
NativeScript

 i

NativeScript

 ii

About the Tutorial

NativeScript is an open source framework for creating native iOS and Android apps in

Angular, TypeScript, or JavaScript. It was developed by Progress Telerik. NativeScript

allows you to build web and mobile apps from a single code-base. This tutorial walks

through the basics of NativeScript framework, installation of NativeScript CLI, setting up

Android Studio and iOS to develop NativeScript based application, architecture of

NativeScript framework and finally conclude with developing all type of web and mobile

apps.

Audience

This tutorial is prepared for professionals who are aspiring to make a career in the field of

mobile applications. This tutorial is intended to make you comfortable in getting started

with NativeScript framework and its various functionalities.

Prerequisites

This tutorial is written assuming that the readers are already aware about what a

Framework is and that the readers have a sound knowledge on Object Oriented

Programming and basic knowledge on Android and iOS development, JavaScript and

Angular. If you are a beginner to any of these concepts, we suggest you to go through

tutorials related to these first, before you start with NativeScript.

Copyright & Disclaimer

 Copyright 2020 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

NativeScript

 iii

Table of Contents

About the Tutorial ... ii

Audience .. ii

Prerequisites .. ii

Copyright & Disclaimer .. ii

Table of Contents ... iii

1. NativeScript ― Introduction ... vii

Overview of JavaScript Frameworks.. vii

Overview of NativeScript .. viii

2. NativeScript — Installation ... 1

Prerequisites .. 1

Verify Node.js .. 1

CLI setup .. 1

Installing NativeScript playground App ... 2

Android and iOS setup ... 3

3. NativeScript ― Architecture ... 5

Introduction ... 5

Workflow of a NativeScript Application .. 7

Workflow of Angular based NativeScript Application ... 8

4. NativeScript — Angular Application .. 11

Creating the Application .. 11

Structure of the Application .. 11

Configuration section .. 12

Run your app ... 19

Run your app on device ... 21

LiveSync ... 22

5. NativeScript ― Templates ... 24

NativeScript

 iv

Using template .. 24

Navigation template .. 24

Tab navigation template.. 24

Master-Detail template ... 24

Custom templates ... 25

6. NativeScript — Widgets .. 27

Button .. 27

Label .. 31

TextField .. 32

TextView .. 33

SearchBar... 35

Switch .. 36

Slider .. 37

Progress ... 38

ActivityIndicator .. 39

Image ... 40

WebView ... 41

DatePicker ... 42

TimePicker ... 43

7. NativeScript ― Layout Containers .. 45

Absolute Layout ... 45

DockLayout .. 46

GridLayout ... 48

StackLayout ... 49

WrapLayout ... 50

Flexbox Layout ... 51

8. NativeScript — Navigation .. 59

Core Concepts ... 59

NativeScript

 v

Angular based navigation .. 61

9. NativeScript ― Events Handling .. 64

Observable Class .. 64

Event Listener .. 64

Modifying BlankNgApp .. 65

10. NativeScript — Data Binding ... 67

One-Way Data Binding .. 67

Two-way Data Binding ... 70

11. NativeScript ― Modules ... 74

Application... 74

Console .. 74

application-settings ... 74

http .. 75

Image-source ... 76

Timer ... 76

Trace .. 77

ui/image-cache .. 77

connectivity ... 77

Functionality Modules ... 77

UI module .. 78

12. NativeScript — Plugins .. 79

Commands ... 79

Adding plugin ... 79

Importing plugins .. 80

Updating plugins .. 80

Removing plugin .. 80

Building plugins ... 80

Creating plugins ... 81

NativeScript

 vi

13. NativeScript ― Native APIs Using Javascript ... 82

Marshalling .. 82

Numeric values .. 82

Strings .. 83

Array .. 84

Classes and Objects ... 85

14. NativeScript — Creating an Application in Android ... 87

NativeScript Sidekick ... 87

Publish your app in Google Play .. 90

15. NativeScript ― Creating an Application in iOS .. 92

Prerequisites .. 92

Steps to publish your app .. 92

16. NativeScript — Testing .. 94

Types of Testing ... 94

Unit Testing ... 94

Create your tests ... 95

Run your tests .. 96

End To End (E2E) Testing ... 96

NativeScript — Conclusion .. 98

NativeScript

 vii

Generally, developing a mobile application is a complex and challenging task. There are

many frameworks available to develop a mobile application. Android provides a native

framework based on Java language and iOS provides a native framework based on

Objective-C/Shift language. However, to develop an application that support both

operating systems, we need to code in two different languages using two different

frameworks.

To overcome this complexity, mobile frameworks supports this feature. The main reason

behind to use cross-platform or hybrid framework is easier to maintain a single code base.

Some of the popular frameworks are NativeScript, Apache Cordova, Xamarin, etc.

Overview of JavaScript Frameworks

JavaScript is a multi-paradigm language. It supports functional programming, object-

oriented and prototype based programming. JavaScript was initially used for the client-

side. Nowadays, JavaScript is used as a server-side programming language as well.

JavaScript frameworks are a type of tool that makes working with JavaScript easier and

smoother.

Using this framework, programmers can easily code the application as a device responsive.

Responsiveness is one of the reasons behind why this framework is becoming very popular.

Let us have a look at some of the popular JS frameworks:

Angular

One of the most powerful, efficient, and open-source JavaScript frameworks is Angular.

We can build mobile and desktop applications. Google uses this framework. It is used for

developing a Single Page Application (SPA).

Vue.js

VueJS is a progressive JavaScript framework used to develop interactive web interfaces.

It is one of the famous frameworks used to simplify web development. It can be easily

integrated into big projects for front-end development without any issues. It is dual

integration mode is one of the most attractive features for the creation of high-end SPA

or Single Page Application.

React

ReactJS is JavaScript library used for building reusable UI components. It is developed by

Facebook. It is currently one of the most popular JavaScript libraries and has a strong

foundation and large community behind it.

Node.js

Node.js is an open source, cross-platform runtime environment for developing server-side

and networking applications. It is built on Google Chrome’s JavaScript Engine (V8 Engine).

Node.js applications are written in JavaScript, and can be run on OS X, Microsoft Windows,

1. NativeScript ― Introduction

NativeScript

 viii

and Linux. It provides a rich library of various JavaScript modules which simplifies the

development of web applications.

Overview of NativeScript

NativeScript is an open source framework used for creating native iOS and android mobile

applications. It is a JIT compiled framework. NativeScript code runs on JS virtual machine.

It uses V8 engine runtime for both Android and iOS platforms. NativeScript uses XML, JS

and CSS for development. It has a WebIDE known as PlayGround. This PlayGround

supports easy working interface, easy to manage projects, hot reload and debug on

devices.

NativeScript allows developers to create native, cross-platform apps quickly and efficiently

and save on the costs of development, testing, and training. Hence, Native apps will

continue to be rich and strong for years to come to make better and easier to use.

Features

NativeScript has vibrant community support. Some of the salient features of NativeScript

listed below:

 Extensible

 Hot Module Replacement

 Easy to setup

 We can build rich animations, graphs, charts and lists

 Developers can use any view as the root of an application

 Lazy coding

Benefits

NativeScript helps small or large scale companies to build cross-platform mobile apps.

Some of the key benefits are:

 Developers can reuse existing tools and code

 Easy to modify, troubleshoot and update newer versions

 Development experience is good so we don’t have to spend time to learn new tools

 Platform-specific APIs from JavaScript, eliminating the need to learn Cordova

plugins

 Ease authentication with different sign-on providers

NativeScript

 1

This section explains about how to install NativeScript on your machine.

Prerequisites

Before moving to installation, we need the following prerequisites:

 Node.js

 Android

 iOS

Verify Node.js

Node.js is a JavaScript runtime engine build on top of Google Chrome’s internal JavaScript

engine, v8. NativeScript uses Node.js extensively for various purpose like creating the

starter template application, compiling the application, etc., It is mandatory to have

Node.js on your machine.

Hopefully, you have installed Node.js on your machine. If it is not installed then visit the

link, https://nodejs.org/ and download the latest LTS package and install it.

To verify if Node.js is properly installed, type the below command on your terminal:

node --version

You could see the version. As of now, the current stable “LTS” version of node is 12.14.0.

CLI setup

NativeScript CLI is a terminal/command line based application and allows you to create

and develop NativeScript application. Node.js package manager npm is used to install

NativeScript CLI on your machine.

Use the below command to install NativeScript CLI:

npm install -g nativescript

After executing this command, we could see the following output:

2. NativeScript — Installation

NativeScript

 2

setupcli

We have installed the latest NativeScript CLI, tns in our system. Now, type the below

command in your terminal:

tns

This will list out quick-start guide. You could see the following output:

cli

We can use tns to create and develop application even without any additional setup. But,

we could not able to deploy the application in real device. Instead we can run the

application using NativeScript PlayGround iOS / Android application. We will check it in the

upcoming chapters.

Installing NativeScript playground App

Go to your iOS App store or Google Play Store and search NativeScript Playground app.

Once the application is listed in the search result, click the install option. It will install the

NativeScript Playground app in our device.

NativeScript

 3

NativeScript Playground application will be helpful for testing your apps in Android or iOS

device without deploying the application in the real device or emulator. This will reduce

the time to develop the application and easy way to kick-start the development of our

mobile application.

Android and iOS setup

In this chapter, let us learn how to setup the system to build and run iOS and Android

apps either in emulator or in real device.

Step 1: Windows dependency

Execute the below command in your windows command prompt and run as administrator:

@powershell -NoProfile -ExecutionPolicy Bypass -Command "iex

((new-object

net.webclient).DownloadString('https://www.nativescript.org/setup/win'))"

After this command, Scripts being downloaded then install the dependencies and configure

it.

Step 2: macOS dependency

To install in macOS, you must ensure that Xcode is installed or not. Xcode is mandatory

for NativeScript. If Xcode is not installed, then visit the following link

https://developer.apple.com/xcode/ and download; then install it.

Now execute the following command in your terminal:

sudo ruby -e "$(curl -fsSL https://www.nativescript.org/setup/mac)"

After executing the above command, script will install the dependencies for both iOS and

Android development. Once it is done, close and restart your terminal.

Step 3: Android dependency

Hopefully, you have configured the following prerequisites:

 JDK 8 or higher

 Android SDK

 Android Support Repository

 Google Repository

 Android SDK Build-tools 28.0.3 or higher

 Android Studio

If the above prerequisites are not configured, then visit the following link

https://developer.android.com/studio/install and install it. Finally, Add JAVA_HOME and

ANDROID_HOME in your environment variables.

Step 4: Verify dependencies

Now everything is done. You can verify the dependency using the below command:

NativeScript

 4

tns doctor

This will verify all the dependency and summarize the result as below:

√ Getting environment information

No issues were detected.

√ Your ANDROID_HOME environment variable is set and points to correct

directory.

√ Your adb from the Android SDK is correctly installed.

√ The Android SDK is installed.

√ A compatible Android SDK for compilation is found.

√ Javac is installed and is configured properly.

√ The Java Development Kit (JDK) is installed and is configured properly.

√ Local builds for iOS can be executed only on a macOS system. To build for iOS

on a different operating system, you can use th

e NativeScript cloud infrastructure.

√ Getting NativeScript components versions information...

√ Component nativescript has 6.3.0 version and is up to date.

√ Component tns-core-modules has 6.3.2 version and is up to date.

