

MVVM

About the Tutonal

Every good developer wants and tries to create the most sophisticated applications to
delight their users. Most of the times, developers achieve this on the first release of the
application. However, with new feature addition, fixing the bug without putting a lot of
consideration into the structure of the application code becomes difficult due to code
complexity. For this, there is a need for good clean structure of code.

In this tutorial, you will learn how to reduce code complexity and how to maintain a clean
and reusable structure of your code by using MVVM pattern.

Audience

This tutorial is designed for software developers who want to learn how to develop quality
applications with clean structure of code.

Prerequisites

MVVM is a pattern that is used while dealing with views created primarily using WPF
technology. Therefore, it would help a great deal if you have prior exposure to WPF and
its bindings.

Disclaimer & Copyright

© Copyright 2018 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)
Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish
any contents or a part of contents of this e-book in any manner without written consent
of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as
possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.
Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our
website or its contents including this tutorial. If you discover any errors on our website or
in this tutorial, please notify us at contact@tutorialspoint.com.

w. tutorialspoint

EIMPLYEAEYLEARHNING

mailto:contact@tutorialspoint.com

MVVM

Table of Contents
ADOUL the TUROKIAL.....iieeiiiieeiiiitiirieeierrreiereeeeiereeeeieresssseresssseresssseressssesesssserenssssssnsssssensssssennssssennssssannnne i
AUGIBNCE .cuuiieeeiiiteeiiitreierteeeiereraeerereseresssseresssseresssseressssssessssesessssesessssssessssesensssssensssssensssssensssssensssenannnne i
Prer@QUISITES coiiiireeeeiiiiiiiiriiiiiiisiirrrietses e sse s st s s s saasssss st ssssassssssssssnsssssssssssstssssssssssssssnessnsssssssssnnsnnnes i
Disclaimer & COPYIIZht......cueuueeeieeeeeeeememmmemmmmmmmmmmemmemmmeemmmsesmmmsmmsss i
TaADIE Of CONTENTS ..cceuuriiiiiiiiieeeiiiiireeereeereeeteteeeeaneseeeretessassssseeseeessasssssssssssssnassssssssesassnnssssssssesnnnnnsssssssenns i
1. MVVM = INTRODUCTION ...ccovttiiiiiiiiniiiiiiiniieeiinceeetin e srtiiseesraineesstnnseessssnssessssnnsesssnnsesssnnns 1
2. MVVM — ADVANTAGES. ... oottt e et erat e s rabs s e erabsessabansessatansessssnnnans 4
3. MVVM —RESPONSIBILITIES ... cevviiiiiiiiiieiiiiiee ettt eeveis e eeetb e e seabsesessessesessensessssansenees 6
Model ReSPONSIDIlILIES ...ccvveeereereeeeeeeeeeememeeeemeemeemeemeemeeeeemmsesmmsmsessmss 7
View Responsibilitiesccvviiiiiiiiiiiiiiiiiiiiiiiiisssssssssssssssssss s sssssenns 7
ViewModel Responsibilitiesccuviiiiiiiiiiiiiiiiiiissssssssssssssssssssseen 8
4, MVVM — FIRST APPLICATIONuu ittt ettt ce e e ettt s e s eatae s e s eab s e s ensasesesbansenensns 9
5. MVVM —HOOKING UP VIEWS ..ottt se et se st se st s s e sa s s e sa s 16
View First Construction in XAIVILcceuiiieeeiiieeneeteeeeereenserreessesrenssesssnssessenssesssnssesssnssesssnssesssnssesssnssssenns 18
View First Construction in Code-behindcccoeeireeiiiiiiiiiiiiieiieierteeierreeerreeeereenssereenssessenssessenssesenns 19
6. MVVM —HOOKING UP VIEWMODELuuviviiiiiririiiierceiiiies et scseiissestsiessesssissesvsissesssnnnss 23
7. MVVM —WPF DATA BINDINGS ... oeeeiiitit ittt et e ee e ste s e s e st s e st senaseenasesenesennsesens 29
8. MVVM — WPF DATA TEMPLATES .. ettt ettt et s e s e st s e st s ena s et s esanesennerens 32
9. MVVM =VIEW / VIEWMODEL COMMUNICATIONvvviiiriirieeierrreeeererreeeesseneeeessneeeessnens 38

EIMPLYEAEYLEARHNINEG

|§j. tutorialspoint

10.

