSTOM -->

 <script src="js/controllers/MainCtrl.js"></script>

 <script src="js/controllers/StudentCtrl.js"></script>

 <script src="js/services/StudentService.js"></script>

 <script src="js/appRoutes.js"></script>

 <script src="js/app.js"></script>

 </head>

 <body ng-app="sampleApp" ng-controller="MainController">

 <div class="container">

 <!-- HEADER -->

 <nav class="navbar navbar-inverse">

 <div class="navbar-header">

 Tutorial

 </div>

MEAN.JS

 37

 <ul class="nav navbar-nav">

 Students

 </nav>

 <!-- ANGULAR DYNAMIC CONTENT -->

 <div ng-view></div>

 </div>

 </body>

 </html>

We have written a service to make the API calls and execute the API requests. Our

service, StudentService looks as below:

 angular.module('StudentService', [])

 // super simple service

 // each function returns a promise object

 .factory('Student', ['$http',function($http) {

 return {

 get : function() {

 return $http.get('/api/students');

 },

 create : function(student) {

 return $http.post('/api/students/send', student);

 },

 delete : function(id) {

 return $http.delete('/api/students/' + id);

 }

 }

 }]);

Our controller (MainCtrl.js) code is as below:

 angular.module('MainCtrl', []).controller('MainController',

['$scope','$http','Student',function($scope, $http, Student) {

 $scope.formData = {};

 $scope.loading = true;

 $http.get('/api/studentslist').

MEAN.JS

 38

 then(function(response) {

 $scope.student = response.data;

 });

 // CREATE

==

 // when submitting the add form, send the text to the node API

 $scope.createStudent = function() {

 // validate the formData to make sure that something is there

 // if form is empty, nothing will happen

 if ($scope.formData.name != undefined) {

 $scope.loading = true;

 // call the create function from our service (returns

a promise object)

 Student.create($scope.formData)

 // if successful creation, call our get function to

get all the new Student

 .then(function (response){

 $scope.student = response.data;

 $scope.loading = false;

 $scope.formData = {}

 },function (error){

 });

 }

 };

 // DELETE

==

 // delete a todo after checking it

 $scope.deleteStudent = function(id) {

 $scope.loading = true;

 Student.delete(id)

 // if successful delete, call our get function to get

all the new Student

 .then(function(response) {

 $scope.loading = false;

MEAN.JS

 39

 $scope.student = response.data; // assign our

new list of Student

 });

 };

 }]);

Running Application

Navigate to your project directory and run the command given below:

$ npm start

Now navigate to http://localhost:3000/ and you will get the page as shown in the

image below:

Enter some text in the text box and click on Add button. A record gets added and displayed

as follows:

You can delete the record by checking the check box.

