
Natural Language Processing Toolkit

 i

Natural Language Processing Toolkit

 ii

About the Tutorial

Language is a method of communication with the help of which we can speak, read and

write. Natural Language Processing (NLP) is the sub field of computer science especially

Artificial Intelligence (AI) that is concerned about enabling computers to understand and

process human language. We have various open-source NLP tools but NLTK (Natural

Language Toolkit) scores very high when it comes to the ease of use and explanation of

the concept. The learning curve of Python is very fast and NLTK is written in Python so

NLTK is also having very good learning kit. NLTK has incorporated most of the tasks like

tokenization, stemming, Lemmatization, Punctuation, Character Count, and Word count.

It is very elegant and easy to work with.

Audience

This tutorial will be useful for graduates, post-graduates, and research students who either

have an interest in NLP or have this subject as a part of their curriculum. The reader can

be a beginner or an advanced learner.

Prerequisites

The reader must have basic knowledge about artificial intelligence. He/she should also be

aware of basic terminologies used in English grammar and Python programming concepts.

Copyright & Disclaimer

 Copyright 2019 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

Natural Language Processing Toolkit

 iii

Table of Contents

About the Tutorial ... ii

Audience .. ii

Prerequisites .. ii

Copyright & Disclaimer .. ii

Table of Contents ... iii

1. NLTK — Introduction... 1

What is Natural Language Processing (NLP)? .. 1

How does it work? ... 1

Components of NLP ... 2

Examples of NLP Applications ... 3

Implementing NLP ... 4

Natural Language Tool Kit (NLTK) .. 5

2. NLTK ― Getting Started .. 6

Installing NLTK ... 6

Downloading NLTK’s Dataset and Packages .. 8

How to run NLTK script? .. 9

3. NLTK — Tokenizing Text .. 11

What is Tokenizing? ... 11

NLTK package .. 11

Tokenizing text into sentences .. 13

Sentence tokenization using regular expressions ... 14

4. NLTK — Training Tokenizer & Filtering Stopwords .. 16

Why to train own sentence tokenizer? ... 16

What are stopwords? .. 18

5. NLTK ― Looking up words in Wordnet .. 20

What is Wordnet? ... 20

Natural Language Processing Toolkit

 iv

How to import Wordnet? .. 20

Synset instances .. 20

Getting Hypernyms .. 21

Lemmas in Wordnet .. 23

6. NLTK ― Stemming & Lemmatization .. 25

What is Stemming?.. 25

Various Stemming algorithms ... 25

Porter stemming algorithm ... 25

Lancaster stemming algorithm .. 26

Regular Expression stemming algorithm ... 27

Snowball stemming algorithm ... 29

What is Lemmatization? .. 30

Difference between Stemming & Lemmatization ... 31

7. NLTK ― Word Replacement .. 33

Word replacement using regular expression .. 33

Replacement before text processing ... 35

Removal of repeating characters .. 36

8. NLTK ― Synonym & Antonym Replacement ... 39

Replacing words with common synonyms .. 39

Using CSV file ... 40

Using YAML file .. 42

Antonym replacement ... 43

9. NLTK — Corpus Readers and Custom Corpora ... 47

What is a corpus? .. 47

How to build custom corpus? .. 47

Corpus readers .. 48

10. NLTK ― Basics of Part-of-Speech (POS) Tagging .. 52

What is POS tagging? ... 52

Natural Language Processing Toolkit

 v

Why POS tagging? ... 53

TaggerI ― Base class ... 54

The Baseline of POS Tagging.. 54

Accuracy evaluation .. 56

Tagging a list of sentences ... 56

Un-tagging a sentence ... 57

11. NLTK ― Unigram Tagger ... 58

What is Unigram Tagger? .. 58

Training a Unigram Tagger .. 59

Overriding the context model ... 60

Setting a minimum frequency threshold ... 61

12. NLTK — Combining Taggers .. 63

Combining Taggers .. 63

Saving taggers with pickle ... 64

NgramTagger Class .. 64

Combining ngram taggers ... 66

13. NLTK ― More NLTK Taggers .. 68

Affix Tagger .. 68

Brill Tagger ... 70

TnT Tagger ... 73

14. NLTK ― Parsing ... 75

Parsing and its relevance in NLP .. 75

Deep Vs Shallow Parsing.. 75

Various types of parsers .. 76

NLTK Package... 78

15. NLTK ― Chunking & Information Extraction ... 80

What is Chunking? ... 80

Information Extraction .. 81

Natural Language Processing Toolkit

 vi

Named-entity recognition (NER) ... 83

Relation extraction .. 83

16. NLTK ― Transforming Chunks ... 85

Why transforming Chunks? ... 85

Filtering insignificant/useless words ... 85

Verb Correction ... 86

Eliminating passive voice from phrases ... 88

Swapping noun cardinals ... 89

17. NLTK ― Transforming Trees .. 91

Converting Tree or Subtree to Sentence ... 91

Deep tree flattening .. 91

Building Shallow tree ... 92

Tree labels conversion ... 94

18. NLTK ― Text Classification .. 96

What is text classification? .. 96

Text Feature Extraction ... 96

Training classifiers ... 97

Decision Tree Classifier .. 99

Maximum Entropy Classifier.. 100

Scikit-learn Classifier .. 100

Measuring precision and recall ... 101

Combination of classifier and voting ... 102

Natural Language Processing Toolkit

 1

What is Natural Language Processing (NLP)?

The method of communication with the help of which humans can speak, read, and write,

is language. In other words, we humans can think, make plans, make decisions in our

natural language. Here the big question is, in the era of artificial intelligence, machine

learning and deep learning, can humans communicate in natural language with

computers/machines? Developing NLP applications is a huge challenge for us because

computers require structured data, but on the other hand, human speech is unstructured

and often ambiguous in nature.

Natural language is that subfield of computer science, more specifically of AI, which

enables computers/machines to understand, process and manipulate human language. In

simple words, NLP is a way of machines to analyze, understand and derive meaning from

human natural languages like Hindi, English, French, Dutch, etc.

How does it work?

Before getting deep dive into the working of NLP, we must have to understand how human

beings use language. Every day, we humans use hundreds or thousands of words and

other humans interpret them and answer accordingly. It’s a simple communication for

humans, isn’t it? But we know words run much-much deeper than that and we always

derive a context from what we say and how we say. That’s why we can say rather than

focuses on voice modulation, NLP does draw on contextual pattern.

Let us understand it with an example:

Man is to woman as king is to what?

We can interpret it easily and answer as follows:

Man relates to king, so woman can relate to queen.

Hence the answer is Queen.

How humans know what word means what? The answer to this question is that we learn

through our experience. But, how do machines/computers learn the same?

Let us understand it with following easy steps:

 First, we need to feed the machines with enough data so that machines can learn

from experience.

 Then machine will create word vectors, by using deep learning algorithms, from

the data we fed earlier as well as from its surrounding data.

 Then by performing simple algebraic operations on these word vectors, machine

would be able to provide the answers as human beings.

1. NLTK — Introduction

Natural Language Processing Toolkit

 2

Components of NLP

Following diagram represents the components of natural language processing (NLP):

Morphological Processing

Morphological processing is the first component of NLP. It includes breaking of chunks of

language input into sets of tokens corresponding to paragraphs, sentences and words. For

example, a word like “everyday” can be broken into two sub-word tokens as “every-

day”.