11.

12.

13.

14.

15.

16.

MVVM

MVVM — HIERARCHIES & NAVIGATION. ..ottt 47
MVVIM = VALIDATIONS ...ttt eevte e erete s e e ret s e esabaseesabasseesaransesrssansessssnnnens 59
Validation iN IMVVIM.....ccuuiiieeiiiiieiiiiieeereneeietessseetensseesenssssssnssesssnssesssnssesssnsssesssnssssssnssesssnssssssnssssssnssssenns 59
Adding Validation........ceeeiiiiiiiiiieiiiiiiiiiiiieniiierer s aas s s aas e s s s s anas 59
MVVM — DEPENDENCY INJECTION ..ottt este s see s e st s e s e s e se e 69
Y AV ALY Rl oAV =1 77
MVVM = UNIT TESTING .. oottt erete s e e eet s e esetaseesabassesrasansessssansessssnnnens 82
MVVM — FRAMEWORKS ..ottt e et e e et s e er et s e ssab s e srabansessasansens 94
4 T 1 1 TR 94
LAY A AV A1V T {1 | N 95
CAlIDUIN IVIICIO ceeeeiiiiiiiiiiieeiiiiieieteeeeieeereeeeeenesseeseeessnasssssessessssssssssssssssssnsssssssssesssnssssssssssssnnnnsssssssessnnnnes 96
MVVM — INTERVIEW QUESTIONS. ... oottt et s st s e st e s see e s e se e 97

EIMPLYEAEYLEARHNING

w. tutorialspoint

1. MVWM - Introduction

The well-ordered and perhaps the most reusable way to organize your code is to use the
'MVVM' pattern. The Model, View, ViewModel (MVVM pattern) is all about guiding you in
how to organize and structure your code to write maintainable, testable and extensible
applications.

Model: It simply holds the data and has nothing to do with any of the business logic.

ViewModel: It acts as the link/connection between the Model and ViewModel and makes
stuff look pretty.

View: It simply holds the formatted date and essentially delegates everything to the Model.

buipuig pjoq

' tutorialspoint

EIMPLYEAEYLEARHNING

MVVM

Separated Presentation

To avoid the problems caused by putting application logic in code-behind or XAML, it's best
to use a technique known as separated presentation. We're trying to avoid this, where we will
have XAML and code-behind with the minimum required for working with user interface
objects directly. User interface classes also contain code for complex interaction behaviors,
application logic, and everything else as shown in the following figure on the left side.

All in One Separated Presentation
UI Class
UI Class XAML
XAML Code Behind
IUI MWG&;
nteraction Logi
: Rppication egic Interaction Logic

e With separated presentation, the user interface class is much simpler. It has the XAML
of course, but the code behind does as little as is practical.

e The application logic belongs in a separate class, which is often referred to as the
model.

e However, this is not the whole story. If you stop here, you're likely to repeat a very
common mistake that will lead you down the path of data binding insanity.

e A lot of developers attempt to use data binding to connect elements in the XAML
directly to properties in the model.

@J ' tutorialspoint

EIMPLYEAEYLEARMNINEG

MVVM

¢ Now sometimes this can be okay, but often it's not. The problem is the model is entirely
concerned with matters of what the application does, and not with how the user
interacts with the application.

e The way in which you present data is often somewhat different from how it's structured
internally.

e Moreover, most user interfaces have some state that does not belong in the application
model.

e For example, if your user interface uses a drag and drop, something needs to keep
track of things like where the item being dragged is right now, how its appearance
should change as it moves over possible drop targets, and how those drop targets
might also change as the item is dragged over them.

e This sort of state can get surprisingly complex, and needs to be thoroughly tested.

e In practice, you normally want some other class sitting between the user interface and
the model. This has two important roles.

o First, it adapts your application model for a particular user interface view.

o Second, it's where any nontrivial interaction logic lives, and by that, I mean
code required to get your user interface to behave in the way you want.

w. tutorialspoint

EIMPLYEAEYLEARHNING

2. MVWM — Advantages

MVVM pattern is ultimately the modern structure of the MVC pattern, so the main goal is still
the same to provide a clear separation between domain logic and presentation layer. Here
are some of the advantages and disadvantages of MVVM pattern.

