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About the Tutorial 

Every good developer wants and tries to create the most sophisticated applications to 

delight their users. Most of the times, developers achieve this on the first release of the 

application. However, with new feature addition, fixing the bug without putting a lot of 

consideration into the structure of the application code becomes difficult due to code 

complexity. For this, there is a need for good clean structure of code.  

In this tutorial, you will learn how to reduce code complexity and how to maintain a clean 

and reusable structure of your code by using MVVM pattern. 

 

Audience 

This tutorial is designed for software developers who want to learn how to develop quality 

applications with clean structure of code. 

 

Prerequisites 

MVVM is a pattern that is used while dealing with views created primarily using WPF 

technology. Therefore, it would help a great deal if you have prior exposure to WPF and 

its bindings. 

 

Disclaimer & Copyright 

 Copyright 2018 by Tutorials Point (I) Pvt. Ltd.  

All the content and graphics published in this e-book are the property of Tutorials Point (I) 

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish 

any contents or a part of contents of this e-book in any manner without written consent 

of the publisher.   

We strive to update the contents of our website and tutorials as timely and as precisely as 

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt. 

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our 

website or its contents including this tutorial. If you discover any errors on our website or 

in this tutorial, please notify us at contact@tutorialspoint.com. 
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The well-ordered and perhaps the most reusable way to organize your code is to use the 

'MVVM' pattern. The Model, View, ViewModel (MVVM pattern) is all about guiding you in 

how to organize and structure your code to write maintainable, testable and extensible 

applications.  

Model: It simply holds the data and has nothing to do with any of the business logic. 

ViewModel: It acts as the link/connection between the Model and ViewModel and makes 

stuff look pretty. 

View: It simply holds the formatted date and essentially delegates everything to the Model.  

 

 

 

1.   MVVM – Introduction 
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Separated Presentation 

To avoid the problems caused by putting application logic in code-behind or XAML, it's best 

to use a technique known as separated presentation. We're trying to avoid this, where we will 

have XAML and code-behind with the minimum required for working with user interface 

objects directly. User interface classes also contain code for complex interaction behaviors, 

application logic, and everything else as shown in the following figure on the left side. 

 

 With separated presentation, the user interface class is much simpler. It has the XAML 

of course, but the code behind does as little as is practical.  

 

 The application logic belongs in a separate class, which is often referred to as the 

model.  

 

 However, this is not the whole story. If you stop here, you're likely to repeat a very 

common mistake that will lead you down the path of data binding insanity. 

 

 A lot of developers attempt to use data binding to connect elements in the XAML 

directly to properties in the model.  
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 Now sometimes this can be okay, but often it's not. The problem is the model is entirely 

concerned with matters of what the application does, and not with how the user 

interacts with the application.  

 

 The way in which you present data is often somewhat different from how it's structured 

internally.  

 

 Moreover, most user interfaces have some state that does not belong in the application 

model.  

 

 For example, if your user interface uses a drag and drop, something needs to keep 

track of things like where the item being dragged is right now, how its appearance 

should change as it moves over possible drop targets, and how those drop targets 

might also change as the item is dragged over them.  

 

 This sort of state can get surprisingly complex, and needs to be thoroughly tested. 

  

 In practice, you normally want some other class sitting between the user interface and 

the model. This has two important roles.  

 

o First, it adapts your application model for a particular user interface view. 

 

o Second, it's where any nontrivial interaction logic lives, and by that, I mean 

code required to get your user interface to behave in the way you want. 
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MVVM pattern is ultimately the modern structure of the MVC pattern, so the main goal is still 

the same to provide a clear separation between domain logic and presentation layer. Here 

are some of the advantages and disadvantages of MVVM pattern. 

The key benefit is allowing true separation between the View and Model beyond achieving 

separation and the efficiency that you gain from having that. What that means in real terms 

is that when your model needs to change, it can be changed easily without the view needing 

to and vice-versa. 

There are three important key things that flow out of applying MVVM which are as follows.  

Maintainability 

 A clean separation of different kinds of code should make it easier to go into one or 

several of those more granular and focused parts and make changes without worrying. 

  

 That means you can remain agile and keep moving out to new releases quickly.  

Testability 

 With MVVM each piece of code is more granular and if it is implemented right your 

external and internal dependences are in separate pieces of code from the parts with 

the core logic that you would like to test.  

 

 That makes it a lot easier to write unit tests against a core logic.  

 

 Make sure it works right when written and keeps working even when things change in 

maintenance.  

Extensibility 

 It sometimes overlaps with maintainability, because of the clean separation boundaries 

and more granular pieces of code.  