Syntax analysis

Syntax Analysis, the second component, is one of the most important components of NLP.

The purposes of this component are as follows:

Input sentence

Morphological

Processing

Syntax Analysis

Semantic

Analysis

Pragmatic

Analysis

Target representation

Lexicon

Grammar

Semantic rules

Contextual

information

Natural Language Processing Toolkit

 3

 To check that a sentence is well formed or not.

 To break it up into a structure that shows the syntactic relationships between the

different words.

 E.g. The sentences like “The school goes to the student” would be rejected by

syntax analyzer.

Semantic analysis

Semantic Analysis is the third component of NLP which is used to check the meaningfulness

of the text. It includes drawing exact meaning, or we can say dictionary meaning from the

text. E.g. The sentences like “It’s a hot ice-cream.” would be discarded by semantic

analyzer.

Pragmatic analysis

Pragmatic analysis is the fourth component of NLP. It includes fitting the actual objects or

events that exist in each context with object references obtained by previous component

i.e. semantic analysis. E.g. The sentences like “Put the fruits in the basket on the

table” can have two semantic interpretations hence the pragmatic analyzer will choose

between these two possibilities.

Examples of NLP Applications

NLP, an emerging technology, derives various forms of AI we used to see these days. For

today’s and tomorrow’s increasingly cognitive applications, the use of NLP in creating a

seamless and interactive interface between humans and machines will continue to be a

top priority. Following are some of the very useful applications of NLP.

Machine Translation

Machine translation (MT) is one of the most important applications of natural language

processing. MT is basically a process of translating one source language or text into

another language. Machine translation system can be of either Bilingual or Multilingual.

Fighting Spam

Due to enormous increase in unwanted emails, spam filters have become important

because it is the first line of defense against this problem. By considering its false-positive

and false-negative issues as the main issues, the functionality of NLP can be used to

develop spam filtering system.

N-gram modelling, Word Stemming and Bayesian classification are some of the existing

NLP models that can be used for spam filtering.

Information retrieval & Web search

Most of the search engines like Google, Yahoo, Bing, WolframAlpha, etc., base their

machine translation (MT) technology on NLP deep learning models. Such deep learning

models allow algorithms to read text on webpage, interprets its meaning and translate it

to another language.

Natural Language Processing Toolkit

 4

Automatic Text Summarization

Automatic text summarization is a technique which creates a short, accurate summary of

longer text documents. Hence, it helps us in getting relevant information in less time. In

this digital era, we are in a serious need of automatic text summarization because we have

the flood of information over internet which is not going to stop. NLP and its functionalities

play an important role in developing an automatic text summarization.

Grammar Correction

Spelling correction & grammar correction is a very useful feature of word processor

software like Microsoft Word. Natural language processing (NLP) is widely used for this

purpose.

Question-answering

Question-answering, another main application of natural language processing (NLP),

focuses on building systems which automatically answer the question posted by user in

their natural language.

Sentiment analysis

Sentiment analysis is among one other important applications of natural language

processing (NLP). As its name implies, Sentiment analysis is used to:

 Identify the sentiments among several posts and

 Identify the sentiment where the emotions are not expressed explicitly.

Online E-commerce companies like Amazon, ebay, etc., are using sentiment analysis to

identify the opinion and sentiment of their customers online. It will help them to

understand what their customers think about their products and services.

Speech engines

Speech engines like Siri, Google Voice, Alexa are built on NLP so that we can communicate

with them in our natural language.

Implementing NLP

In order to build the above-mentioned applications, we need to have specific skill set with

a great understanding of language and tools to process the language efficiently. To achieve

this, we have various open-source tools available. Some of them are open-sourced while

others are developed by organizations to build their own NLP applications. Following is the

list of some NLP tools:

 Natural Language Tool Kit (NLTK)

 Mallet

 GATE

 Open NLP

 UIMA

 Genism

Natural Language Processing Toolkit

 5

 Stanford toolkit

Most of these tools are written in Java.

Natural Language Tool Kit (NLTK)

Among the above-mentioned NLP tool, NLTK scores very high when it comes to the ease

of use and explanation of the concept. The learning curve of Python is very fast and NLTK

is written in Python so NLTK is also having very good learning kit. NLTK has incorporated

most of the tasks like tokenization, stemming, Lemmatization, Punctuation, Character

Count, and Word count. It is very elegant and easy to work with.

Natural Language Processing Toolkit

 6

In order to install NLTK, we must have Python installed on our computers. You can go to

the link https://www.python.org/downloads/ and select the latest version for your OS i.e.

Windows, Mac and Linux/Unix. For basic tutorial on Python you can refer to the link

https://www.tutorialspoint.com/python3/index.htm.

Now, once you have Python installed on your computer system, let us understand how we

can install NLTK.

Installing NLTK

We can install NLTK on various OS as follows:

On Windows

In order to install NLTK on Windows OS, follow the below steps:

 First, open the Windows command prompt and navigate to the location of the pip

folder.

 Next, enter the following command to install NLTK:

pip3 install nltk

Now, open the PythonShell from Windows Start Menu and type the following command in

order to verify NLTK’s installation:

2. NLTK ― Getting Started

https://www.python.org/downloads/
https://www.tutorialspoint.com/python3/index.htm

Natural Language Processing Toolkit

 7

Import nltk

If you get no error, you have successfully installed NLTK on your Windows OS having

Python3.

On Mac/Linux

In order to install NLTK on Mac/Linux OS, write the following command:

sudo pip install -U nltk

If you don’t have pip installed on your computer, then follow the instruction given below

to first install pip:

First, update the package index by following using following command:

sudo apt update

Now, type the following command to install pip for python 3:

sudo apt install python3-pip

Through Anaconda

In order to install NLTK through Anaconda, follow the below steps:

First, to install Anaconda, go to the link
https://www.anaconda.com/distribution/#download-section and then select the version of

Python you need to install.

https://www.anaconda.com/distribution/#download-section

Natural Language Processing Toolkit

 8

Once you have Anaconda on your computer system, go to its command prompt and write

the following command:

conda install -c anaconda nltk

You need to review the output and enter ‘yes’. NLTK will be downloaded and installed in

your Anaconda package.

Downloading NLTK’s Dataset and Packages

Now we have NLTK installed on our computers but in order to use it we need to download

the datasets (corpus) available in it. Some of the important datasets available are

stpwords, guntenberg, framenet_v15 and so on.

With the help of following commands, we can download all the NLTK datasets:

import nltk

nltk.download()

Natural Language Processing Toolkit

 9

You will get the following NLTK downloaded window.

Now, click on the download button to download the datasets.

How to run NLTK script?

Following is the example in which we are implementing Porter Stemmer algorithm by using

PorterStemmer nltk class. with this example you would be able to understand how to

run NLTK script.

Natural Language Processing Toolkit

 10

First, we need to import the natural language toolkit(nltk).

import nltk

Now, import the PorterStemmer class to implement the Porter Stemmer algorithm.

from nltk.stem import PorterStemmer

Next, create an instance of Porter Stemmer class as follows:

word_stemmer = PorterStemmer()

Now, input the word you want to stem.

word_stemmer.stem('writing')

Output

'write'

word_stemmer.stem('eating')

Output

'eat'

Natural Language Processing Toolkit

 11

What is Tokenizing?