The key benefit is allowing true separation between the View and Model beyond achieving
separation and the efficiency that you gain from having that. What that means in real terms
is that when your model needs to change, it can be changed easily without the view needing
to and vice-versa.

There are three important key things that flow out of applying MVVM which are as follows.

Maintainability

e A clean separation of different kinds of code should make it easier to go into one or
several of those more granular and focused parts and make changes without worrying.

e That means you can remain agile and keep moving out to new releases quickly.

Testability

e With MVVM each piece of code is more granular and if it is implemented right your
external and internal dependences are in separate pieces of code from the parts with
the core logic that you would like to test.

¢ That makes it a lot easier to write unit tests against a core logic.

e Make sure it works right when written and keeps working even when things change in
maintenance.

Extensibility

e It sometimes overlaps with maintainability, because of the clean separation boundaries
and more granular pieces of code.

e You have a better chance of making any of those parts more reusable.

e It has also the ability to replace or add new pieces of code that do similar things into
the right places in the architecture.

The obvious purpose of MVVM pattern is abstraction of the View which reduces the amount of
business logic in code-behind. However, following are some other solid advantages:

' tutorialspoint

EIMPLYEAEYLEARHNING

MVVM

e The ViewModel is easier to unit test than code-behind or event-driven code.
e You can test it without awkward UI automation and interaction.

e The presentation layer and the logic is loosely coupled.

Disadvantages
e Some people think that for simple Uls, MVVM can be overkill.
e Similarly in bigger cases, it can be hard to design the ViewModel.

e Debugging would be bit difficult when we have complex data bindings.

|§j. tutorialspoint

EIMPLYEAEYLEARHNING

3. MVWM —Responsibilities

MVVM pattern consists of three parts: Model, View, and ViewModel. Most of the developers at
the start are little confused as to what a Model, View and ViewModel should or shouldn't
contain and what are the responsibilities of each part.

In this chapter we will learn the responsibilities of each part of the MVVM pattern so that you
can clearly understand what kind of code goes where. MVVM is really a layered architecture
for the client side as shown in the following figure.

Data Binding

ViewModel

Client Services/Responsibilities

' tutorialspoint

EIMPLYEAEYLEARHNING

MVVM

The presentation layer is composed of the views.
The logical layer are the view models.
The presentation layer is the combination of the model objects.

The client services that produce and persist them either directed access in a two-tier
application or via service calls in and then to your application.

The client services are not officially part of the MVVM pattern but it is often used with
MVVM to achieve further separations and avoid duplicate code.

Model Responsibilities

In general, model is the simplest one to understand. It is the client side data model that
supports the views in the application.

It is composed of objects with properties and some variables to contain data in
memory.

Some of those properties may reference other model objects and create the object
graph which as a whole is the model objects.

Model objects should raise property change notifications which in WPF means data
binding.

The last responsibility is validation which is optional, but you can embed the validation
information on the model objects by using the WPF data binding validation features
via interfaces like INotifyDataErrorInfo/IDataErrorinfo

View Responsibilities

The main purpose and responsibilities of views is to define the structure of what the user sees
on the screen. The structure can contain static and dynamic parts.

Static parts are the XAML hierarchy that defines the controls and layout of controls
that a view is composed of.

Dynamic part is like animations or state changes that are defined as part of the View.
The primary goal of MVVM is that there should be no code behind in the view.
It’s impossible that there is no code behind in view. In view you at least need the

constructor and a call to initialize component.

10

w. tutorialspoint

EIMPLYEAEYLEARHNING

MVVM

The idea is that the event handling, action and data manipulation logic code shouldn’t
be in the code behind in View.

There are also other kinds of code that have to go in the code behind any code that's
required to have a reference to Ul element is inherently view code.

ViewModel Responsibilities

ViewModel is the main point of MVVM application. The primary responsibility of the
ViewModel is to provide data to the view, so that view can put that data on the screen.

It also allows the user to interact with data and change the data.
The other key responsibility of a ViewModel is to encapsulate the interaction logic for
a view, but it does not mean that all of the logic of the application should go into

ViewModel.

It should be able to handle the appropriate sequencing of calls to make the right thing
happen based on user or any changes on the view.

ViewModel should also manage any navigation logic like deciding when it is time to
navigate to a different view.