√ Component tns-android has 6.3.1 version and is up to date.

√ Component tns-ios has 6.3.0 version and is up to date.

If you find any issues, please correct the issues before proceeding to develop the

application.

NativeScript

 5

NativeScript is an advanced framework to create mobile application. It hides the

complexity of creating mobile application and exposes a rather simple API to create highly

optimized and advanced mobile application. NativeScript enables even entry level

developers to easily create mobile application in both Android and iOS.

Let us understand the architecture of the NativeScript framework in this chapter.

Introduction

The core concept of NativeScript framework is to enable the developer to create hybrid

style mobile application. Hybrid application uses the platform specific browser API to host

a web application inside a normal mobile application and provides system access to the

application through JavaScript API.

NativeScript invests heavily on the JavaScript language to provide an efficient

framework for developers. Since JavaScript is de-facto standard for client side

programming (Web development) and every developer is well aware of the JavaScript

language, it helps developers to easily get into the NativeScript framework. At the low

level, NativeScript exposes the native API through a collection of JavaScript plugins called

Native plugins.

NativeScript builds on the foundation of Native plugins and provides many high level and

easy to use JavaScript Modules. Each module does a specific functionality like accessing a

camera, designing a screen, etc. All these modules can be combined in multiple ways to

architect a complex mobile application.

Below diagram shows the high level overview of the NativeScript framework:

3. NativeScript ― Architecture

NativeScript

 6

NativeScript Application: NativeScript framework allows developer to use either Angular

style application or Vue Style application.

JavaScript Modules: NativeScript framework provides a rich set of JavaScript modules

clearly categorized as UI Modules, Application Modules, Core Modules, etc. All modules can

be accessed by application at any time to write any level of complex application.

JavaScript plugins: NativeScript framework provides a large collection of JavaScript

plugins to access the platform related functionality. Modules uses the JavaScript plugins

to provide platform specific functionality.

Native plugins: Native plugins are written in platform specific language to wrapper the

system functionality which will be further used by JavaScript plugin.

Platform API: API provided by platform vendors.

In short, NativeScript application is written and organized using modules. Modules are

written in pure JavaScript and the modules access the platform related functionality

(whenever needed) through plugins and finally, the plugins bridge the platform API and

JavaScript API.

NativeScript

 7

Workflow of a NativeScript Application

As we learned earlier, NativeScript application is composed of modules. Each and every

module enables a specific feature. The two important categories of module to bootstrap a

NativeScript application are as follows:

 Root Modules

 Page Modules

Root and Page modules can be categorized as application modules. The application module

is the entry point of the NativeScript application. It bootstraps a page, enables the

developer to create user interface of the page and finally allows execution of the business

logic of the page. An application module consists of below three items:

 User interface design coded in XML (e.g. page.xml/page.component.html)

 Styles coded in CSS (e.g. page.css/page.component.css)

 Actual business logic of the module in JavaScript (e.g. page.js/page.component.ts)

NativeScript provides lot of UI components (under UI Module) to design the application

page. UI Component can be represented in XML format or HTML format in Angular based

application. Application module uses the UI Component to design the page and store the

design in separate XML, page.xml/page.component.html. The design can be styled using

standard CSS.

Application modules stores the style of the design in separate CSS,

page.css/page.component.css. The functionality of the page can be done using

JavaScript/TypeScript, which has full access to the design as well as the platform features.

Application module uses a separate file, page.js/page.component.ts to code the actual

functionality of the page.

Root Modules

NativeScript manages the user interface and user interaction through UI containers. Every

UI container should have a Root Module and through which the UI container manages UI.

NativeScript application have two type of UI containers:

Application Container: Every NativeScript application should have one application

container and it will be set using application.run() method. It initializes the UI of the
application.

Model View Container: NativeScript manages the Modal dialogs using model view
container. A NativeScript application can have any number of model view container.

Every root module should have only one UI Component as its content. The UI component

in turn can have other UI components as its children. NativeScript provides a lot of UI

component like TabView, ScrollView, etc., with child feature. We can use these as root UI

component. One exception is Frame, which does not have child option but can be used as

root component. Frame provides options to load Page Modules and options to navigate to

other page modules as well.

Page Modules

In NativeScript, each and every page is basically a Page Module. Page module is designed

using the rich set of UI components provided by NativeScript. Page modules are loaded

NativeScript

 8

into the application through Frame component (using its defaultPage attribute or using

navigate() method), which in turn loaded using Root Modules, which again in turn loaded

using application.run() while the application is started.

The work flow of the application can be represented as in the below diagram:

The above diagram is explained in detail in the following steps:

1. NativeScript Application starts and calls application.run() method.

2. application.run() loads a Root module.

3. Root Module is designed using any one of the UI component as specified below:

 Frame

 TabView

 SideDrawer

 Any Layout View

4. Frame component loads the specified page (Page module) and gets rendered. Other

UI components will be rendered as specified in the Root Module. Other UI component

also has option to load Page Modules as its main content.

5. Finally, user can navigate to other pages using UI component’s navigation option.

Workflow of Angular based NativeScript Application

As we learned earlier, NativeScript framework provides multiple methodologies to cater

different category of developers. The methodologies supported by NativeScript are as

follows:

 NativeScript Core: Basic or core concept of NativeScript Framework

NativeScript

 9

 Angular + NativeScript: Angular based methodology

 Vuejs + NativeScript: Vue.js based methodology

Let us learn how Angular framework is incorporated into the NativeScript framework.

Step 1

NativeScript provides an object (platformNativeScriptDynamic) to bootstrap the Angular

application. platformNativeScriptDynamic has a method, bootstrapModule, which is used

to start the application.

The syntax to bootstrap the application using Angular framework is as follows:

import { platformNativeScriptDynamic } from "nativescript-angular/platform";

import { AppModule } from "./app/app.module";

platformNativeScriptDynamic().bootstrapModule(AppModule);

Here,

AppModule is our Root module.

Step 2

A simple implementation (below specified code) of the app module.

import { NgModule } from "@angular/core";

import { NativeScriptModule } from "nativescript-angular/nativescript.module";

import { AppRoutingModule } from "./app-routing.module";

import { AppComponent } from "./app.component";

@NgModule({

 bootstrap: [

 AppComponent

],

 imports: [

 NativeScriptModule,

 AppRoutingModule

],

 declarations: [

 AppComponent

]

})

export class AppModule { }

Here,

AppModule starts the application by loading AppComponent component. Angular

components are similar to pages and are used for both design and programming logic.

Step 3

NativeScript

 10

A simple implementation of AppComponent (app.component.ts) and its presentation logic

(app.component.css) is as follows:

app.component.ts

import { Component } from "@angular/core";

@Component({

 selector: "ns-app",

 templateUrl: "app.component.html"

})

export class AppComponent { }

Here,

templateUrl refers the design of the component.

app.component.html

<page-router-outlet></page-router-outlet>

Here,

page-router-outlet is the place where the Angular application get attached.

In summary, Angular framework is composed of modules similar to NativeScript

framework with slight differences. Each module in the Angular will have an Angular

component and a router setup file (page-routing.mocdule.ts). The router is set per module

and it takes care of navigation. Angular components are analogues to pages in NativeSctipt

core.

Each component will have a UI design (page.component.html), a style sheet

(page.component.css), and a JavaScript/TypeScript code file (page.component.ts).

NativeScript

 11

Let us create a simple bare bone application to understand the work flow of the

NativeScript application.

Creating the Application

Let us learn how to create simple application using NativeScript CLI, tns. tns provides a

command create to used to create a new project in NativeScript.

The basic syntax to create a new application is as below:

tns create <projectname> --template <template_name>

Where,

 Projectname is the Name of the project.

 template_name is Project template. NativeScript provides lot of startup template

to create different type of application. Use Angular based template.

Let us create a new directory named NativeScriptSamples to work on our new application.

Now, open a new terminal then move to our directory and type the below command:

tns create BlankNgApp --template tns-template-blank-ng

Where, tns-tempalte-blank-ng refers a blank mobile application based on AngularJS.

Output

.....

.....

.....

Project BlankNgApp was successfully created.

Now you can navigate to your project with $ cd BlankNgApp

After that you can preview it on device by executing $ tns preview

Now, our first mobile application, BlankNgApp is created.

Structure of the Application

Let us understand the structure of the NativeScript application by analyzing our first

application BlankNgApp in this chapter. NativeScript application is organized into multiple

sections and they are as follows:

 Configuration section

 Node modules

4. NativeScript — Angular Application

NativeScript

 12

 Android sources

 iOS Sources

 Application source code

The general structure of the application is as follows:

│ angular.json

│ LICENSE

│ nsconfig.json

│ package-lock.json

│ package.json

│ tsconfig.json

│ tsconfig.tns.json

│ tsfmt.json

│ webpack.config.js

│

├───App_Resources

│ ├───Android

│ │

│ └───iOS

│

├───hooks

│

├───node_modules

|

└───src

 │ app.css

 │ main.ts

 │ package.json

 │

 └───app

 │ app-routing.module.ts

 │ app.component.html

 │ app.component.ts

 │ app.module.ts

 │

 └───home

 home-routing.module.ts

 home.component.html

 home.component.ts

 home.module.ts

Let us understand each section of the application and how it helps us to create our

application.

Configuration section

All the files in the root of the application are configuration files. The format of the

configuration files are in JSON format, which helps the developer to easily understand the

configuration details. NativeScript application relies on these files to gets all available

configuration information. Let us go through all the configuration files in this section.

NativeScript

 13

package.json

package.json files sets the identity (id) of the application and all the modules that the

application depends on for its proper working. Below is our package.json:

{

 "nativescript": {

 "id": "org.nativescript.BlankNgApp",

 "tns-android": {

 "version": "6.3.1"

 },

 "tns-ios": {

 "version": "6.3.0"

 }

 },

 "description": "NativeScript Application",

 "license": "SEE LICENSE IN <your-license-filename>",

 "repository": "<fill-your-repository-here>",

 "dependencies": {

 "@angular/animations": "~8.2.0",

 "@angular/common": "~8.2.0",

 "@angular/compiler": "~8.2.0",

 "@angular/core": "~8.2.0",

 "@angular/forms": "~8.2.0",

 "@angular/platform-browser": "~8.2.0",

 "@angular/platform-browser-dynamic": "~8.2.0",

 "@angular/router": "~8.2.0",

 "@nativescript/theme": "~2.2.1",

 "nativescript-angular": "~8.20.3",

 "reflect-metadata": "~0.1.12",

 "rxjs": "^6.4.0",

 "tns-core-modules": "~6.3.0",

 "zone.js": "~0.9.1"

 },

 "devDependencies": {

 "@angular/compiler-cli": "~8.2.0",

 "@ngtools/webpack": "~8.2.0",

 "nativescript-dev-webpack": "~1.4.0",

 "typescript": "~3.5.3"

 },

 "gitHead": "fa98f785df3fba482e5e2a0c76f4be1fa6dc7a14",

 "readme": "NativeScript Application"

}

Here,

Identity of the application (nativescript/id): Sets the id of the application as

org.nativescript.BlankNgApp. This id is used to publish our app to the Play Store or iTunes.

This id will be our Application Identifier or Package Name.

Dependencies (dependencies): Specifies all our dependent node modules. Since, the

default NativeScript implementation depends on Angular Framework, Angular modules are

included.

NativeScript

 14

Development dependencies: Specifies all the tools that the application depends on.