It may be defined as the process of breaking up a piece of text into smaller parts, such as

sentences and words. These smaller parts are called tokens. For example, a word is a

token in a sentence, and a sentence is a token in a paragraph.

As we know that NLP is used to build applications such as sentiment analysis, QA systems,

language translation, smart chatbots, voice systems, etc., hence, in order to build them,

it becomes vital to understand the pattern in the text. The tokens, mentioned above, are

very useful in finding and understanding these patterns. We can consider tokenization as

the base step for other recipes such as stemming and lemmatization.

NLTK package

nltk.tokenize is the package provided by NLTK module to achieve the process of

tokenization.

Tokenizing sentences into words

Splitting the sentence into words or creating a list of words from a string is an essential

part of every text processing activity. Let us understand it with the help of various

functions/modules provided by nltk.tokenize package.

word_tokenize module

word_tokenize module is used for basic word tokenization. Following example will use

this module to split a sentence into words.

Example

import nltk

from nltk.tokenize import word_tokenize

word_tokenize('Tutorialspoint.com provides high quality technical tutorials for

free.')

Output

['Tutorialspoint.com', 'provides', 'high', 'quality', 'technical', 'tutorials',

'for', 'free', '.']

TreebankWordTokenizer Class

word_tokenize module, used above is basically a wrapper function that calls tokenize()

function as an instance of the TreebankWordTokenizer class. It will give the same

3. NLTK — Tokenizing Text

Natural Language Processing Toolkit

 12

output as we get while using word_tokenize() module for splitting the sentences into word.

Let us see the same example implemented above:

Example

First, we need to import the natural language toolkit(nltk).

import nltk

Now, import the TreebankWordTokenizer class to implement the word tokenizer algorithm:

from nltk.tokenize import TreebankWordTokenizer

Next, create an instance of TreebankWordTokenizer class as follows:

Tokenizer_wrd = TreebankWordTokenizer()

Now, input the sentence you want to convert to tokens:

Tokenizer_wrd.tokenize('Tutorialspoint.com provides high quality technical

tutorials for free.')

Output

 ['Tutorialspoint.com', 'provides', 'high', 'quality', 'technical',

'tutorials', 'for', 'free', '.']

Complete implementation example

Let us see the complete implementation example below:

import nltk

from nltk.tokenize import TreebankWordTokenizer

tokenizer_wrd = TreebankWordTokenizer()

tokenizer_wrd.tokenize('Tutorialspoint.com provides high quality technical

tutorials for free.')

Output

['Tutorialspoint.com', 'provides', 'high', 'quality', 'technical', 'tutorials',

'for', 'free', '.']

The most significant convention of a tokenizer is to separate contractions. For example, if

we use word_tokenize() module for this purpose, it will give the output as follows:

Example

import nltk

from nltk.tokenize import word_tokenize

word_tokenize('won’t')

Natural Language Processing Toolkit

 13

Output

['wo', "n't"]]

Such kind of convention by TreebankWordTokenizer is unacceptable. That’s why we

have two alternative word tokenizers namely PunktWordTokenizer and

WordPunctTokenizer.

WordPunktTokenizer Class

An alternative word tokenizer that splits all punctuation into separate tokens. Let us

understand it with the following simple example:

 Example

from nltk.tokenize import WordPunctTokenizer

tokenizer = WordPunctTokenizer()

tokenizer.tokenize(" I can't allow you to go home early")

Output

['I', 'can', "'", 't', 'allow', 'you', 'to', 'go', 'home', 'early']

 Tokenizing text into sentences

In this section we are going to split text/paragraph into sentences. NLTK provides

sent_tokenize module for this purpose.

Why is it needed?

An obvious question that came in our mind is that when we have word tokenizer then why

do we need sentence tokenizer or why do we need to tokenize text into sentences. Suppose

we need to count average words in sentences, how we can do this? For accomplishing this

task, we need both sentence tokenization and word tokenization.

Let us understand the difference between sentence and word tokenizer with the help of

following simple example:

Example

import nltk

from nltk.tokenize import sent_tokenize

text = "Let us understand the difference between sentence & word tokenizer. It

is going to be a simple example."

sent_tokenize(text)

Output

Natural Language Processing Toolkit

 14

["Let us understand the difference between sentence & word tokenizer.", 'It is

going to be a simple example.']

Sentence tokenization using regular expressions

If you feel that the output of word tokenizer is unacceptable and want complete control

over how to tokenize the text, we have regular expression which can be used while doing

sentence tokenization. NLTK provide RegexpTokenizer class to achieve this.

Let us understand the concept with the help of two examples below.

In first example we will be using regular expression for matching alphanumeric tokens

plus single quotes so that we don’t split contractions like “won’t”.

Example 1

import nltk

from nltk.tokenize import RegexpTokenizer

tokenizer = RegexpTokenizer("[\w']+")

tokenizer.tokenize("won't is a contraction.")

tokenizer.tokenize("can't is a contraction.")

Output

["won't", 'is', 'a', 'contraction']

["can't", 'is', 'a', 'contraction']

In first example, we will be using regular expression to tokenize on whitespace.

Example 2

import nltk

from nltk.tokenize import RegexpTokenizer

tokenizer = RegexpTokenizer('/s+' , gaps = True)

tokenizer.tokenize("won't is a contraction.")

Output

["won't", 'is', 'a', 'contraction']

From the above output, we can see that the punctuation remains in the tokens. The

parameter gaps = True means the pattern is going to identify the gaps to tokenize on. On

the other hand, if we will use gaps = False parameter then the pattern would be used to

identify the tokens which can be seen in following example:

import nltk

Natural Language Processing Toolkit

 15

from nltk.tokenize import RegexpTokenizer

tokenizer = RegexpTokenizer('/s+' , gaps = False)

tokenizer.tokenize("won't is a contraction.")

Output

[]

It will give us the blank output.

Natural Language Processing Toolkit

 16

Why to train own sentence tokenizer?

This is very important question that if we have NLTK’s default sentence tokenizer then why

do we need to train a sentence tokenizer? The answer to this question lies in the quality

of NLTK’s default sentence tokenizer. The NLTK’s default tokenizer is basically a general-

purpose tokenizer. Although it works very well but it may not be a good choice for

nonstandard text, that perhaps our text is, or for a text that is having a unique formatting.

To tokenize such text and get best results, we should train our own sentence tokenizer.

Implementation Example

For this example, we will be using the webtext corpus. The text file which we are going to

use from this corpus is having the text formatted as dialogs shown below:

Guy: How old are you?

Hipster girl: You know, I never answer that question. Because to me, it's about

how mature you are, you know? I mean, a fourteen year old could be more mature

than a twenty-five year old, right? I'm sorry, I just never answer that

question.

Guy: But, uh, you're older than eighteen, right?

Hipster girl: Oh, yeah.

We have saved this text file with the name of training_tokenizer. NLTK provides a class

named PunktSentenceTokenizer with the help of which we can train on raw text to

produce a custom sentence tokenizer. We can get raw text either by reading in a file or

from an NLTK corpus using the raw() method.