 

 You have a better chance of making any of those parts more reusable.  

 

 It has also the ability to replace or add new pieces of code that do similar things into 

the right places in the architecture.  

The obvious purpose of MVVM pattern is abstraction of the View which reduces the amount of 

business logic in code-behind. However, following are some other solid advantages:  

2.   MVVM – Advantages 
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 The ViewModel is easier to unit test than code-behind or event-driven code.   

 You can test it without awkward UI automation and interaction.   

 The presentation layer and the logic is loosely coupled. 

 

Disadvantages   

 Some people think that for simple UIs, MVVM can be overkill.  

 Similarly in bigger cases, it can be hard to design the ViewModel. 

 Debugging would be bit difficult when we have complex data bindings. 
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MVVM pattern consists of three parts: Model, View, and ViewModel. Most of the developers at 

the start are little confused as to what a Model, View and ViewModel should or shouldn't 

contain and what are the responsibilities of each part.  

In this chapter we will learn the responsibilities of each part of the MVVM pattern so that you 

can clearly understand what kind of code goes where. MVVM is really a layered architecture 

for the client side as shown in the following figure.  

 

3.   MVVM – Responsibilities 
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 The presentation layer is composed of the views.  

 

 The logical layer are the view models.  

 

 The presentation layer is the combination of the model objects.  

 

 The client services that produce and persist them either directed access in a two-tier 

application or via service calls in and then to your application. 

 

 The client services are not officially part of the MVVM pattern but it is often used with 

MVVM to achieve further separations and avoid duplicate code.   

Model Responsibilities  

In general, model is the simplest one to understand. It is the client side data model that 

supports the views in the application.  

 It is composed of objects with properties and some variables to contain data in 

memory.  

 

 Some of those properties may reference other model objects and create the object 

graph which as a whole is the model objects.  

 

 Model objects should raise property change notifications which in WPF means data 

binding. 

 

 The last responsibility is validation which is optional, but you can embed the validation 

information on the model objects by using the WPF data binding validation features 

via interfaces like INotifyDataErrorInfo/IDataErrorInfo 

View Responsibilities 

The main purpose and responsibilities of views is to define the structure of what the user sees 

on the screen. The structure can contain static and dynamic parts.  

 Static parts are the XAML hierarchy that defines the controls and layout of controls 

that a view is composed of. 

 

 Dynamic part is like animations or state changes that are defined as part of the View.  

 

 The primary goal of MVVM is that there should be no code behind in the view.  

 

 It’s impossible that there is no code behind in view. In view you at least need the 

constructor and a call to initialize component.  
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 The idea is that the event handling, action and data manipulation logic code shouldn’t 

be in the code behind in View.  

 

 There are also other kinds of code that have to go in the code behind any code that's 

required to have a reference to UI element is inherently view code.  

 

 

ViewModel Responsibilities 

 ViewModel is the main point of MVVM application. The primary responsibility of the 

ViewModel is to provide data to the view, so that view can put that data on the screen.  

 

 It also allows the user to interact with data and change the data. 

 

 The other key responsibility of a ViewModel is to encapsulate the interaction logic for 

a view, but it does not mean that all of the logic of the application should go into 

ViewModel. 

 

 It should be able to handle the appropriate sequencing of calls to make the right thing 

happen based on user or any changes on the view.  

 

 ViewModel should also manage any navigation logic like deciding when it is time to 

navigate to a different view.  
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In this chapter, we will learn how to use MVVM patterns for simple input screen and the WPF 

application that you may already be used to.  

Let’s have a look at a simple example in which we will be using MVVM approach. 

Step 1: Create a new WPF Application project MVVMDemo. 

 

 

 

 

 

 

 

 

4.   MVVM – First Application 
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Step 2: Add the three folders (Model, ViewModel, and Views) into your project. 

 

Step 3: Add a StudentModel class in the Model folder and paste the below code in that class 

using System.ComponentModel; 

 

namespace MVVMDemo.Model 

{ 

    public class StudentModel 

    { 

 

    } 

    public class Student : INotifyPropertyChanged 
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    { 

        private string firstName; 

        private string lastName; 

 

        public string FirstName 

        { 

            get { return firstName; } 

            set 

            { 

                if (firstName != value) 

                { 

                    firstName = value; 

                    RaisePropertyChanged("FirstName"); 

                    RaisePropertyChanged("FullName"); 

                } 

            } 

        } 

 

        public string LastName 

        { 

            get { return lastName; } 

            set 

            { 

                if (lastName != value) 

                { 

                    lastName = value; 