Since, we are developing our application in TypeScript, it includes typescript as one of the

dependent modules.

angular.json: Angular framework configuration information.

nsconfig.json: NativeScript framework configuration information.

tsconfig.json, tsfmt.json & tsconfig.tns.json: TypeScript language configuration

information

webpack.config.js: WebPack configuration written in JavaScript.

Node modules

As NativeScript project are node based project, it stores all its dependencies in the

node_modules folder. We can use npm (npm install) or tns to download and install all the

application dependency into the node_moduels.

Android source code

NativeScript auto-generates the android source code and place it in

App_Resources\Android folder. It will be used to create android application using Android

SDK

iOS source code

NativeScript auto-generates the iOS source code and place it in App_Resources\iOS folder.

It will be used to create iOS application using iOS SDK and XCode

Application source code

The actual application code is placed in src folder. Our application has below files in src

folder.

└───src

 │ app.css

 │ main.ts

 │ package.json

 │

 └───app

 │ app-routing.module.ts

 │ app.component.html

 │ app.component.ts

 │ app.module.ts

 │

 └───home

 home-routing.module.ts

 home.component.html

 home.component.ts

 home.module.ts

Let us understand the purpose of all files and how they are organized in this section:

Step 1

NativeScript

 15

main.ts - Entry point of the application.

// this import should be first in order to load some required settings (like

globals and reflect-metadata)

import { platformNativeScriptDynamic } from "nativescript-angular/platform";

import { AppModule } from "./app/app.module";

platformNativeScriptDynamic().bootstrapModule(AppModule);

Here, we have set the AppModule as the bootstrapping module of the application.

Step 2

app.css - Main style sheet of the application is as shown below:

@import "~@nativescript/theme/css/core.css";

@import "~@nativescript/theme/css/brown.css";

/* Place any CSS rules you want to apply on both iOS and Android here.

This is where the vast majority of your CSS code goes. */

Here,

app.css imports the core style sheet and brown color themes style sheet of the NativeScript

framework.

Step 3

app\app.module.ts - Root module of the application.

import { NgModule, NO_ERRORS_SCHEMA } from "@angular/core";

import { NativeScriptModule } from "nativescript-angular/nativescript.module";

import { AppRoutingModule } from "./app-routing.module";

import { AppComponent } from "./app.component";

@NgModule({

 bootstrap: [

 AppComponent

],

 imports: [

 NativeScriptModule,

 AppRoutingModule

],

 declarations: [

 AppComponent

],

 schemas: [

 NO_ERRORS_SCHEMA

]

})

export class AppModule { }

NativeScript

 16

Here,

AppModule is created based on NgModule and sets the components and modules of the

application. It imports two modules NativeScriptModule and AppRoutingModule and a

component, AppComponent. It also set the AppComponent as the root component of the

application.

Step 4

app.component.ts - Root component of the application.

import { Component } from "@angular/core";

@Component({

 selector: "ns-app",

 templateUrl: "app.component.html"

})

export class AppComponent { }

Here,

AppComponent sets the template and style sheet of the component. Template is designed

in plain HMTL using NativeScript UI components.

Step 5

app-routing.module.ts - Routing module for the AppModule

import { NgModule } from "@angular/core";

import { Routes } from "@angular/router";

import { NativeScriptRouterModule } from "nativescript-angular/router";

const routes: Routes = [

 { path: "", redirectTo: "/home", pathMatch: "full" },

 { path: "home", loadChildren: () =>

import("~/app/home/home.module").then((m) => m.HomeModule) }

];

@NgModule({

 imports: [NativeScriptRouterModule.forRoot(routes)],

 exports: [NativeScriptRouterModule]

})

export class AppRoutingModule { }

Here,

AppRoutingModule uses the NativeScriptRouterModule and sets the routes of the

AppModule. It basically redirects the empty path to /home and the points the /home to

HomeModule.

Step 6

app\home\home.module.ts - Defines a new module, HomeModule.

NativeScript

 17

import { NgModule, NO_ERRORS_SCHEMA } from "@angular/core";

import { NativeScriptCommonModule } from "nativescript-angular/common";

import { HomeRoutingModule } from "./home-routing.module";

import { HomeComponent } from "./home.component";

@NgModule({

 imports: [

 NativeScriptCommonModule,

 HomeRoutingModule

],

 declarations: [

 HomeComponent

],

 schemas: [

 NO_ERRORS_SCHEMA

]

})

export class HomeModule { }

Here,

HomeModule imports two modules, HomeRoutingModule and NativeScriptCommonModule

and one component HomeComponent

Step 7

app\home\home.component.ts - Defines the Home component and used as home page of

the application.

import { Component, OnInit } from "@angular/core";

@Component({

 selector: "Home",

 templateUrl: "./home.component.html"

})

export class HomeComponent implements OnInit {

 constructor() {

 // Use the component constructor to inject providers.

 }

 ngOnInit(): void {

 // Init your component properties here.

 }

}

Here,

HomeComponent sets the template and selector of the home component.

Step 8

NativeScript

 18

app\home\home-routing.module.ts - Routing module for HomeModule and used to define

routing for home module.

import { NgModule } from "@angular/core";

import { Routes } from "@angular/router";

import { NativeScriptRouterModule } from "nativescript-angular/router";

import { HomeComponent } from "./home.component";

const routes: Routes = [

 { path: "", component: HomeComponent }

];

@NgModule({

 imports: [NativeScriptRouterModule.forChild(routes)],

 exports: [NativeScriptRouterModule]

})

export class HomeRoutingModule { }

Here,

HomeRoutingModule set the empty path to HomeComponent.

Step 9

app.component.html and home.component.html - They are used to design the UI of the

application using NativeScript UI components.

NativeScript

 19

Run your app

If you want run your app without using any device, then type the below command:

tns preview

After executing this command, this will generate QR code to scan and connect with your

device.

Output

QRCode

Now QR code is generated and connect to PlayGround in next step.

NativeScript PlayGround

Open NativeScript PlayGround app on your iOS or Android mobile then choose Scan QR

code option. It will open the camera. Focus the QR code displayed on the console. This will

scan the QR Code. Scanning the QR Code will trigger the application build and then sync

the application to the device as given below:

Copying template files...

Platform android successfully added. v6.3.1

Preparing project...

File change detected. Starting incremental webpack compilation...

webpack is watching the files…

Hash: 1f38aaf6fcda4e082b88

Version: webpack 4.27.1

Time: 9333ms

Built at: 01/04/2020 4:22:31 PM

NativeScript

 20

 Asset Size Chunks Chunk Names

 0.js 8.32 KiB 0 [emitted]

 bundle.js 22.9 KiB bundle [emitted] bundle

 package.json 112 bytes [emitted]

 runtime.js 73 KiB runtime [emitted] runtime

tns-java-classes.js 0 bytes [emitted]

 vendor.js 345 KiB vendor [emitted] vendor

Entrypoint bundle = runtime.js vendor.js bundle.js

[../$$_lazy_route_resource lazy recursive] ../$$_lazy_route_resource lazy

namespace object 160 bytes {bundle} [built]

[./app.css] 1.18 KiB {bundle} [built]

[./app/app-routing.module.ts] 688 bytes {bundle} [built]

[./app/app.component.html] 62 bytes {bundle} [built]

[./app/app.component.ts] 354 bytes {bundle} [built]

[./app/app.module.ts] 3.22 KiB {bundle} [built]

[./app/home/home.module.ts] 710 bytes {0} [built]

[./main.ts] 1.84 KiB {bundle} [built]

[@angular/core] external "@angular/core" 42 bytes {bundle} [built]

[nativescript-angular/nativescript.module] external "nativescript-

angular/nativescript.module" 42 bytes {bundle} [built]

[nativescript-angular/platform] external "nativescript-angular/platform" 42

bytes {bundle} [built]

[tns-core-modules/application] external "tns-core-modules/application" 42 bytes

{bundle} [built]

[tns-core-modules/bundle-entry-points] external "tns-core-modules/bundle-entry-

points" 42 bytes {bundle} [built]

[tns-core-modules/ui/frame] external "tns-core-modules/ui/frame" 42 bytes

{bundle} [built]

[tns-core-modules/ui/frame/activity] external "tns-core-

modules/ui/frame/activity" 42 bytes {bundle} [built]

 + 15 hidden modules

Webpack compilation complete. Watching for file changes.

Webpack build done!

Project successfully prepared (android)

Start sending initial files for device Bala Honor Holly (ff5e8622-7a01-4f9c-

b02f-3dc6d4ee0e1f).

Successfully sent initial files for device Bala Honor Holly (ff5e8622-7a01-

4f9c-b02f-3dc6d4ee0e1f).

LOG from device Bala Honor Holly: HMR: Hot Module Replacement Enabled. Waiting

for signal.

LOG from device Bala Honor Holly: Angular is running in the development mode.

Call enableProdMode() to enable the production mode.

Output

After scanning, you should see your BlankNgApp on your device. It is shown below:

NativeScript

 21

Run your app on device

If you want to test the connected device in your application, you can verify it using the

below syntax:

'tns device <Platform> --available-devices'

After that, you can execute your app using the below command:

tns run

The above command is used to build your apps locally and install on Andriod or iOS

devices. If you want to run your app on an Android simulator, then type the below

command:

tns run android

For iOS device, you can follow the below command:

tns run ios

NativeScript

 22

This will initialize the app in an Android/iOS device. We will discuss this more in detail in

the upcoming chapters.

LiveSync

NativeScript provides real time syncing of changes in the application to the preview

application. Let us open the project using any of your favourite editor (Visual Studio Code

would be the ideal choice for better visualization). Let us add some changes in our code

and see how that will be detected in LiveSync.

Now open the file app.css and it will have below content:

@import "~@nativescript/theme/css/core.css";

@import "~@nativescript/theme/css/blue.css";

/* Place any CSS rules you want to apply on both iOS and Android here.

This is where the vast majority of your CSS code goes. */

Here, import statement tells the color scheme of our app. Let’s change the blue color

scheme to the brown color scheme as specified below:

@import "~@nativescript/theme/css/core.css";

@import "~@nativescript/theme/css/brown.css";

/* Place any CSS rules you want to apply on both iOS and Android here.

This is where the vast majority of your CSS code goes. */

The application in our device refreshes and you should see a brown color ActionBar as

shown below:

Output

Below is the BlankNgApp Home Page - Brown Theme.

NativeScript

 23

NativeScript

 24

NativeScript provides lot of readymade templates to create simple blank but fully

functional application to complex Tab based application.

Using template

As learned earlier, new application can be created using create subcommand of tns

command.

tns create <app-name> --template <tns-template-name>

Here,

tns-template-name is the name of the template.

If you want to create a template with one page and without any custom styles using

JavaScript, use the below command:

tns create <app-name> --template tns-template-blank

The above same template can be created using TypeScript as follows:

tns create <app-name> --template tns-template-blank-ts

Navigation template

Navigation template is used to create moderate to complex application. It comes with pre-

configured SideDrawer component with several pages. SideDrawer component contains

a hidden view for navigation UI or common settings. Use the below command to create

navigation based application:

tns create <app-name> --template tns-template-drawer-navigation

Tab navigation template

Tab navigation template is used to create tab based application. It comes with pre-

configured TabView component with several pages. Use below command to create tab

based application:

tns create <app-name> --template tns-template-tab-navigation

Master-Detail template

Master-Detail template is used to create list based application along with detail page for

every item in the list.