Let us see the example below to get more insight into it:

First, import PunktSentenceTokenizer class from nltk.tokenize package:

from nltk.tokenize import PunktSentenceTokenizer

Now, import webtext corpus from nltk.corpus package

from nltk.corpus import webtext

Next, by using raw() method, get the raw text from training_tokenizer.txt file as

follows:

text = webtext.raw('C://Users/Leekha/training_tokenizer.txt')

Now, create an instance of PunktSentenceTokenizer and print the tokenize sentences

from text file as follows:

4. NLTK — Training Tokenizer & Filtering
Stopwords

Natural Language Processing Toolkit

 17

sent_tokenizer = PunktSentenceTokenizer(text)

sents_1 = sent_tokenizer.tokenize(text)

print(sents_1[0])

Output

White guy: So, do you have any plans for this evening?

print(sents_1[1])

Output:

Asian girl: Yeah, being angry!

print(sents_1[670])

Output:

Guy: A hundred bucks?

print(sents_1[675])

Output:

Girl: But you already have a Big Mac...

Complete implementation example

from nltk.tokenize import PunktSentenceTokenizer

from nltk.corpus import webtext

text = webtext.raw('C://Users/Leekha/training_tokenizer.txt')

sent_tokenizer = PunktSentenceTokenizer(text)

sents_1 = sent_tokenizer.tokenize(text)

print(sents_1[0])

Output

White guy: So, do you have any plans for this evening?

To understand the difference between NLTK’s default sentence tokenizer and our own

trained sentence tokenizer, let us tokenize the same file with default sentence tokenizer

i.e. sent_tokenize().

from nltk.tokenize import sent_tokenize

 from nltk.corpus import webtext

 text = webtext.raw('C://Users/Leekha/training_tokenizer.txt')

sents_2 = sent_tokenize(text)

print(sents_2[0])

Output:

Natural Language Processing Toolkit

 18

White guy: So, do you have any plans for this evening?

print(sents_2[675])

Output:

Hobo: Y'know what I'd do if I was rich?

With the help of difference in the output, we can understand the concept that why it is

useful to train our own sentence tokenizer.

What are stopwords?

Some common words that are present in text but do not contribute in the meaning of a

sentence. Such words are not at all important for the purpose of information retrieval or

natural language processing. The most common stopwords are ‘the’ and ‘a’.

NLTK stopwords corpus

Actually, Natural Language Tool kit comes with a stopword corpus containing word lists

for many languages. Let us understand its usage with the help of the following example:

First, import the stopwords copus from nltk.corpus package:

from nltk.corpus import stopwords

Now, we will be using stopwords from English Languages

english_stops = set(stopwords.words('english'))

words = ['I', 'am', 'a', 'writer']

[word for word in words if word not in english_stops]

Output

['I', 'writer']

Complete implementation example

from nltk.corpus import stopwords

english_stops = set(stopwords.words('english'))

words = ['I', 'am', 'a', 'writer']

[word for word in words if word not in english_stops]

Output

['I', 'writer']

Natural Language Processing Toolkit

 19

Finding complete list of supported languages

With the help of following Python script, we can also find the complete list of languages

supported by NLTK stopwords corpus:

from nltk.corpus import stopwords

stopwords.fileids()

Output

['arabic', 'azerbaijani', 'danish', 'dutch', 'english', 'finnish', 'french',

'german', 'greek', 'hungarian', 'indonesian', 'italian', 'kazakh', 'nepali',

'norwegian', 'portuguese', 'romanian', 'russian', 'slovene', 'spanish',

'swedish', 'tajik', 'turkish']

Natural Language Processing Toolkit

 20

What is Wordnet?

Wordnet is a large lexical database of English, which was created by Princeton. It is a part

of the NLTK corpus. Nouns, verbs, adjectives and adverbs all are grouped into set of

synsets, i.e., cognitive synonyms. Here each set of synsets express a distinct meaning.

Following are some use cases of Wordnet:

 It can be used to look up the definition of a word

 We can find synonyms and antonyms of a word

 Word relations and similarities can be explored using Wordnet

 Word sense disambiguation for those words having multiple uses and definitions

How to import Wordnet?

Wordnet can be imported with the help of following command:

from nltk.corpus import wordnet

For more compact command, use the following:

from nltk.corpus import wordnet as wn

Synset instances

Synset are groupings of synonyms words that express the same concept. When you use

Wordnet to look up words, you will get a list of Synset instances.

wordnet.synsets(word)

To get a list of Synsets, we can look up any word in Wordnet by using

wordnet.synsets(word). For example, in next Python recipe, we are going to look up

the Synset for the ‘dog’ along with some properties and methods of Synset:

Example

First, import the wordnet as follows:

from nltk.corpus import wordnet as wn

Now, provide the word you want to look up the Synset for:

syn = wn.synsets('dog')[0]

5. NLTK ― Looking up words in Wordnet

Natural Language Processing Toolkit

 21

Here, we are using name() method to get the unique name for the synset which can be

used to get the Synset directly:

syn.name()

Output:

 'dog.n.01'

Next, we are using definition() method which will give us the definition of the word:

syn.definition()

Output:

'a member of the genus Canis (probably descended from the common wolf) that has

been domesticated by man since prehistoric times; occurs in many breeds'

Another method is examples() which will give us the examples related to the word:

syn.examples()

Output:

['the dog barked all night']

Complete implementation example

from nltk.corpus import wordnet as wn

syn = wn.synsets('dog')[0]

syn.name()

syn.definition()

syn.examples()

Getting Hypernyms

Synsets are organized in an inheritance tree like structure in which Hypernyms represents

more abstracted terms while Hyponyms represents the more specific terms. One of the

important things is that this tree can be traced all the way to a root hypernym. Let us

understand the concept with the help of the following example:

from nltk.corpus import wordnet as wn

syn = wn.synsets('dog')[0]

syn.hypernyms()

Output

[Synset('canine.n.02'), Synset('domestic_animal.n.01')]

Here, we can see that canine and domestic_animal are the hypernyms of ‘dog’.

Natural Language Processing Toolkit

 22

Now, we can find hyponyms of ‘dog’ as follows:

syn.hypernyms()[0].hyponyms()

Output

[Synset('bitch.n.04'),

 Synset('dog.n.01'),

 Synset('fox.n.01'),

 Synset('hyena.n.01'),

 Synset('jackal.n.01'),

 Synset('wild_dog.n.01'),

 Synset('wolf.n.01')]

From the above output, we can see that ‘dog’ is only one of the many hyponyms of

‘domestic_animals’.

To find the root of all these, we can use the following command:

syn.root_hypernyms()

Output

[Synset('entity.n.01')]

From the above output, we can see it has only one root.

Complete implementation example

from nltk.corpus import wordnet as wn

syn = wn.synsets('dog')[0]

syn.hypernyms()

syn.hypernyms()[0].hyponyms()

syn.root_hypernyms()

Output

[Synset('entity.n.01')]

Natural Language Processing Toolkit

 23

Lemmas in Wordnet

In linguistics, the canonical form or morphological form of a word is called a lemma. To

find a synonym as well as antonym of a word, we can also lookup lemmas in WordNet. Let

us see how.

Finding Synonyms

By using the lemma() method, we can find the number of synonyms of a Synset. Let us

apply this method on ‘dog’ synset:

Example

from nltk.corpus import wordnet as wn

syn = wn.synsets('dog')[0]

lemmas = syn.lemmas()

len(lemmas)

Output

3

The above output shows ‘dog’ has three lemmas.

Getting the name of the first lemma as follows:

lemmas[0].name()

Output:

'dog'

Getting the name of the second lemma as follows:

lemmas[1].name()

Output:

'domestic_dog'

Getting the name of the third lemma as follows:

lemmas[2].name()

Output:

 'Canis_familiaris'

Actually, a Synset represents a group of lemmas that all have similar meaning while a

lemma represents a distinct word form.