11

w. tutorialspoint

EIMPLYEAEYLEARHNING

4. MVVM —First Application

In this chapter, we will learn how to use MVVM patterns for simple input screen and the WPF
application that you may already be used to.

Let’s have a look at a simple example in which we will be using MVVM approach.

Step 1: Create a new WPF Application project MVVMDemo.

T “‘ 7’ i.» |. 2 -'
¥ Receet NET Framework 852 = Sort by: Defsult M Search Installed Templates (CtiieE) O =
- @ Template 10 Blank} Visusl 2 Types Vieusl G5
4 Templates Windows Presentation Foundation client
4 Visual C# @ Template 10 (Minimal) Visuel C Wppicatan
I Windows
-
Web g‘] Blank App (Universal Windows) Visual C#
b OfficeSharePomt
1 cr
Android N Blank App (Universal Windows 8.1) Visal CF
Cloud e
Extennibility I I Windows Forms Application Visual C=
105
LightSwatch
Reporting
cl
:Md'gm - Conscle Application Voual C=
e
::CF ﬂl _] Hub App (Universal Windows 8.1) Visual o
c*
: v:md:mt I‘J Pivot App (Windows Phone} Visual C#
v}“‘.‘ -
b Vigusl F2 .))
SO Server m Shared Project Visual C=
hon .
. :’f&_w . IR Cles Lwnae Vil Gz T
¥ Online har {1 L
Hame MVVMOemo
Lecation: cusers muhammad wagas\ documents\vesual studio 2015\ Projects [oowe. |
Solution name: MVWMDemo Creste girectory for solution
1] Add to source control
| ok || cance |

12

' tutorialspoint

EIMPLYEAEYLEARHNING

MVVM

Step 2: Add the three folders (Model, ViewModel, and Views) into your project.

o AMVWMDemo - Microsaft Vissa? Stodio Y7 & Cuoia F =B x
Ple Bt Yew Froject ol Debig Tesm Oedgn Fgemat Teod Teg Zsalne Window ey Mubharemad Wege <

- “- R] * - * Detng -~ dayOPU < B S - 3 Stuterns

R BSCFEP 0P~
B Sehutien MVIMOene' (1 pramct
& * MVYWWMDemn
b Frogentis
b o8 Fefesences
Model
ieanhtade

Views

Y- Zpp conlyy
D agpam
b D3 MenWindowaami

100% o) e g oumnde 4
@ Design " B AN
Ol) tirdza

S "D 00, A Tl edon™

hetp

Wl Syl Readts Fackage Minage Tomiok

Enatl —— B & [

Step 3: Add a StudentModel class in the Model folder and paste the below code in that class

using System.ComponentModel;

namespace MVVMDemo.Model

{
public class StudentModel

{

}
public class Student : INotifyPropertyChanged

13

@j ' tutorialspoint

EIMPLYEAEYLEARMNINEG

MVVM

private string firstName;

private string lastName;

public string FirstName

{
get { return firstName; }
set
{
if (firstName != value)
{
firstName = value;
RaisePropertyChanged("FirstName");
RaisePropertyChanged("FullName");
}
}
}

public string LastName

{
get { return lastName; }
set
{
if (lastName != value)
{
lastName = value;
RaisePropertyChanged("LastName");
RaisePropertyChanged("FullName");
}
}
}

public string FullName
{

tutorialspoint

EIMPLYEAEYLEARHNING

14

MVVM

get

return firstName + + lastName;

public event PropertyChangedEventHandler PropertyChanged;

private void RaisePropertyChanged(string property)

{
if (PropertyChanged != null)
{
PropertyChanged(this, new PropertyChangedEventArgs(property));
}
}

}

Step 4: Add another StudentViewModel class into ViewModel folder and paste the following
code.

using MVVMDemo.Model;

using System.Collections.ObjectModel;

namespace MVVMDemo.ViewModel

{
public class StudentViewModel
{
public ObservableCollection<Student> Students
{
get;
set;
}

public void LoadStudents()

15

EIMPLYEAEYLEARHNING

|§j. tutorialspoint

MVVM

ObservableCollection<Student> students = new
ObservableCollection<Student>();

students.Add(new Student { FirstName "Mark", LastName = "Allain" });

"Allen", LastName = "Brown" });

students.Add(new Student { FirstName

students.Add(new Student { FirstName = "Linda", LastName = "Hamerski" });

Students = students;