5. NativeScript ― Templates

NativeScript

 25

tns create <app-name> --template tns-template-master-detail

Custom templates

To create simple customized template, we need to clone blank templates. As you know

already, NativeScript supports JavaScript, TypeScript, Angular and Vue.js templates so

you can choose any language and create your customized one.

For example, clone simple and customized template from git repository using the below

command:

git clone https://github.com/NativeScript/template-blank-ts.git

Now, it will create mobile app structure so you can do any changes and run your

android/iOS device. This structure based on list of guidelines. Let us see the guidelines in

brief.

Structure

Your customized template must meet the following requirements:

 Don’t place your code inside your app root folder.

 Create a separate folder and add feature area inside.

 Page, View models and service should be placed in feature area. This helps to create

neat and clean code.

 Create page folder and place inside .ts, .xml, .scss/css, etc., files.

package.json

Place package.json file in the root folder of your app template. Provide a value for the

name property using the format:

{

 "name": "tns-template-blank-ts",

 "displayName": "template-blank",

}

Assign a value for the version property. It is defined below:

"version": "3.2.1",

Assign a value for the main property specifying the primary entry point to your app. It is

defined below:

 "main": "app.js",

Assign a value for the android property. It is defined below:

NativeScript

 26

"android": {

 "v8Flags": "--expose_gc"

 },

The repository property should be specified inside your code as follows:

 "repository": {

 "type": "git",

 "url": "https://github.com/NativeScript/template-master-detail-ts"

 },

Style

Import styles and themes in your app template using the below syntax:

@import '~nativescript-theme-core/scss/light';

We can also assign custom background color using the below code:

/* Colors */

$background: #fff;

$primary: lighten(#000, 13%);

NativeScript

 27

NativeScript provides a large set of user interface components and are called as ‘widgets’.

Each widget does a special task and comes with a set of methods. Let’s understand

NativeScript widgets in detail in this section.

Button

Button is a component to execute tap event action. When a user taps the button it

performs the corresponding actions. It is defined below:

<Button text="Click here!" tap="onTap"></Button>

Let us add the button in our BlankNgApp as below:

Step 1

Open the src\app\home\home.component.html. This is the UI design page of our

home component.

Step 2

Add a button inside the GirdLayout component. The complete code is as follows:

<ActionBar>

 <Label text="Home"></Label>

</ActionBar>

<GridLayout>

 <button text="Click Here!"></button>

</GridLayout>

Output

Below is the output of the button:

6. NativeScript — Widgets

NativeScript

 28

Step 3

We can style the button using CSS as specified below:

<ActionBar>

 <Label text="Home"></Label>

</ActionBar>

<GridLayout>

 <button text="Click Here!" class="-primary"></button>

</GridLayout>

Here, -primary class is used to represent the primary button.

Output

Below is the output of ButtonPrimary:

NativeScript

 29

Step 4

NativeScript provides formatted option to provide custom icons in the button. The sample

code is as follows:

<GridLayout>

 <Button class="-primary">

 <FormattedString>

 </FormattedString>

 </Button>

</GridLayout>

.fa {

 font-family: "FontAwesome", "fontawesome-webfont";

}

Here,

 specifies the location of the icon in the font, FontAwesome. Download the latest

Font Awesome font and place the fontawesome-webfont.ttf in src\fonts folder.

Output

NativeScript

 30

Below is the output of ButtonPrimary:

Step 5

Rounded button can be created using the below syntax:

<Button text="Button.-primary.-rounded-sm" class="-primary -rounded-

sm"></Button>

Output

Below is the output of ButtonPrimary:

NativeScript

 31

Label

Label component is used to display static text. Change the home page as below:

<GridLayout>

 <Label text="NativeScript is an open source framework for creating native

iOS and Android apps in TypeScript or JavaScript."

 textWrap="true"></Label>

</GridLayout>

Here, textWrap wraps the content of the label, if the label extends beyond the screen

width.

Output

Below is the output of Label:

NativeScript

 32

TextField

TextField component is used to get information from user. Let us change our home page

as specified below:

<GridLayout>

 <TextField hint="Username"

 color="lightblue"

 backgroundColor="lightyellow"

 height="75px"></TextField>

</GridLayout>

Here,

 color represent text color

 backgroundColor represent background of the text box

 height represent the height of the text box

Output

Below is the output of Text Field:

NativeScript

 33

TextView

TextView Component is used to get multi-line text content from the user. Let us change

our home page as specified below:

<GridLayout>

 <TextView loaded="onTextViewLoaded" hint="Enter text" returnKeyType="done"

autocorrect="false" maxLength="100">

 </TextView>

</GridLayout>

Here, maxLength represent maximum length accepted by TextView.

Output

Below is the output of TextView:

NativeScript

 34

NativeScript

 35

SearchBar

This component is used for search any queries or submit any request. It is defined below:

<StackLayout>

 <SearchBar id="bar" hint="click here to search ..."></SearchBar>

</StackLayout>

We can apply styles:

<StackLayout>

 <SearchBar id="bar" hint="click here to search ..." color="green"

backgroundColor="green"></SearchBar>

</StackLayout>

Below is the output of SearchBarStyle:

NativeScript

 36

Switch

Switch is based on toggle to choose between options. Default state is false. It is defined

below:

<StackLayout>

 <Switch checked="false" loaded="onSwitchLoaded"></Switch>

</StackLayout>

The output for the above program is shown below:

NativeScript

 37

Slider

Slider is a sliding component to pick a numeric range. It is defined below:

<Slider value="30" minValue="0" maxValue="50"

loaded="onSliderLoaded"></Slider>

The output for the above program is given below:

NativeScript

 38

Progress

Progress widget indicates progress in an operation. Current progress is represented as

bar. It is defined below:

<StackLayout verticalAlign="center" height="50">

 <Progress value="90" maxValue="100" backgroundColor="red" color="green"

row="0"></Progress>

</StackLayout>

Below is the output of Progress widget:

NativeScript

 39

ActivityIndicator

ActivityIndicator shows a task in a progress. It is defined below:

<StackLayout verticalAlign="center" height="50">

 <ActivityIndicator busy="true" color="red" width="50"

height="50"></ActivityIndicator>

</StackLayout>

Below is the output for ActivityIndicator:

NativeScript

 40

Image

Image widget is used to display an image. It can be loaded using ‘ImageSource’ url. It is

defined below:

<StackLayout class="m-15" backgroundColor="lightgray">

 <Image src="~/images/logo.png" stretch="aspectFill"></Image>

</StackLayout>

The output for Image Widget is as shown below:

NativeScript

 41

WebView

WebView shows web pages. Web pages can be loaded using URL. It is defined below:

<WebView row="1" loaded="onWebViewLoaded" id="myWebView"

src="http://www.google.com"></WebView>

The output for the above code is as shown below:

NativeScript

 42

DatePicker

DatePicker component is used to pick date. It is defined below:

<StackLayout class="m-15" backgroundColor="lightgray">

<DatePicker year="1980" month="4" day="20"

 verticalAlignment="center">

</DatePicker>

</StackLayout>

The output of DatePicker component is as shown below:

NativeScript

 43

TimePicker

TimePicker component is used to pick the time. It is defined below:

<StackLayout class="m-15" backgroundColor="lightgray">

<TimePicker hour="9"

 minute="25"

 maxHour="23"

 maxMinute="59"

 minuteInterval="5">

</TimePicker>

</StackLayout>

Below is the output of TimePicker component:

NativeScript

 44

NativeScript

 45

NativeScript provides collection of container component for the sole purpose of laying out

UI widget component. Layout containers act as the parent component and can have one

or more child components. All child components of a layout container can be arranged

based on the technique provided by its parent layout container.

NativeScript supports six layouts containers and they are as follows:

 Absolute layout container

 Dock layout container

 Grid layout container

 Stack layout container

 Wrap layout container

 FlexBox layout container

Let us learn all the layout container concepts in detail in this chapter.

Absolute Layout

AbsoluteLayout container is the simplest layout container in NativeScript.

AbsoluteLayout does not enforce any constraint on its children and will place its children

inside it using 2-dimensional coordinate system with top-left corner as origin.

AbsoluteLayout uses four properties of its children to position them and they are as

follows:

top: Defines the placement of the child from origin moving downwards in y direction.

left: Defines the placement of the child from origin moving sidewards in x direction.

width: Defines the width of the child.

height: Defines the height of the child.

Let us add AbsoluteLayout container in the home page of our application as below:

<ActionBar>

 <Label text="Home"></Label>

</ActionBar>

<AbsoluteLayout width="200" height="300" backgroundColor="blue">

 <Label text="Top Left" left="0" top="0" width="100" height="150"

backgroundColor="green"></Label>

 <Label text="Top Right" left="100" top="0" width="100" height="150"

backgroundColor="blue"></Label>

 <Label text="Bottom Left" left="0" top="150" width="100" height="150"

backgroundColor="orange"></Label>

7. NativeScript ― Layout Containers

NativeScript

 46

 <Label text="Bottom Right" left="100" top="150" width="100" height="150"

backgroundColor="red"></Label>

</AbsoluteLayout>

Output

The output of the AbsoluteLayout is as given below:

DockLayout

Docklayout container component enables its children to dock inside it. Each side of the

container (top, bottom, left, right) can dock a child component. DockLayout container uses

the dock property of its children to correctly dock them.

The possible values of the dock property is as follows:

top: Layout container dock the child component at the top corner.

bottom: Layout container dock the child component at the bottom corner.

left: Layout container dock the child component at the left corner.

right: Layout container dock the child component at the right corner.

NativeScript

 47

By default, DockLayout container docks its last child component. It can override by

setting its stretchLastChild property to zero.

Let us add DockLayout container in the home page of our application as below:

<ActionBar>

 <Label text="Home"></Label>

</ActionBar>

<DockLayout width="250" height="300" backgroundColor="blue"

stretchLastChild="false">

 <Label text="left" dock="left" width="50" backgroundColor="green"></Label>

 <Label text="top" dock="top" height="50" backgroundColor="orange"></Label>

 <Label text="right" dock="right" width="50" backgroundColor="red"></Label>

 <Label text="bottom" dock="bottom" height="50"

backgroundColor="orange"></Label>

</DockLayout>

Output

Below is the output for DockLayout:

NativeScript

 48

GridLayout

GridLayout container component is one of the complex layout container and arranges child

elements in tabular format with rows and columns. By default, it has one row and one

column. It has the following properties:

columns: Used to represent the default width of each column separated by ,. The possible

values are number, * and auto keyword.

Where,

 number indicates an absolute column width.

 indicates the width of a column relative to other columns. It can be preceded by

number to indicate how many times the column width should be relative to other

column. For example, 2* indicate the width the column should be 2 times the width

of the smallest column.

 auto indicates the width of the column as wide as its widest child.

For example, *,2* means two columns and second will be twice the size of first column.

rows: Used to represent the default height of each row separated by ,. Value

representation is similar to columns.

GridLayout uses the below specified properties of its children to layout them:

row: Row number

col: Column number

rowSpan: total number of rows that child content spans within a layout.

colSpan: total number of columns that child content spans within a layout.