Finding Antonyms

In WordNet, some lemmas also have antonyms. For example, the word ‘good ‘has a total

of 27 synets, among them, 5 have lemmas with antonyms. Let us find the antonyms

(when the word ‘good’ used as noun and when the word ‘good’ used as adjective).

Natural Language Processing Toolkit

 24

Example 1

from nltk.corpus import wordnet as wn

 syn1 = wn.synset('good.n.02')

 antonym1 = syn1.lemmas()[0].antonyms()[0]

antonym1.name()

Output

'evil'

antonym1.synset().definition()

Output

'the quality of being morally wrong in principle or practice'

The above example shows that the word ‘good’, when used as noun, have the first

antonym ‘evil’.

Example 2

from nltk.corpus import wordnet as wn

 syn2 = wn.synset('good.a.01')

 antonym2 = syn2.lemmas()[0].antonyms()[0]

antonym2.name()

Output

'bad'

antonym2.synset().definition()

Output

'having undesirable or negative qualities’

The above example shows that the word ‘good’, when used as adjective, have the first

antonym ‘bad’.

Natural Language Processing Toolkit

 25

What is Stemming?

Stemming is a technique used to extract the base form of the words by removing affixes

from them. It is just like cutting down the branches of a tree to its stems. For example,

the stem of the words eating, eats, eaten is eat.

Search engines use stemming for indexing the words. That’s why rather than storing all

forms of a word, a search engine can store only the stems. In this way, stemming reduces

the size of the index and increases retrieval accuracy.

Various Stemming algorithms

In NLTK, stemmerI, which have stem() method, interface has all the stemmers which

we are going to cover next. Let us understand it with the following diagram:

Porter stemming algorithm

It is one of the most common stemming algorithms which is basically designed to remove

and replace well-known suffixes of English words.

PorterStemmer class

NLTK has PorterStemmer class with the help of which we can easily implement Porter

Stemmer algorithms for the word we want to stem. This class knows several regular word

forms and suffixes with the help of which it can transform the input word to a final stem.

The resulting stem is often a shorter word having the same root meaning. Let us see an

example:

First, we need to import the natural language toolkit(nltk).

6. NLTK ― Stemming & Lemmatization

Natural Language Processing Toolkit

 26

import nltk

Now, import the PorterStemmer class to implement the Porter Stemmer algorithm.

from nltk.stem import PorterStemmer

Next, create an instance of Porter Stemmer class as follows:

word_stemmer = PorterStemmer()

Now, input the word you want to stem.

word_stemmer.stem('writing')

Output

'write'

word_stemmer.stem('eating')

Output

'eat'

Complete implementation example

import nltk

from nltk.stem import PorterStemmer

word_stemmer = PorterStemmer()

word_stemmer.stem('writing')

Output

'write'

Lancaster stemming algorithm

It was developed at Lancaster University and it is another very common stemming

algorithms.

LancasterStemmer class

Natural Language Processing Toolkit

 27

NLTK has LancasterStemmer class with the help of which we can easily implement

Lancaster Stemmer algorithms for the word we want to stem. Let us see an example:

First, we need to import the natural language toolkit(nltk).

import nltk

Now, import the LancasterStemmer class to implement Lancaster Stemmer algorithm

from nltk.stem import LancasterStemmer

Next, create an instance of LancasterStemmer class as follows:

Lanc_stemmer = LancasterStemmer()

Now, input the word you want to stem.

Lanc_stemmer.stem('eats')

Output

'eat'

Complete implementation example

import nltk

from nltk.stem import LancatserStemmer

Lanc_stemmer = LancasterStemmer()

Lanc_stemmer.stem('eats')

Output

'eat'

Regular Expression stemming algorithm

With the help of this stemming algorithm, we can construct our own stemmer.

RegexpStemmer class

NLTK has RegexpStemmer class with the help of which we can easily implement Regular

Expression Stemmer algorithms. It basically takes a single regular expression and removes

any prefix or suffix that matches the expression. Let us see an example:

First, we need to import the natural language toolkit(nltk).

Natural Language Processing Toolkit

 28

import nltk

Now, import the RegexpStemmer class to implement the Regular Expression Stemmer

algorithm

from nltk.stem import RegexpStemmer

Next, create an instance of RegexpStemmer class and provides the suffix or prefix you

want to remove from the word as follows:

Reg_stemmer = RegexpStemmer(‘ing’)

Now, input the word you want to stem.

Reg_stemmer.stem('eating')

Output

 'eat'

Reg_stemmer.stem('ingeat')

Output

'eat'

Reg_stemmer.stem('eats')

Output

'eat'

Complete implementation example

import nltk

from nltk.stem import RegexpStemmer

Reg_stemmer = RegexpStemmer()

Reg_stemmer.stem('ingeat')

Output

'eat'

Natural Language Processing Toolkit

 29

Snowball stemming algorithm

It is another very useful stemming algorithm.

SnowballStemmer class

NLTK has SnowballStemmer class with the help of which we can easily implement

Snowball Stemmer algorithms. It supports 15 non-English languages. In order to use this

steaming class, we need to create an instance with the name of the language we are using

and then call the stem() method. Let us see an example:

First, we need to import the natural language toolkit(nltk).

import nltk

Now, import the SnowballStemmer class to implement Snowball Stemmer algorithm

from nltk.stem import SnowballStemmer

Let us see the languages it supports:

SnowballStemmer.languages

Output

('arabic',

'danish',

'dutch',

'english',

'finnish',

'french',

'german',

'hungarian',

'italian',

'norwegian',

'porter',

'portuguese',

'romanian',

'russian',

'spanish',

'swedish')

Next, create an instance of SnowballStemmer class with the language you want to use.

Here, we are creating the stemmer for ‘French’ language.

French_stemmer = SnowballStemmer(‘french’)

Natural Language Processing Toolkit

 30

Now, call the stem() method and input the word you want to stem.

French_stemmer.stem (‘Bonjoura’)

Output

'bonjour'

Complete implementation example

import nltk

from nltk.stem import SnowballStemmer

French_stemmer = SnowballStemmer(‘french’)

French_stemmer.stem (‘Bonjoura’)

Output

'bonjour'

What is Lemmatization?

Lemmatization technique is like stemming. The output we will get after lemmatization is

called ‘lemma’, which is a root word rather than root stem, the output of stemming. After

lemmatization, we will be getting a valid word that means the same thing.

NLTK provides WordNetLemmatizer class which is a thin wrapper around the wordnet

corpus. This class uses morphy() function to the WordNet CorpusReader class to find

a lemma. Let us understand it with an example:

Example

First, we need to import the natural language toolkit(nltk).

import nltk

Now, import the WordNetLemmatizer class to implement the lemmatization technique.

from nltk.stem import WordNetLemmatizer

Next, create an instance of WordNetLemmatizer class.

lemmatizer = WordNetLemmatizer()

Now, call the lemmatize() method and input the word of which you want to find lemma.