Step 5: Add a new User Control (WPF) by right click Views folder and Select Add > New

Item...

tutorialspoint

EIMPLYEAEYLEARHNING

16

MVVM

4 |nz2alled

4 Vismai C=
Code
Dats
Denessl
Web
Windows Formy
WPF
Reporteng
SQL Server

Workflow

¥ Dnline

» IEN |

Add New item - MVWMDemo

Son by: Default - geAT Sesrch Installed Templates (Cirle £ P~

(=2 EntayFramenork Reverse POCO Code First Generator Viswal C= Type: Visuai Co

T

Windows: Presentstion Foundstion user
L™ controt

‘I " I Class Visual C& control

.-o Interface Vil C=

Windows Form Visual C#

° I User Contre Visl C=

L

IQ " l Camponent Class Visual C#

I I Window (WPF) Vol C=

)

l ' Page (WPF) Viswal C#

e

Q] User Cantyod (WHF) Visual 2

m Resource Dictionary (WPF) Visual C#

a0

E About Box Vuual C=

Q? ADONET Entity Data Moded Visual C#

™ .. - - R

Click here 10 go onfine and find templates
StudentVsew xamd
|
Add | Cancel

Step 6: Click Add button. Now you will see the XAML file. Add the following code into
StudentView.xaml file which contains different UI elements.

<UserControl x:Class="MVVMDemo.Views.StudentView"

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

xmlns:mc="http://schemas.openxmlformats.org/markup-

compatibility/2006"

<Grid>

xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:local="clr-namespace:MvVVMDemo.Views"
mc:Ignorable="d"

d:DesignHeight="300" d:DesignWidth="300">

<StackPanel HorizontalAlignment="Left">

<ItemsControl ItemsSource="{Binding Path=Students}">

<ItemsControl.ItemTemplate>

<DataTemplate>

%)

tutorialspoint

EIMPLYEAEYLEARMNINEG

17

MVVM

<StackPanel Orientation="Horizontal">

<TextBox Text="{Binding Path=FirstName, Mode=TwoWay}"
Width="100" Margin="3 5 3 5"/>

<TextBox Text="{Binding Path=LastName, Mode=TwoWay}"
Width="100" Margin="0 5 3 5"/>

<TextBlock Text="{Binding Path=FullName,
Mode=OneWay}" Margin="@ 5 3 5"/>

</StackPanel>
</DataTemplate>
</ItemsControl.ItemTemplate>
</ItemsControl>
</StackPanel>
</Grid>

</UserControl>

Step 7: Now add the StudentView into your MainPage.xaml file using the following code.

<Window x:Class="MVVMDemo.MainWindow"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
xmlns:local="clr-namespace:MvVVMDemo"
xmlns:views="clr-namespace:MVVMDemo.Views"
mc:Ignorable="d"
Title="MainWindow" Height="350" Width="525">

<Grid>

<views:StudentView x:Name="StudentViewControl"
Loaded="StudentViewControl_Loaded"/>

</Grid>

</Window>

Step 8: Here is the implementation for Loaded event in the MainPage.xaml.cs file, which will
update the View from the ViewModel.

using System.Windows;

namespace MVVMDemo

{

18

w. tutorialspoint

EIMPLYEAEYLEARHNING

MVVM

/// <summary>
/// Interaction logic for MainWindow.xaml
/// </summary>

public partial class MainWindow : Window

{
public MainWindow()
{
InitializeComponent();
}

private void StudentViewControl Loaded(object sender, RoutedEventArgs e)

{

MVVMDemo .ViewModel. StudentViewModel studentViewModelObject = new
MVVMDemo.ViewModel.StudentViewModel();

studentViewModelObject.LoadStudents();

StudentViewControl.DataContext = studentViewModelObject;

}

Step 9: When the above code is compiled and executed, you will receive the following output
on your main window.

19

EIMPLYEAEYLEARHNING

|§j. tutorialspoint

i MainWindow
Mark Allain Mark Allain
Allen Brown Allen Brown

Linda Hamerski Linda Hamerski

We recommend you to execute the above example in a step-by-step manner for better

understanding.

20

@ tutorialspoint

MVVM

End of ebook preview
If you liked what you saw...
Buy it from our store @ https://store.tutorialspoint.com

21

tutorialspoint

EIMPLYEAGEYLEARNINEG

&