Let us add GridLayout container in the home page of our application as below:

<ActionBar>

 <Label text="Home"></Label>

</ActionBar>

<GridLayout columns="50, auto, *" rows="50, auto, *" width="210" height="210"

backgroundColor="blue">

 <Label text="Row: 0; Column 0" row="0" col="0"

backgroundColor="green"></Label>

 <Label text="Row: 0; Column 1" row="0" col="1" colSpan="1"

backgroundColor="brown"></Label>

 <Label text="Row: 1; Column 0" row="1" col="0" rowSpan="1"

backgroundColor="red"></Label>

 <Label text="Row: 1; Column 1" row="1" col="1"

backgroundColor="orange"></Label>

</GridLayout>

Output

Below is the output for GridLayout:

NativeScript

 49

StackLayout

StackLayout organizes its children in a one-dimensional line either horizontally or

vertically. It can be sized based on the space in the layout using layout options. It has

orientation property that can be used to specify direction, horizontal or vertical.

Let us add StackLayout container in the home page of our application as below:

<ActionBar>

 <Label text="Home"></Label>

</ActionBar>

<StackLayout orientation="vertical" width="200" height="200"

backgroundColor="blue">

 <Label text="Label1" width="50" height="50"

backgroundColor="green"></Label>

 <Label text="Label2" width="50" height="50"

backgroundColor="brown"></Label>

 <Label text="Label3" width="50" height="50" backgroundColor="red"></Label>

 <Label text="Label4" width="50" height="50"

backgroundColor="orange"></Label>

</StackLayout>

NativeScript

 50

Output

The output for StackLayout is as shown below:

WrapLayout

WrapLayout is used to wrap contents on new rows or columns.

It has the following three properties:

orientation: display either horizontally or vertically.

itemWidth: layout width for each child.

itemHeight: layout height for each child.

Let us add WrapLayout container in the home page of our application as below:

<ActionBar>

 <Label text="Home"></Label>

</ActionBar>

<WrapLayout orientation="horizontal" width="200" height="200"

backgroundColor="blue">

NativeScript

 51

 <Label text="Label1" width="70" height="70" backgroundColor="green"</Label>

 <Label text="Label2" width="70" height="70"

backgroundColor="brown"></Label>

 <Label text="Label3" width="70" height="70" backgroundColor="red"></Label>

 <Label text="Label4" width="70" height="70"

backgroundColor="orange"></Label>

</WrapLayout>

Output

Flexbox Layout

FlexboxLayout container component is one of the advanced layout container. It provides

option to render simple layout to very complex and sophisticated layouts. It is based on

the CSS Flexbox.

FlexboxLayout component has lot of properties and they are as follows:

flexDirection

It represents the direction in which the child components are arranged. The possible values

of flexDirection are as follows:

row: Child components are arranged side by side.

NativeScript

 52

row-reverse: Child components are arranged side by side but in reverse direction.

column: Child components are arranged one below the another.

column-reverse: Child components are arranged one below the another but in reverse

direction.

Let us add FlexLayout container in the home page of our application as below:

<ActionBar>

 <Label text="Home"></Label>

</ActionBar>

<FlexboxLayout flexDirection="row">

 <Label text="First Item" backgroundColor="red"></Label>

 <Label text="Second Item" backgroundColor="green"></Label>

 <Label text="Third Item" backgroundColor="red"></Label>

 <Label text="Fourth Item" backgroundColor="green"></Label>

 <Label text="Fifth Item" backgroundColor="red"></Label>

</FlexboxLayout>

Output

Below is the output of FlexLayout – Row:

NativeScript

 53

Now, let us change the flexDirection value from row to row-reverse and check how it

affects the layout.

<ActionBar>

 <Label text="Home"></Label>

</ActionBar>

<FlexboxLayout flexDirection="row-reverse">

 <Label text="First Item" backgroundColor="red"></Label>

 <Label text="Second Item" backgroundColor="green"></Label>

 <Label text="Third Item" backgroundColor="red"></Label>

 <Label text="Fourth Item" backgroundColor="green"></Label>

 <Label text="Fifth Item" backgroundColor="red"></Label>

</FlexboxLayout>

Output

Below is the output of Flex Layout - Row Reverse:

NativeScript

 54

Let us change the flexDirection value from row-reverse to column and check how it affects

the layout.

<ActionBar>

 <Label text="Home"></Label>

</ActionBar>

<FlexboxLayout flexDirection="column">

 <Label text="First Item" backgroundColor="red"></Label>

 <Label text="Second Item" backgroundColor="green"></Label>

 <Label text="Third Item" backgroundColor="red"></Label>

 <Label text="Fourth Item" backgroundColor="green"></Label>

 <Label text="Fifth Item" backgroundColor="red"></Label>

</FlexboxLayout>

Output

The output for FlexLayout – Column is given below:

NativeScript

 55

Let us change the flexDirection value from column to column-reverse and check how it

affects the layout.

<ActionBar>

 <Label text="Home"></Label>

</ActionBar>

<FlexboxLayout flexDirection="column-reverse">

 <Label text="First Item" backgroundColor="red"></Label>

 <Label text="Second Item" backgroundColor="green"></Label>

 <Label text="Third Item" backgroundColor="red"></Label>

 <Label text="Fourth Item" backgroundColor="green"></Label>

 <Label text="Fifth Item" backgroundColor="red"></Label>

</FlexboxLayout>

Output

Below is the output of FlexLayout – Column Reverse:

NativeScript

 56

flexWrap

It represents whether the child components will be rendered in a single row/column or

flow into multiple rows by wraping in the direction set by flexDirection.

The possible values are as follows:

wrap: Wraps the children components, if no space is available in the given direction

(flexDirection).

wrap-reverse: Same as wrap except the component flow in opposite direction.

Let us add the flexWrap property and then set its value as wrap. Also add three more

children as specified below:

<ActionBar>

 <Label text="Home"></Label>

</ActionBar>

<FlexboxLayout flexDirection="row" flexWrap="wrap">

 <Label text="First Item" backgroundColor="red"></Label>

 <Label text="Second Item" backgroundColor="green"></Label>

 <Label text="Third Item" backgroundColor="red"></Label>

 <Label text="Fourth Item" backgroundColor="green"></Label>

 <Label text="Fifth Item" backgroundColor="red"></Label>

NativeScript

 57

 <Label text="Sixth Item" backgroundColor="green"></Label>

 <Label text="Seventh Item" backgroundColor="red"></Label>

 <Label text="Eighth Item" backgroundColor="green"></Label>

</FlexboxLayout>

Output

Below is the output for flexWrap:

JustifyContent

It represents how child components are arranged with respect to each other and the

overall structure. It has three properties as specified below:

flex-end: It packs the child component toward the end line.

space-between: It packs the child component by evenly distributing in line.

space-around: Similar to space-between except it packs the child component by evenly

distributing in line as well as equal space around them.

Let us add justifyContent as well and check how it behaves:

<ActionBar>

 <Label text="Home"></Label>

NativeScript

 58

</ActionBar>

<FlexboxLayout flexDirection="row" flexWrap="wrap" justifyContent="space-

around">

 <Label text="First Item" backgroundColor="red"></Label>

 <Label text="Second Item" backgroundColor="green"></Label>

 <Label text="Third Item" backgroundColor="red"></Label>

 <Label text="Fourth Item" backgroundColor="green"></Label>

 <Label text="Fifth Item" backgroundColor="red"></Label>

 <Label text="Sixth Item" backgroundColor="green"></Label>

 <Label text="Seventh Item" backgroundColor="red"></Label>

 <Label text="Eighth Item" backgroundColor="green"></Label>

</FlexboxLayout>

Output

Below is the output of Flex Layout – JustifyContent:

FlexLayout container provides two more properties for its children to specify the order and

ability to shrink. They are as follows:

order: It determines that order in which the children of the FlexLayout container will be

rendered.

flexShrink: It determines the ability of the children to shrink to level 0.

NativeScript

 59

Navigation enables users to quickly swipe in to their desired screen or to navigate through

an app or to perform a particular action. Navigation component helps you implement

navigation using simple button clicks to more complex patterns.

Navigation differ substantially between core and angular version of NativeScript. While

core framework navigation is foundation for navigation process, NativeScript’s Angular

model adopts the core navigation concept and extends it to make it compatible with

Angular framework.

Let us see both core navigation concept and angular adoption of navigation in this chapter.

Core Concepts

Let us understand how the navigation works in core NativeScript in this chapter.

In NativeScript, navigation is split into four different categories based on the direction it

applies as specified below:

 Forward navigation

 Backward navigation

 Lateral navigation

 Bottom navigation

Forward Navigation

Forward Navigation refers to navigating users to the screen in the next level of hierarchy.

It is based on two NativeScript components, Frame and Page.

Frame

Frame is the root level component for navigation. It is not a visible container but acts as

a container for transitions between pages.

A simple example is as follows:

<Frame id="featured" defaultPage="featured-page" />

Here,

Frame navigates to (or loads) the featured-page page component and renders it.

Page

Page is next to Frame component and it acts as a container for UI component. Simple

example is defined below:

<Page loaded="onPageLoaded">

 <ActionBar title="Item" class="action-bar"></ActionBar>

8. NativeScript — Navigation

NativeScript

 60

 <AbsoluteLayout>

 <Label text="Label"/>

 <Button text="navigate('another-page')" tap="onTap"/>

 </AbsoluteLayout>

</Page>

Here,

 Initially, Page loads all the UI component of the screen and renders it.

 When user clicks the button, it will navigate the user to another-page page.

Backward Navigation

Backward navigation method enables backward movement through screens within one

app or across different apps. It is the opposite direction of forward navigation. Simple

goBack() method is used to navigate back to the previous page.

It is defined below:

<Page class="page" loaded="onPageLoaded">

 <ActionBar title="Item" class="action-bar"></ActionBar>

 <StackLayout class="home-panel">

 <Button class="btn btn-primary" text="Back" tap="goBack"/>

 </StackLayout>

</Page>

Here,

goBack() method will be triggered when user taps the button. goBack() navigates the

users to the previous page, if one is available.

Lateral Navigation

Lateral navigation refers to the navigation between screens at same levels of hierarchy. It

is based on hub pattern. It is enabled through specific navigation components such as

BottomNavigation, Tabs, TabView, SideDrawer and Modal View.

A simple example is defined as below:

<Page class="page" xmlns="http://www.nativescript.org/tns.xsd">

 <ActionBar title="Hub" class="action-bar">

 </ActionBar>

 <StackLayout class="home-panel">

 <Button class="btn btn-primary" text="navigate('featured-page')"

tap="navigateToFeatured" />

 <Button class="btn btn-primary" text="navigate('search-page')"

tap="navigateToSearch" />

 </StackLayout>

</Page>

Here,

NativeScript

 61

 navigateToFeatured function uses navigate() method to navigate the user to

featured page.

 Similarly, navigateToSearch function will navigate the user to search page.

The hub page can also be reached using navigate method available in page screen and

one can move out of hub page using goBack() method.

A simple example is as follows:

<Page class="page">

 <ActionBar title="Item" class="action-bar"></ActionBar>

 <StackLayout class="home-panel">

 <Button class="btn btn-primary" text="navigate('hub-page')"

tap="navigateToHub" />

 <Button class="btn btn-primary" text="goBack()" tap="goBack" />

 </StackLayout>

</Page>

Bottom and Tab Navigation

The most common style of navigation in mobile apps is tab-based navigation. The Tab

Navigation is arranged at the bottom of the screen or on the top below the header. It is

achieved by using TabView and BottomNavigation component.