Natural Language Processing Toolkit

 31

lemmatizer.lemmatize('eating')

Output

'eating'

lemmatizer.lemmatize('books')

Output

'book'

Complete implementation example

import nltk

from nltk.stem import WordNetLemmatizer

lemmatizer = WordNetLemmatizer()

lemmatizer.lemmatize('books')

Output

'book'

Difference between Stemming & Lemmatization

Let us understand the difference between Stemming and Lemmatization with the help of

the following example:

import nltk

from nltk.stem import PorterStemmer

word_stemmer = PorterStemmer()

word_stemmer.stem('believes')

Output

Natural Language Processing Toolkit

 32

believ

import nltk

from nltk.stem import WordNetLemmatizer

lemmatizer = WordNetLemmatizer()

lemmatizer.lemmatize(' believes ')

Output

belief

The output of both programs tells the major difference between stemming and

lemmatization. PorterStemmer class chops off the ‘es’ from the word. On the other hand,

WordNetLemmatizer class finds a valid word. In simple words, stemming technique only

looks at the form of the word whereas lemmatization technique looks at the meaning of

the word. It means after applying lemmatization, we will always get a valid word.

Natural Language Processing Toolkit

 33

Stemming and lemmatization can be considered as a kind of linguistic compression. In the

same sense, word replacement can be thought of as text normalization or error correction.

But why we needed word replacement? Suppose if we talk about tokenization, then it is

having issues with contractions (like can’t, won’t, etc.). So, to handle such issues we need

word replacement. For example, we can replace contractions with their expanded forms.

Word replacement using regular expression

First, we are going to replace words that matches the regular expression. But for this we

must have a basic understanding of regular expressions as well as python re module. In

the example below, we will be replacing contraction with their expanded forms (e.g. “can’t”

will be replaced with “cannot”), all that by using regular expressions.

Example

First, import the necessary package re to work with regular expressions.

import re

from nltk.corpus import wordnet

Next, define the replacement patterns of your choice as follows:

R_patterns = [

 (r'won\'t', 'will not'),

 (r'can\'t', 'cannot'),

 (r'i\'m', 'i am'),

 r'(\w+)\'ll', '\g<1> will'),

 (r'(\w+)n\'t', '\g<1> not'),

 (r'(\w+)\'ve', '\g<1> have'),

 (r'(\w+)\'s', '\g<1> is'),

 (r'(\w+)\'re', '\g<1> are'),

]

Now, create a class that can be used for replacing words:

class REReplacer(object):

 def __init__(self, pattern=R_patterns):

 self.pattern = [(re.compile(regex), repl) for (regex, repl) in

patterns]

7. NLTK ― Word Replacement

Natural Language Processing Toolkit

 34

 def replace(self, text):

 s = text

 for (pattern, repl) in self.pattern:

 s = re.sub(pattern, repl, s)

 return s

Save this python program (say repRE.py) and run it from python command prompt. After

running it, import REReplacer class when you want to replace words. Let us see how.

from repRE import REReplacer

rep_word = REReplacer()

rep_word.replace("I won't do it")

Output:

'I will not do it'

rep_word.replace("I can’t do it")

Output:

'I cannot do it'

Complete implementation example

import re

from nltk.corpus import wordnet

R_patterns = [

(r'won\'t', 'will not'),

(r'can\'t', 'cannot'),

(r'i\'m', 'i am'),

r'(\w+)\'ll', '\g<1> will'),

(r'(\w+)n\'t', '\g<1> not'),

Natural Language Processing Toolkit

 35

(r'(\w+)\'ve', '\g<1> have'),

(r'(\w+)\'s', '\g<1> is'),

(r'(\w+)\'re', '\g<1> are'),

]

class REReplacer(object):

def __init__(self, patterns=R_patterns):

 self.patterns = [(re.compile(regex), repl) for (regex, repl) in patterns]

def replace(self, text):

 s = text

 for (pattern, repl) in self.patterns:

 s = re.sub(pattern, repl, s)

 return s

Now once you saved the above program and run it, you can import the class and use it as

follows:

from replacerRE import REReplacer

rep_word = REReplacer()

rep_word.replace("I won't do it")

Output

'I will not do it'

Replacement before text processing

One of the common practices while working with natural language processing (NLP) is to

clean up the text before text processing. In this concern we can also use our REReplacer

class created above in previous example, as a preliminary step before text processing i.e.

tokenization.

Example

from nltk.tokenize import word_tokenize

Natural Language Processing Toolkit

 36

from replacerRE import REReplacer

rep_word = REReplacer()

word_tokenize("I won't be able to do this now")

Output:

 ['I', 'wo', "n't", 'be', 'able', 'to', 'do', 'this', 'now']

word_tokenize(rep_word.replace("I won't be able to do this now"))

Output:

 ['I', 'will', 'not', 'be', 'able', 'to', 'do', 'this', 'now']

In the above Python recipe, we can easily understand the difference between the output

of word tokenizer without and with using regular expression replace.

Removal of repeating characters

Do we strictly grammatical in our everyday language? No, we are not. For example,

sometimes we write ‘Hiiiiiiiiiiii Mohan’ in order to emphasize the word ‘Hi’. But computer

system does not know that ‘Hiiiiiiiiiiii’ is a variation of the word “Hi”. In the example below,

we will be creating a class named rep_word_removal which can be used for removing

the repeating words.

Example

First, import the necessary package re to work with regular expressions

import re

from nltk.corpus import wordnet

Now, create a class that can be used for removing the repeating words:

class Rep_word_removal(object):

 def __init__(self):

 self.repeat_regexp = re.compile(r'(\w*)(\w)\2(\w*)')

 self.repl = r'\1\2\3'

 def replace(self, word):

 if wordnet.synsets(word):

Natural Language Processing Toolkit

 37

 return word

 repl_word = self.repeat_regexp.sub(self.repl, word)

 if repl_word != word:

 return self.replace(repl_word)

 else:

 return repl_word

Save this python program (say removalrepeat.py) and run it from python command

prompt. After running it, import Rep_word_removal class when you want to remove the

repeating words. Let us see how?

from removalrepeat import Rep_word_removal

rep_word = Rep_word_removal()

rep_word.replace ("Hiiiiiiiiiiiiiiiiiiiii")

Output:

'Hi'

rep_word.replace("Hellooooooooooooooo")

Output:

'Hello'

Complete implementation example

import re

from nltk.corpus import wordnet

class Rep_word_removal(object):

 def __init__(self):

 self.repeat_regexp = re.compile(r'(\w*)(\w)\2(\w*)')

 self.repl = r'\1\2\3'

 def replace(self, word):

Natural Language Processing Toolkit

 38

 if wordnet.synsets(word):

 return word

 replace_word = self.repeat_regexp.sub(self.repl, word)

 if replace_word != word:

 return self.replace(replace_word)

 else:

 return replace_word

Now once you saved the above program and run it, you can import the class and use it as

follows:

from removalrepeat import Rep_word_removal

rep_word = Rep_word_removal()

rep_word.replace ("Hiiiiiiiiiiiiiiiiiiiii")

Output

'Hi'

Natural Language Processing Toolkit

 39

Replacing words with common synonyms

While working with NLP, especially in the case of frequency analysis and text indexing, it

is always beneficial to compress the vocabulary without losing meaning because it saves

lots of memory. To achieve this, we must have to define mapping of a word to its

synonyms. In the example below, we will be creating a class named word_syn_replacer

which can be used for replacing the words with their common synonyms.

Example

First, import the necessary package re to work with regular expressions.

import re

from nltk.corpus import wordnet

Next, create the class that takes a word replacement mapping:

class word_syn_replacer(object):

 def __init__(self, word_map):

 self.word_map = word_map

 def replace(self, word):

 return self.word_map.get(word, word)

Save this python program (say replacesyn.py) and run it from python command prompt.