                    RaisePropertyChanged("LastName"); 

                    RaisePropertyChanged("FullName"); 

                } 

            } 

        } 

 

        public string FullName 

        { 
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            get 

            { 

                return firstName + " " + lastName; 

            } 

        } 

 

        public event PropertyChangedEventHandler PropertyChanged; 

 

        private void RaisePropertyChanged(string property) 

        { 

            if (PropertyChanged != null) 

            { 

                PropertyChanged(this, new PropertyChangedEventArgs(property)); 

            } 

        } 

    } 

} 

Step 4: Add another StudentViewModel class into ViewModel folder and paste the following 

code. 

using MVVMDemo.Model; 

using System.Collections.ObjectModel; 

 

namespace MVVMDemo.ViewModel 

{ 

    public class StudentViewModel 

    { 

        public ObservableCollection<Student> Students 

        { 

            get; 

            set; 

        } 

 

        public void LoadStudents() 
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        { 

            ObservableCollection<Student> students = new 
ObservableCollection<Student>(); 

 

            students.Add(new Student { FirstName = "Mark", LastName = "Allain" }); 

             students.Add(new Student { FirstName = "Allen", LastName = "Brown" }); 

             students.Add(new Student { FirstName = "Linda", LastName = "Hamerski" }); 

            Students = students; 

        } 

    } 

} 

 

 

 

 

 

Step 5: Add a new User Control (WPF) by right click Views folder and Select Add > New 

Item… 
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Step 6: Click Add button. Now you will see the XAML file. Add the following code into 

StudentView.xaml file which contains different UI elements. 

<UserControl x:Class="MVVMDemo.Views.StudentView" 

             xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" 

             xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" 

             xmlns:mc="http://schemas.openxmlformats.org/markup-
compatibility/2006"  

             xmlns:d="http://schemas.microsoft.com/expression/blend/2008"  

             xmlns:local="clr-namespace:MVVMDemo.Views" 

             mc:Ignorable="d"  

             d:DesignHeight="300" d:DesignWidth="300"> 

    <Grid> 

        <StackPanel HorizontalAlignment="Left"> 

            <ItemsControl ItemsSource="{Binding Path=Students}"> 

                <ItemsControl.ItemTemplate> 

                    <DataTemplate> 
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                        <StackPanel Orientation="Horizontal"> 

                            <TextBox Text="{Binding Path=FirstName, Mode=TwoWay}"   
Width="100" Margin="3 5 3 5"/> 

                            <TextBox Text="{Binding Path=LastName, Mode=TwoWay}"    
Width="100" Margin="0 5 3 5"/> 

                            <TextBlock  Text="{Binding Path=FullName, 
Mode=OneWay}" Margin="0 5 3 5"/> 

                        </StackPanel> 

                    </DataTemplate> 

                </ItemsControl.ItemTemplate> 

            </ItemsControl> 

        </StackPanel> 

    </Grid> 

</UserControl> 

Step 7: Now add the StudentView into your MainPage.xaml file using the following code. 

<Window x:Class="MVVMDemo.MainWindow" 

        xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" 

        xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" 

        xmlns:d="http://schemas.microsoft.com/expression/blend/2008" 

        xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006" 

        xmlns:local="clr-namespace:MVVMDemo" 

        xmlns:views="clr-namespace:MVVMDemo.Views" 

        mc:Ignorable="d" 

        Title="MainWindow" Height="350" Width="525"> 

    <Grid> 

        <views:StudentView x:Name="StudentViewControl" 
Loaded="StudentViewControl_Loaded"/> 

    </Grid> 

</Window> 

Step 8: Here is the implementation for Loaded event in the MainPage.xaml.cs file, which will 

update the View from the ViewModel. 

using System.Windows; 

namespace MVVMDemo 

{ 
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    /// <summary> 

    /// Interaction logic for MainWindow.xaml 

    /// </summary> 

    public partial class MainWindow : Window 

    { 

        public MainWindow() 

        { 

            InitializeComponent(); 

        } 

 

        private void StudentViewControl_Loaded(object sender, RoutedEventArgs e) 

        { 

            MVVMDemo.ViewModel.StudentViewModel studentViewModelObject = new 
MVVMDemo.ViewModel.StudentViewModel(); 

            studentViewModelObject.LoadStudents(); 

 

            StudentViewControl.DataContext = studentViewModelObject; 

        } 

    } 

} 

Step 9: When the above code is compiled and executed, you will receive the following output 

on your main window. 
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We recommend you to execute the above example in a step-by-step manner for better 

understanding. 
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End of ebook preview 
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