Angular based navigation

NativeScript extends its navigation concept to accommodate the Angular routing concept.

NativeScript provides a new module, NativeScriptRouterModule by extending Angular

RouterModule.

NativeScript angular navigation concept can be categorized into section as below:

 page-router-outlet tag

 nsRouterLink attractive

 RouterExtension class

 Custom RouterReuseStrategy

Let us learn all the above angular navigation in this section.

Page Router Outlet

As learned earlier, page-router-outlet is the replacement of Angular’s router-outlet. page-

router-outlet wraps the Frame and Page strategy of Nativescript core navigation

framework. Each page-router-outlet creates a new Frame component and each configured

components in the outlet will be wrapped using Page component. Then, the native navigate

method is used to navigate to another page / route.

Router Link (nsRouterLink)

nsRouterLink is the replacement of Angular’s RouterLink. It enables UI component to link

to another page using route. nsRouterLink also provides below two options:

NativeScript

 62

pageTransition: It is used to set page transition animation. true enables default

transition. false disables the transition. Specific values like slide, fadein, etc., set the

particular transition.

clearHistory: true clears the navigation history of nsRouterLink.

A simple example code is as follows:

<Button text="Go to Home" [nsRouterLink]="['/home']"

 pageTransition="slide"

 clearHistory="true"></Button>

Router Extension

NativeScript provides RouterExtensions class and exposes the navigation function of the

core NativeScript.

The methods exposed by RouterExtensions are as follows:

 navigate

 navigateByUrl

 back

 canGoBack

 backToPreviousPage

 canGoBackToPreviousPage

A simple example code using RouterExtensions is as follows:

import { RouterExtensions } from "nativescript-angular/router";

@Component({

 // ...

})

export class HomeComponent {

 constructor(private routerExtensions: RouterExtensions) {

 }

}

Custom Route Reuse Strategy

NativeScript uses a custom route reuse strategy (RouterReuseStrategy) to accommodate

the architecture of a mobile application. A mobile application differs in certain aspects in

comparison to a web application.

For example, the page can be destroyed in a web application when user navigates away

from the page and recreates it when the user navigates to the page. But, in mobile

application, the page will be preserved and reused. These concepts are taken into

consideration while designing the routing concept.

Routes

NativeScript

 63

A simple routing module in NativeScript Angular application will be as below:

import { NgModule } from "@angular/core";

import { Routes } from "@angular/router";

import { NativeScriptRouterModule } from "nativescript-angular/router";

import { HomeComponent } from "./home.component";

import { SearchComponent } from "./search.component";

const routes: Routes = [

 { path: "", redirectTo: "/home", pathMatch: "full" },

 { path: "home", component: HomeComponent },

 { path: "search", component: SearchComponent },

];

@NgModule({

 imports: [NativeScriptRouterModule.forRoot(routes)],

 exports: [NativeScriptRouterModule]

})

export class AppRoutingModule { }

Here,

Routing module is very similar to Angular version except very few exceptions. In reality,

NativeScript uses its core navigation strategy by exposing it in a way similar to Angular

framework.

NativeScript

 64

In every GUI application, events play a very important role of enabling user interaction.

Whenever user interact with the application, an event fires and a corresponding action will

be executed.

For example, when user clicks the Login button in the login page of an application, it

triggers the login process.

Events involve two actors:

 Event sender: object, which raise the actual event.

 Event listener: function, which listen for a particular event and then executed

when an event is fired.

Observable Class

It is a pre-defined class to handle events. It is defined below:

const Observable = require("tns-core-modules/data/observable").Observable;

In NativeScript, almost every object derives from Observable class and so every object

support events.

Event Listener

Let us understand how to create an object and add an event listener to the object in this

chapter.

Step 1

Create a button that is used to generate an event as specified below:

const Button = require("tns-core-modules/ui/button").Button;

const testButton = new Button();

Step 2

Next add text to the button as specified below:

testButton.text = "Click";

Step 3

Create a function, onTap as specified below:

9. NativeScript ― Events Handling

NativeScript

 65

let onTap = function(args) {

 console.log("you clicked!");

};

Step 4

Now attach tap event to the onTap function as specified below:

testButton.on("tap", onTap, this);

An alternate way to add an event listener is as follows:

testButton.addEventListener("tap", onTap, this);

Step 5

An alternative way to attach event is through UI itself as specified below:

<Button text="click" (tap)="onTap($event)"></Button>

Here,

$event is of type EventData. EventData contains two property and they are follows:

Object: Observable instance that is used to raise an event. In this scenario, it is Button

object.

EventName: It is the event name. In this scenario, it is tap event.

Step 6

Finally, an event listener can be detached / removed at any time as specified below:

testButton.off(Button.onTap);

You can also use another format as shown below:

testButton.removeEventListener(Button.onTap);

Modifying BlankNgApp

Let us modify the BlankNgApp application to better understand the events in NativeScript.

Step 1

Open the home component’s UI, src/app/home/home.component.html and add below

code:

<ActionBar>

 <Label text="Home"></Label>

</ActionBar>

NativeScript

 66

<StackLayout>

 <Button text='Fire an event' class="-primary" color='gray'

 (tap)='onButtonTap($event)'></Button>

</StackLayout>

Here,

 tap is the event and Button is event raiser.

 onButtonTap is the event listener.

Step 2

Open the home component’s code, ‘src/app/home/home.component.ts’ and update the

below code:

import { Component, OnInit } from "@angular/core";

import { EventData } from "tns-core-modules/data/observable";

import { Button } from "tns-core-modules/ui/button"

@Component({

 selector: "Home",

 templateUrl: "./home.component.html"

})

export class HomeComponent implements OnInit {

 constructor() {

 // Use the component constructor to inject providers.

 }

 ngOnInit(): void {

 // Init your component properties here.

 }

 onButtonTap(args: EventData): void {

 console.log(args.eventName);

 const button = <Button>args.object;

 console.log(button.text);

 }

}

Here,

 Added new event listener, onButtonTap.

 Print the event name, tap and button text, Fire an event in the console.

Step 3

Run the application and tap the button. It prints the below line in the console.

LOG from device <device name>: tap

LOG from device <device name>: Fire an event

NativeScript

 67

Data binding is one of the advanced concepts supported by NativeScript. NativeScript

follows Angular data binding concept as closely as possible. Data binding enables the UI

component to show/update the current value of the application data model without any

programming effort.

NativeScript supports two type of data binding. They are as follows:

One-Way data binding: Update the UI whenever the model is changed.

Two-Way data binding: Sync the UI and model. Whenever the model is updated, UI is

updated automatically and also whenever the UI gets data from user (UI gets updated),

the model will be updated.

Let us learn both the concepts in this section.

One-Way Data Binding

NativeScript provides a simple option to enable one-way data binding in a UI component.

To enable one-way data binding, just add square bracket in the property of the target UI

and then assign it the necessary model’s property.

For example, to update the text content of a Label component, just change the UI code as

below:

<Label [text]='this.model.prop' />

Here,

this.model.prop refers to the property of the model, this.model.

Let us change our BlankNgApp to understand the one-way data binding.

Step 1

Add a new model, User (src/model/user.ts) as follows:

export class User {

 name: string

}

Step 2

Open UI of our component, src/app/home/home.component.html and update the code as

below:

<ActionBar>

 <Label text="Home"></Label>

</ActionBar>

10. NativeScript — Data Binding

NativeScript

 68

<GridLayout columns="*" rows="auto, auto, auto">

 <Button text="Click here to greet" class="-primary" color='gray'

(tap)='onButtonTap($event)' row='1' column='0'></Button>

 <Label [text]='this.user.name'

 row='2' column='0'

 height="50px" textAlignment='center'

 style='font-size: 16px; font-weight: bold; margin: 0px 32px 0

25px;'></Label>

</GridLayout>

Here,

 Label’s text is set to the user model’s property name.

 Button tap event is attached to onButtonTap method.

Step 3

Open code of the home component, src/app/home/home.component.ts and update the

code as below:

import { Component, OnInit } from "@angular/core";

import { User } from "../../model/user"

@Component({

 selector: "Home",

 templateUrl: "./home.component.html"

})

export class HomeComponent implements OnInit {

 public user: User;

 constructor() {

 // Use the component constructor to inject providers.

 this.user = new User();

 this.user.name = "User1";

 }

 ngOnInit(): void {

 // Init your component properties here.

 }

 onButtonTap(args: EventData) {

 this.user.name = 'User2';

 }

}

Here,

 user model is imported

 User object is created in component’s constructor

 onButtonTap event is implemented. Implementation of onButtonTap updates the

User object and set name of the property as User2

NativeScript

 69

Step 4

Compile and run the application and click the button to change the model and it will

automatically change the Label text.

The initial and final state of the application is as follows:

Initial State

One Way Data Binding Initial State is shown below:

Final State

One Way Data Binding Final State is shown below:

NativeScript

 70

Two-way Data Binding

NativeScript also provides two-way data binding for advanced functionality. It binds the

model data to UI and also binds the data updated in UI to model.

To do two-way data binding, use ngModel property and then surround it with [] and () as

below:

<TextField [(ngModel)] = 'this.user.name'></TextField>

Let us change the BlankNgApp application to better understand the two-way data binding.

Step 1

Import NativeScriptFormsModule into the HomeModule (src/app/home/home.module.ts)

as specified below:

import { NgModule, NO_ERRORS_SCHEMA } from "@angular/core";

import { NativeScriptCommonModule } from "nativescript-angular/common";

import { HomeRoutingModule } from "./home-routing.module";

import { HomeComponent } from "./home.component";

import { NativeScriptFormsModule } from "nativescript-angular/forms";

NativeScript

 71

@NgModule({

 imports: [

 NativeScriptCommonModule,

 HomeRoutingModule,

 NativeScriptFormsModule

],

 declarations: [

 HomeComponent

],

 schemas: [

 NO_ERRORS_SCHEMA

]

})

export class HomeModule { }

Here,

NativeScriptFormsModule enables the two-way data binding. Otherwise, the two-way data

binding will not work as expected.

Step 2

Change the UI of the home component as given below:

<ActionBar>

 <Label text="Home"></Label>

</ActionBar>

<GridLayout columns="*" rows="auto, auto">

 <TextField hint="Username" row='0' column='0'

 color="gray"

 backgroundColor="lightyellow"

 height="75px"

 [(ngModel)]='this.user.name'></TextField>

 <Label [text]='this.user.name'

 row='1' column='0'

 height="50px" textAlignment='center'

 style='font-size: 16px; font-weight: bold; margin: 0px 32px 0

25px;'></Label>

</GridLayout>

Here,

 Label component’s text property is set with one-way data binding. If the model

user is updated, then its text property will automatically get updated.

 TextField component sets the ngModel as this.user.name. If the model user is

updated, then it’s text property will automatically get updated. At the same time,

if user changes the TextField’s value, then the model gets updated as well. If the

model gets updated, it will trigger Label’s text property changes as well. So, if user

changes data, then it will show in Label’s text property.

Step 3

NativeScript

 72

Run the application and try to change the value of text box.

The initial and final state of the application will be similar as specified below:

Initial State

Two-way data binding – Initial state is given below:

Final State

Two-way data binding – Final state is shown below:

NativeScript

 73

NativeScript

 74

A NativeScript Module contains a set of related functionalities packaged as single library.

Let us learn the modules provided by NativeScript framework.