After running it, import word_syn_replacer class when you want to replace words with

common synonyms. Let us see how.

from replacesyn import word_syn_replacer

rep_syn = word_syn_replacer ({‘bday’: ‘birthday’)

rep_syn.replace(‘bday’)

Output

'birthday'

8. NLTK ― Synonym & Antonym Replacement

Natural Language Processing Toolkit

 40

Complete implementation example

import re

from nltk.corpus import wordnet

class word_syn_replacer(object):

 def __init__(self, word_map):

 self.word_map = word_map

 def replace(self, word):

 return self.word_map.get(word, word)

Now once you saved the above program and run it, you can import the class and use it as

follows:

from replacesyn import word_syn_replacer

rep_syn = word_syn_replacer ({‘bday’: ‘birthday’)

rep_syn.replace(‘bday’)

Output

'birthday'

The disadvantage of the above method is that we should have to hardcode the synonyms

in a Python dictionary. We have two better alternatives in the form of CSV and YAML file.

We can save our synonym vocabulary in any of the above-mentioned files and can

construct word_map dictionary from them. Let us understand the concept with the help

of examples.

Using CSV file

In order to use CSV file for this purpose, the file should have two columns, first column

consist of word and the second column consists of the synonyms meant to replace it. Let

us save this file as syn.csv. In the example below, we will be creating a class named

CSVword_syn_replacer which will extends word_syn_replacer in replacesyn.py file

and will be used to construct the word_map dictionary from syn.csv file.

Example

First, import the necessary packages

import csv

Natural Language Processing Toolkit

 41

Next, create the class that takes a word replacement mapping:

class CSVword_syn_replacer(word_syn_replacer):

 def __init__(self, fname):

 word_map = {}

 for line in csv.reader(open(fname)):

 word, syn = line

 word_map[word] = syn

 super(Csvword_syn_replacer, self).__init__(word_map)

After running it, import CSVword_syn_replacer class when you want to replace words with

common synonyms. Let us see how?

from replacesyn import CSVword_syn_replacer

rep_syn = CSVword_syn_replacer (‘syn.csv’)

rep_syn.replace(‘bday’)

Output

'birthday'

Complete implementation example

import csv

class CSVword_syn_replacer(word_syn_replacer):

def __init__(self, fname):

word_map = {}

for line in csv.reader(open(fname)):

 word, syn = line

 word_map[word] = syn

super(Csvword_syn_replacer, self).__init__(word_map)

Natural Language Processing Toolkit

 42

Now once you saved the above program and run it, you can import the class and use it as

follows:

from replacesyn import CSVword_syn_replacer

rep_syn = CSVword_syn_replacer (‘syn.csv’)

rep_syn.replace(‘bday’)

Output

'birthday'

Using YAML file

As we have used CSV file, we can also use YAML file to for this purpose (we must have

PyYAML installed). Let us save the file as syn.yaml. In the example below, we will be

creating a class named YAMLword_syn_replacer which will extends

word_syn_replacer in replacesyn.py file and will be used to construct the word_map

dictionary from syn.yaml file.

Example

First, import the necessary packages.

import yaml

Next, create the class that takes a word replacement mapping:

class YAMLword_syn_replacer(word_syn_replacer):

 def __init__(self, fname):

 word_map = yaml.load(open(fname))

 super(YamlWordReplacer, self).__init__(word_map)

After running it, import YAMLword_syn_replacer class when you want to replace words

with common synonyms. Let us see how?

from replacesyn import YAMLword_syn_replacer

rep_syn = YAMLword_syn_replacer (‘syn.yaml’)

rep_syn.replace(‘bday’)

Output

'birthday'

Natural Language Processing Toolkit

 43

Complete implementation example

import yaml

class YAMLword_syn_replacer(word_syn_replacer):

def __init__(self, fname):

 word_map = yaml.load(open(fname))

 super(YamlWordReplacer, self).__init__(word_map)

Now once you saved the above program and run it, you can import the class and use it as

follows:

from replacesyn import YAMLword_syn_replacer

rep_syn = YAMLword_syn_replacer (‘syn.yaml’)

rep_syn.replace(‘bday’)

Output

'birthday'

Antonym replacement

As we know that an antonym is a word having opposite meaning of another word, and the

opposite of synonym replacement is called antonym replacement. In this section, we will

be dealing with antonym replacement, i.e., replacing words with unambiguous antonyms

by using WordNet. In the example below, we will be creating a class named

word_antonym_replacer which have two methods, one for replacing the word and other

for removing the negations.

Example

First, import the necessary packages.

from nltk.corpus import wordnet

Next, create the class named word_antonym_replacer:

class word_antonym_replacer(object):

 def replace(self, word, pos=None):

 antonyms = set()

 for syn in wordnet.synsets(word, pos=pos):

 for lemma in syn.lemmas():

Natural Language Processing Toolkit

 44

 for antonym in lemma.antonyms():

 antonyms.add(antonym.name())

 if len(antonyms) == 1:

 return antonyms.pop()

 else:

 return None

 def replace_negations(self, sent):

 i, l = 0, len(sent)

 words = []

 while i < l:

 word = sent[i]

 if word == 'not' and i+1 < l:

 ant = self.replace(sent[i+1])

 if ant:

 words.append(ant)

 i += 2

 continue

 words.append(word)

 i += 1

 return words

Save this python program (say replaceantonym.py) and run it from python command

prompt. After running it, import word_antonym_replacer class when you want to

replace words with their unambiguous antonyms. Let us see how.

from replacerantonym import word_antonym_replacer

rep_antonym = word_antonym_replacer ()

rep_antonym.replace(‘uglify’)

Output

Natural Language Processing Toolkit

 45

['beautify'']

sentence = ["Let us", 'not', 'uglify', 'our', 'country']

rep_antonym.replace _negations(sentence)

Output

["Let us", 'beautify', 'our', 'country']

Complete implementation example

from nltk.corpus import wordnet

class word_antonym_replacer(object):

def replace(self, word, pos=None):

 antonyms = set()

 for syn in wordnet.synsets(word, pos=pos):

 for lemma in syn.lemmas():

 for antonym in lemma.antonyms():

 antonyms.add(antonym.name())

 if len(antonyms) == 1:

 return antonyms.pop()

 else:

 return None

def replace_negations(self, sent):

 i, l = 0, len(sent)

 words = []

 while i < l:

 word = sent[i]

 if word == 'not' and i+1 < l:

Natural Language Processing Toolkit

 46

 ant = self.replace(sent[i+1])

 if ant:

 words.append(ant)

 i += 2

 continue

 words.append(word)

 i += 1

 return words

Now once you saved the above program and run it, you can import the class and use it as

follows:

from replacerantonym import word_antonym_replacer

rep_antonym = word_antonym_replacer ()

rep_antonym.replace(‘uglify’)

sentence = ["Let us", 'not', 'uglify', 'our', 'country']

rep_antonym.replace _negations(sentence)

Output

["Let us", 'beautify', 'our', 'country']

Natural Language Processing Toolkit

 47

What is a corpus?