It contains core functionalities of the NativeScript framework. Let us understand the core

modules in this chapter.

Application

Application contains platform specific implementation of mobile application. Simple core

module is defined below:

const applicationModule = require("tns-core-modules/application");

Console

Console module is used to log message. It has the following methods:

console.log("My FirstApp project");

console.info("Native apps!");

console.warn("Warning message!");

console.error("Exception occurred");

application-settings

application-settings module contains method to manage application settings. To add this

module, we need to add the following code:

const appSettings = require("tns-core-modules/application-settings");

Few methods available in the application-setting are as follows:

 setBoolean(key: string, value: boolean) - set boolean object

 setNumber(key: string, value: number) - set number object

 setString(key: string, value: string) - sets string object

 getAllKeys() - Contains all stored keys

 hasKey(key: string) - check whether a key present or not

 clear - clears stored values

 remove - remove any entry based on key.

A simple example using application setting is as follows:

function onNavigatingTo(args) {

 appSettings.setBoolean("isTurnedOff", false);

11. NativeScript ― Modules

NativeScript

 75

 appSettings.setString("name", "nativescript");

 appSettings.setNumber("locationX", 54.321);

 const isTurnedOn = appSettings.getBoolean("isTurnedOn");

 const username = appSettings.getString("username");

 const locationX = appSettings.getNumber("locationX");

 // Will return "not present" if there is no value for "noKey"

 const someKey = appSettings.getString("noKey", "not present");

}

exports.onNavigatingTo = onNavigatingTo;

function onClear() {

 // Removing a single entry via its key name

 appSettings.remove("isTurnedOff");

 // Clearing the whole settings

 appSettings.clear();

}

http

This module is used for handling http request and response. To add this module in your

application, add the following code:

const httpModule = require("tns-core-modules/http");

We can send data using the following methods:

getString: It is used to make request and downloads the data from URL as string. It is

defined below:

httpModule.getString("https://.../get").then((r) => {

 viewModel.set("getStringResult", r);

}, (e) => {

});

getJSON: It is used to access data from JSON. It is defined below:

httpModule.getJSON("https://.../get").then((r) => {

}, (e) => {

});

getImage: downloads the content from specified URL and return ImageSource object. It

is defined below:

httpModule.getImage("https://.../image/jpeg").then((r) => {

}, (e) => {

});

getFile: It has two arguments URL and file path.

NativeScript

 76

 URL - downloads the data.

 File path - save URL data into the file. It is defined below:

httpModule.getFile("https://").then((resultFile) => {

}, (e) => {

});

request: It has options argument. It is used to request options and return HttpResponse

object. It is defined below:

httpModule.request({

 url: "https://.../get",

 method: "GET"

}).then((response) => {

}, (e) => {

});

Image-source

image-source module is used save image. We can add this module using the below

statement:

const imageSourceModule = require("tns-core-modules/image-source");

If you want to load images from resource, use the below code:

const imgFromResources = imageSourceModule.fromResource("icon");

To add image from local file, use the below command:

const folder = fileSystemModule.knownFolders.currentApp();

const path = fileSystemModule.path.join(folder.path, "images/sample.png");

const imageFromLocalFile = imageSourceModule.fromFile(path);

To save image to the file path, use the below command:

const img = imageSourceModule.fromFile(imagePath);

const folderDest = fileSystemModule.knownFolders.documents();

const pathDest = fileSystemModule.path.join(folderDest.path, "sample.png");

const saved = img.saveToFile(pathDest, "png");

if (saved) {

 console.log(" sample image saved successfully!");

}

Timer

This module is used to execute code at specific time intervals. To add this, we need to use

require:

NativeScript

 77

const timerModule = require("tns-core-modules/timer");

It is based on two methods:

setTimeout: It is used to delay the execution. It is represented as milliseconds.

setInterval: It is used to apply recurring at specific intervals.

Trace

This module is useful for debugging. It gives the logging information. This module can be

represented as:

const traceModule = require("tns-core-modules/trace");

If you want to enable in your application then use the below command:

traceModule.enable();

ui/image-cache

image-cache module is used to handle image download requests and caches downloaded

images. This module can be represented as shown below:

const Cache = require("tns-core-modules/ui/image-cache").Cache;

connectivity

This module is used to receive the connection information of the connected network. It

can be represented as:

const connectivityModule = require("tns-core-modules/connectivity");

Functionality Modules

Functionality modules include lot of system/platform specific modules. Some of the

important modules are as follows:

platform: Used to display the information about your device. It can be defined as given

below:

const platformModule = require("tns-core-modules/platform");

fps-meter: Used to capture frames per second. It can be defined as given below:

const fpsMeter = require("tns-core-modules/fps-meter");

file-system: Used to work with your device file system. It is defined below:

NativeScript

 78

const fileSystemModule = require("tns-core-modules/file-system");

ui/gestures: Used to work with UI gestures.

UI module

UI module includes the UI component and its related functionality. Some of the important

UI modules are as follows:

 frame

 page

 color

 text/formatted-string

 xml

 styling

 animation

NativeScript

 79

The npm package is used for adding native functionality. Using this package, we can install

or search or delete any plugins. This section explains about plugins in detail.

Commands

Following commands are used to manage plugins for your project. They are listed below:

add: It is used to install plugin.

update: Updates specified plugin and modify its dependencies.

remove: Removes the plugin.

build: It is used to build plugin for iOS or android projects.

create: Creates a plugin for your project.

Adding plugin

Below syntax is used to add a new plugin:

tns plugin add <plugin-name>

For example, if you want to add nativescript-barcodescanner, you can use the following

code:

tns plugin add nativescript-barcodescanner

You could see the following response:

+ nativescript-barcodescanner@3.4.1

added 1 package from 1 contributor and audited 11704 packages in 8.76s

You can also use npm module to add the above plugin:

npm install nativescript-barcodescanner

Now, NativeScript CLI downloads the plugin from npm and add inside your node_modules

folder.

If you want to add the plugin directly to your package.json and resolve all the

dependency issues, you can use the below command instead of the previous one:

npm i nativescript-barcodescanner

If you want to install a developer dependencies during development, use the below code:

12. NativeScript — Plugins

NativeScript

 80

npm i tns-platform-declarations --save-dev

Here,

tns-platform-declarations is a developer dependency required only for intelliSense during

the development process.

Importing plugins

Now, we have installed nativescript-barcodescanner plugin. Let us add inside your

project using the below command:

const maps = require("nativescript-barcodescanner");

maps.requestPermissions();

Updating plugins

This method is used to update a specified plugin so it uninstalls previous one and installs

new version and modify its dependencies. It is defined below:

tns plugin update <Plugin name version>

Removing plugin

If you want remove the plugin, if not required, you can use the below syntax:

tns plugin remove <plugin-name>

For example, if you want to remove the above installed nativescript-google-maps-sdk,

then use the below command:

tns plugin remove nativescript-barcodescanner

You could see the following response:

Successfully removed plugin nativescript-barcodescanner

Building plugins

It is used to build the plugin’s Android-specific project files located in platforms/android.

Let us build the nativescript-barcodescanner pugin using the below command:

tns plugin build nativescript-barcodescanner

NativeScript

 81

Creating plugins

NativeScript plugins are simple JavaScript modules. It is defined inside your application

src\package.json file. This module is used to create a new project for NativeScript plugin

development. It is defined below:

tns plugin create <Plugin Repository Name> [--path <Directory>]

NativeScript

 82

This section explains about the overview of accessing Native APIs using JavaScript.

Marshalling

The NativeScript Runtime provides implicit type conversion for both android and iOS

platforms. This concept is known as marshalling. For example, NativeScript- iOS paltform

can implicitly convert JavaScript and Objective-C data types similarly, Java/Kotlin can

easily be mapped to JavaScript project types and values. Let us understand how to perform

marshalling in each type one by one briefly.

Numeric values

We can easily convert iOS and android numeric data types into Javascript numbers. Simple

numeric conversion for iOS into Javascript is defined below:

console.log(`max(7,9) = ${max(7,9)}`);

Here,

The native max() function is converted into JavaScript number.

Android Environment

Java supports different numeric types such as byte, short, int, float, double and long.

JavaScript has only number type.

Consider a simple Java class shown below:

class Demo extends java.lang.Object

{

 public int maxMethod(int a,int b)

 {

 if(a>b)

 {

 return a;

 }

 else

 {

 return b;

 }

 }

}

Here,

The above code contains two integer arguments. We can call the above code object using

JavaScript as shown below:

13. NativeScript ― Native APIs Using Javascript

NativeScript

 83

//Create an instance for Demo class

var obj = new Demo();

//implicit integer conversion for calling the above method

obj.maxMethod(7,9);

Strings

Android strings are defined in java.lang.string and iOS strings are defined in NSSring. Let

us see how to perform marshalling in both platforms.

Android

Strings are immutable but String buffers support mutable strings.

Below code is an example for simple mapping:

//Create android label widget

var label = new android.widget.Label();

//Create JavaScript string

var str = "Label1";

//Convert JavaScript string into java

label.setText(str); // text is converted to java.lang.String

Boolean class is defined in java.lang.Boolean. This class wraps a value of boolean in an

object. We can easily convert boolean to String and vice-versa. Simple example is defined

as given below:

//create java string

let data = new java.lang.String('NativeScript');

//map java String to JavaScript string,

let result = data.startsWith('N');

//return result

console.log(result); // true

iOS environment

NSString class is immutable but its subclass NSMutableString is immutable. This class

contains a collection of methods for working with strings. It is declared as below:

class NSString : NSObject

Consider a simple objective-c declaration as shown below:

NSString *str = @"nativescript";

//convert the string to uppercase

NativeScript

 84

NSString *str1;

str1 = [str uppercaseString];

NSLog(@"Uppercase String : %@\n", str1);

NSStrings can easily be mapped to JavaScript strings.

Array

This section explains about how to perform marshalling in arrays. Let’s take an example

of iOS environment first.

Array declaration

class NSArray : NSObject

Here,

NSArray is used to manage ordered collection of objects called arrays. It is used to create

static array. Its sub class NSMutableArray is used to create dynamic arrays.

Consider NSArray objects can be created using array literals as shown below:

let array: NSArray = ["React","Vue","TypeScript"]

Now, we can map this array into JavaScript as shown below:

//create native array

let nsArr = NSArray.arrayWithArray("React","Vue","TypeScript"]);

//create simple javascript array

let jsArr = ["Hello,World","NativeScript"];

//Now compare the two arrays,

let compare = nsArr.isEqual(jsArr);

console.log(comapre);

This will return the output as false.

Andriod array declartion

Java arrays are defined in java.util.Arrays. This class contains various methods for

manipulating arrays. An example is shown below:

//javascript array

let data = [12,45,23,56,34,78,50];

//create java array

let result = ns.example.Math.maxElement(data);

NativeScript

 85

console.log(result);

Classes and Objects

Classes and Objects are basic concepts of Object Oriented Programming. Class is a user

defined prototype. Object is an instance of class. Class represents the set of properties or

methods that are common to all objects of one type. Let us understand native classes and

objects for both mobile development environments.

Android environment

Java and Kotlin classes have unique identifiers denoted by the full package name.

For example,

android.view.View: It is a basic user interface class for screen layout and interaction

with the user. We can access this class in JavaScript as shown below:

const View = android.view.View;

First, we import the class using the below statement:

import android.view.View;

Next create a class as given below:

public class MyClass

 {

 public static void staticMethod(context)

 {

 //create view instance

 android.view.View myview = new android.view.View(context);

 }

}

In the above same class, we can access JavaScript function using the below code:

const myview = new android.view.View(context);

Similarly, we can access interfaces, constants and enumerations within java.lang

packages.

iOS environment

Objective - C classes are defined in two sections @interface and @implementation. Class

definition starts with the keyword @interface followed by the interface(class) name. In

Objective-C, all classes are derived from the base class called NSObject.

It is the superclass of all Objective-C classes. Simple Circle class is defined as shown

below:

NativeScript

 86

@interface Circle:NSObject

{

 //Instance variable

 int radius;

}

@end

Consider a class with one method as shown below:

@interface MyClass : NSObject

+ (void)baseStaticMethod;

@end

This class can be converted to javascript using the below code:

function MyClass() { /* native call */ };

Object.setPrototypeOf(MyClass, NSObject);

BaseClass.baseStaticMethod = function () { /* native call */ };

JavaScript instanceof operator is used to verify, if an object inherits from a given class.

This can be defined as:

var obj = MyClass.alloc().init(); // object creation

console.log(obj instanceof NSObject); //return true

Here,

Objective - C instances are created using alloc, init or new methods. In the above example,

we can easily create object initialization using new method as below:

var obj = MyClass.new();

Similarly, you can access static methods and properties.

NativeScript

 87

Create and publish your app makes your Android application available to all users. Google

Play is a robust publishing platform. It helps you to publish and distribute your Android

applications to all the users around the whole world. This chapter explains about how to

publish your Native app in Google Play.

NativeScript Sidekick

SideKick is a GUI client and supports all kind of OS. It simplifies NativeScript CLI process

and helps to create mobile application.

Publish your app from Sidekick to Google Play Console

Downloading and installing sidekick depends on your OS. Follow the below steps to run

your app in Sidekick.

Step 1: Launch Sidekick

Let us Launch Sidekick. It looks similar to the below image:

Step 2: Build your device

Now, open your app from your device and select build option from the toolbar and select

Android. You will get a response similar to the below image:

14. NativeScript — Creating an Application in
Android

NativeScript

 88

Step 3: Properties

Click properties tab and add your android configuration. Screen looks similar to the below

one:

Step 4: Plugins

Sidekick helps to find which plugins you depend on for your application. Click on plugins

tab and it will list out the following:

NativeScript

 89

Step 5: Android Certificates

Click cogwheel icon from android and choose browse option, then select a certificate stored

on your file system. It is shown below:

NativeScript

 90

After selecting that, close the dialog box.

Step 6: Build your application

Finally click local build option from build type and select release option from configuration.

After that build your application.

Step 7: Application package

Once build is completed, it will generate a path and apk file. Save the location of the

application package. This apk file is used to upload it to the Google Play store.

Step 8: Publish in Google Play

Select publish option from the toolbar and select Google Play. Then, add Manage Android

Certificates for Google Play Store dialog. It is shown below:

After that, select Build type and provide Service Account JSON key then select Alpha, Beta

or Production tracks finally click upload.

Publish your app in Google Play

To publish your app in Google Play console, you must meet the following prerequisites.

Prerequisites

 You must be registered in Google Play

 You have a valid Google Play self-signed code signing identity

Procedure for publish your app

Below steps are helpful to understand how to release your app in Google Play store.

Step 1: Login Google Play console

Open Google Play console and login with your account.

Step 2: Create an app

NativeScript

 91

Go to the All applications tab and click Create Application and create a new app. Now, add

default language,application title finally click proceed to go further.

Step 3: Fill required fields

Move to store listing tab and fill the required fields, then complete the needed assets and

save all the changes.

Step 4: Price and distribution

Go to Pricing & distribution tab, complete all the settings and save all the changes.

Step 5: Release your app

Choose App releases tab and select Alpha, Beta. It is used for testing your application.

And, select Production tracks. It is used for publishing your app to Google Play. Finally add

the application package (apk).

Step 6: Review your app

This is your final step. In the Review, verify if there are any issues. If no issues, then

confirm rollout to publish your app.

NativeScript

 92

This chapter explains about how to publish your Native app in App Store. Go through the

below steps to publish your app.

Prerequisites

To perform this, you must need the following prerequisites:

 Certificate for distribution

 Distribution provisioning profile

 Registered bundle ID in iOS Dev center

 App record in iTunes Connect

Steps to publish your app

Below are the steps to publish your app:

Step 1: Open NativeScript Sidekick

Launch NativeScript Sidekick and open your app in Sidekick.

Step 2: Select publish

Go to toolbar and select publish option from the toolbar. It is shown below:

Now, select Apple App Store option. It looks similar to the below image:

15. NativeScript ― Creating an Application in iOS

NativeScript

 93

Step 3: Manage iOS provision and certificates

Click the Apple App Store cogwheel icon and choose browse option and add the details.

Step 4: Build your app

Next, click build option and build your app and wait till the process to complete.

Step 5: Provide credentials

This is your final step. Specify Apple Username and Password in your account and click

upload and check the confirmation message. If you want to submit your app for review,

then go to iTunes Connect and submit it.

NativeScript

 94

Testing is a very important phase in the development life cycle of an application. It ensures

an application quality. It needs careful planning and execution. It is also most time

consuming phase of the development. NativeScript framework provides an extensive

support for the automated testing of an application.

Types of Testing

Generally, three types of testing processes are available to test an application. They are

as follows:

Unit Testing

Unit testing is the easiest method to test an application. It is based on ensuring the

correctness of a piece of code (a function, in general) or a method of a class. But, it does

not reflect the real environment and subsequently. It is the least option to find the bugs.

Generally, NativeScript uses Jasmine, Mocha with Chai and QUnit unit testing frameworks.

To perform this, first you need to configure in your project using the below command:

tns test init

Now, you get the following response:

? Select testing framework: (Use arrow keys)

❯ jasmine

 mocha

 qunit

Now, select jasmine framework and your screen looks similar to this:

? Select testing framework: jasmine

+ karma@4.4.1

added 90 packages from 432 contributors and audited 11944 packages in 8.753s

+ karma-nativescript-launcher@0.4.0

added 2 packages from 1 contributor and audited 11946 packages in 7.299s

> core-js@2.6.11 postinstall

/Users/workspace/NativeScript/NativeApp/node_modules/core-js

> node -e "try{require('./postinstall')}catch(e){}"

Thank you for using core-js (https://github.com/zloirock/core-js) for

polyfilling JavaScript standard library!

The project needs your help! Please consider supporting of core-js on Open

Collective or Patreon:

16. NativeScript — Testing

NativeScript

 95

> https://opencollective.com/core-js

> https://www.patreon.com/zloirock

Also, the author of core-js (https://github.com/zloirock) is looking for a

good job -)

npm WARN karma-webpack@3.0.5 requires a peer of webpack@^2.0.0 || ^3.0.0 but

none is installed. You must install peer dependencies yourself.

+ karma-webpack@3.0.5

added 19 packages from 52 contributors and audited 12012 packages in 9.368s

+ karma-jasmine@2.0.1

added 2 packages from 35 contributors and audited 12014 packages in 6.925s

+ karma@4.4.1

updated 1 package and audited 12014 packages in 7.328s

+ @types/jasmine@3.4.6

> nativescript-unit-test-runner@0.7.0 postinstall

/Users/deiva/workspace/NativeScript/NativeApp/node_modules/nativescript-unit-

test-runner

> node postinstall.js

+ nativescript-unit-test-runner@0.7.0

added 1 package from 1 contributor and audited 12032 packages in 7.14s

Successfully installed plugin nativescript-unit-test-runner.

Example test file created in src/tests

Run your tests using the "$ tns test <platform>" command.

Now, the test file is created inside src\tests\example.ts.

Create your tests

Let us add a simple test inside example.ts file as shown below:

describe("NativeApp test:", function() {

 it("Check counter.", function() {

 expect(mainViewModel.createViewModel().counter).toEqual(10);

 });

 it("Check message.", function () {

 expect(mainViewModel.createViewModel().message).toBe("10 taps left");

 });

});

Here,

First, check if the counter equals 10 and check if the message is 10 taps left.

Let us run the test in next step.

NativeScript

 96

Run your tests

Now, run the test in either android or iOS connected device using the below command:

tns test andriod

This will return the following status:

? To continue, choose one of the following options: (Use arrow keys)

❯ Configure for Cloud Builds

 Configure for Local Builds

 Configure for Both Local and Cloud Builds

 Skip Step and Configure Manually

Then choose the below option:

? To continue, choose one of the following options: Configure for Local Builds

Running the setup script to try and automatically configure your environment.

These scripts require sudo permissions

.....

To execute your test suite in the android simulator, run the following command:

tns test android --emulator

Now, karma server prepares builds and deploy your project.

End To End (E2E) Testing

Unit tests are small, simple and fast process whereas, E2E testing phase multiple

components are involved and works together which cover flows in the application. This

could not be achieved by unit and integration tests.

NativeScript Appium plugin is used to perform E2E automation testing. Well, Appium is

an open source testing framework for mobile app. To add this framework in your project,

you must have either latest version of XCode or Android SDK above 25.3.0.

Install Appium

Let us install Appium globally using npm module:

npm install -g appium

Now, you could see the following response:

npm install -g appium

/Users/.npm-global/bin/authorize-ios -> /Users/.npm-global/lib/node_modules/

appium/node_modules/.bin/authorize-ios

> appium-windows-driver@1.8.0 install /Users/.npm-global/lib/node_modules/

appium/node_modules/appium-windows-driver

NativeScript

 97

> node install-npm.js

Not installing WinAppDriver since did not detect a Windows system

> core-js@2.6.11 postinstall /Users/.npm-

global/lib/node_modules/appium/node_modules/core-js

> node -e "try{require('./postinstall')}catch(e){}"

Thank you for using core-js (https://github.com/zloirock/core-js) for

polyfilling JavaScript

standard library!

The project needs your help! Please consider supporting of core-js on Open

Collective or Patreon:

> https://opencollective.com/core-js

> https://www.patreon.com/zloirock

Also, the author of core-js (https://github.com/zloirock) is looking for a

good job -)

> appium-chromedriver@4.19.0 postinstall /Users/.npm-

global/lib/node_modules/appium/node_modules

/appium-chromedriver

> node install-npm.js

..

...

+ appium@1.16.0

added 671 packages from 487 contributors in 28.889s

Add plugin

Let us add nativescript-dev-appium plugin as a devDependency to your project using

the below command:

$ npm install -D nativescript-dev-appium

After executing this, choose mocha framework and you will get a response similar to this:

> node ./postinstall.js

? What kind of project do you use? javascript

? Which testing framework do you prefer? mocha

+ nativescript-dev-appium@6.1.3

Now, files are stored inside your project folder.

NativeScript

 98

Build your device

Let us build android device using the below command:

tns build android

The above command will run the tests should specify the targeted capabilities. If you have

iOS device, you can build using iOS device.

Run test

Now, we have configured the device. Let us run our test using the below command:

npm run e2e -- --runType <capability-name>

Here,

capability-name is defined inside your application e2e/config/appium.capabilities.json.

Output

NativeScript — Conclusion

NativeScript is a great mobile app for web developers to test their application completely

in a very easy way without putting extra efforts. Developers can confidently develop a

great looking as well as a successful application without any issues in a short period of

time.