A corpus is large collection, in structured format, of machine-readable texts that have

been produced in a natural communicative setting. The word Corpora is the plural of

Corpus. Corpus can be derived in many ways as follows:

 From the text that was originally electronic

 From the transcripts of spoken language

 From optical character recognition and so on

Corpus representativeness, Corpus Balance, Sampling, Corpus Size are the elements that

plays an important role while designing corpus. Some of the most popular corpus for NLP

tasks are TreeBank, PropBank, VarbNet and WordNet.

How to build custom corpus?

While downloading NLTK, we also installed NLTK data package. So, we already have NLTK

data package installed on our computer. If we talk about Windows, we’ll assume that this

data package is installed at C:\nltk_data and if we talk about Linux, Unix and Mac OS X,

we ‘ll assume that this data package is installed at /usr/share/nltk_data.

In the following Python recipe, we are going to create custom corpora which must be within

one of the paths defined by NLTK. It is so because it can be found by NLTK. In order to

avoid conflict with the official NLTK data package, let us create a custom nltk_data

directory in our home directory.

import os, os.path

path = os.path.expanduser('~/nltk_data')

if not os.path.exists(path):

 os.mkdir(path)

os.path.exists(path)

9. NLTK — Corpus Readers and Custom Corpora

Natural Language Processing Toolkit

 48

Output

True

Now, Let us check whether we have nltk_data directory in our home directory or not:

import nltk.data

path in nltk.data.path

Output

True

As we have got the output True, means we have nltk_data directory in our home

directory.

Now we will make a wordlist file, named wordfile.txt and put it in a folder, named corpus

in nltk_data directory (~/nltk_data/corpus/wordfile.txt) and will load it by using

nltk.data.load:

import nltk.data

nltk.data.load(‘corpus/wordfile.txt’, format = ‘raw’)

Output

b’tutorialspoint\n’

Corpus readers

NLTK provides various CorpusReader classes. We are going to cover them in the following

python recipes.

Creating wordlist corpus

NLTK has WordListCorpusReader class that provides access to the file containing a list

of words. For the following Python recipe, we need to create a wordlist file which can be

CSV or normal text file. For example, we have created a file named ‘list’ that contains the

following data:

tutorialspoint

Online

Free

Tutorials

Now Let us instantiate a WordListCorpusReader class producing the list of words from

our created file ‘list’.

from nltk.corpus.reader import WordListCorpusReader

Natural Language Processing Toolkit

 49

reader_corpus = WordListCorpusReader('.', ['list'])

reader_corpus.words()

Output

['tutorialspoint', 'Online', 'Free', 'Tutorials']

Creating POS tagged word corpus

NLTK has TaggedCorpusReader class with the help of which we can create a POS tagged

word corpus. Actually, POS tagging is the process of identifying the part-of-speech tag for

a word.

One of the simplest formats for a tagged corpus is of the form ‘word/tag’like following

excerpt from the brown corpus:

The/at-tl expense/nn and/cc time/nn involved/vbn are/ber

astronomical/jj ./.

In the above excerpt, each word has a tag which denotes its POS. For example, vb refers

to a verb.

Now Let us instantiate a TaggedCorpusReader class producing POS tagged words form

the file ‘list.pos’, which has the above excerpt.

from nltk.corpus.reader import TaggedCorpusReader

reader_corpus = TaggedCorpusReader('.', r'.*\.pos')

reader_corpus.tagged_words()

Output

[('The', 'AT-TL'), ('expense', 'NN'), ('and', 'CC'), ...]

Creating Chunked phrase corpus

NLTK has ChnkedCorpusReader class with the help of which we can create a Chunked

phrase corpus. Actually, a chunk is a short phrase in a sentence.

For example, we have the following excerpt from the tagged treebank corpus:

[Earlier/JJR staff-reduction/NN moves/NNS] have/VBP trimmed/VBN about/

IN [300/CD jobs/NNS] ,/, [the/DT spokesman/NN] said/VBD ./.

Natural Language Processing Toolkit

 50

In the above excerpt, every chunk is a noun phrase but the words that are not in brackets

are part of the sentence tree and not part of any noun phrase subtree.

Now Let us instantiate a ChunkedCorpusReader class producing chunked phrase from

the file ‘list.chunk’, which has the above excerpt.

from nltk.corpus.reader import ChunkedCorpusReader

reader_corpus = TaggedCorpusReader('.', r'.*\.chunk')

reader_corpus.chunked_words()

Output

[Tree('NP', [('Earlier', 'JJR'), ('staff-reduction', 'NN'), ('moves', 'NNS')]),

('have', 'VBP'), ...]

Creating Categorized text corpus

NLTK has CategorizedPlaintextCorpusReader class with the help of which we can

create a categorized text corpus. It is very useful in case when we have a large corpus of

text and want to categorize that into separate sections.

For example, the brown corpus has several different categories. Let us find out them with

the help of following Python code:

from nltk.corpus import brown^M

brown.categories()

Output

['adventure', 'belles_lettres', 'editorial', 'fiction', 'government',

'hobbies', 'humor', 'learned', 'lore', 'mystery', 'news', 'religion',

'reviews', 'romance', 'science_fiction']

One of the easiest ways to categorize a corpus is to have one file for every category. For

example, let us see the two excerpts from the movie_reviews corpus:

movie_pos.txt

the thin red line is flawed but it provokes.

movie_neg.txt

a big-budget and glossy production cannot make up for a lack of spontaneity that

permeates their tv show.

So, from above two files, we have two categories namely pos and neg.

Now let us instantiate a CategorizedPlaintextCorpusReader class.

Natural Language Processing Toolkit

 51

from nltk.corpus.reader import CategorizedPlaintextCorpusReader

reader_corpus = CategorizedPlaintextCorpusReader('.', r'movie_.*\.txt',

cat_pattern=r'movie_(\w+)\.txt')

reader_corpus.categories()

reader_corpus.fileids(categories=[‘neg’])

reader_corpus.fileids(categories=[‘pos’])

Output

['neg', 'pos']

['movie_neg.txt']

['movie_pos.txt']

Natural Language Processing Toolkit

 52

What is POS tagging?

Tagging, a kind of classification, is the automatic assignment of the description of the

tokens. We call the descriptor s ‘tag’, which represents one of the parts of speech (nouns,

verb, adverbs, adjectives, pronouns, conjunction and their sub-categories), semantic

information and so on.

On the other hand, if we talk about Part-of-Speech (POS) tagging, it may be defined as

the process of converting a sentence in the form of a list of words, into a list of tuples.

Here, the tuples are in the form of (word, tag). We can also call POS tagging a process of

assigning one of the parts of speech to the given word.

Following table represents the most frequent POS notification used in Penn Treebank

corpus:

Sr. No. Tag Description

1. NNP Proper noun, singular

2. NNPS Proper noun, plural

3. PDT Pre determiner

4. POS Possessive ending

5. PRP Personal pronoun

6. PRP$ Possessive pronoun

7. RB Adverb

8. RBR Adverb, comparative

9. RBS Adverb, superlative

10. RP Particle

11. SYM Symbol (mathematical or scientific)

12. TO to

13. UH Interjection

14. VB Verb, base form

15. VBD Verb, past tense

16. VBG Verb, gerund/present participle

17. VBN Verb, past

18. WP Wh-pronoun

10. NLTK ― Basics of Part-of-Speech (POS)
Tagging

Natural Language Processing Toolkit

 53

19. WP$ Possessive wh-pronoun

20. WRB Wh-adverb

21. # Pound sign

22. $ Dollar sign

23. . Sentence-final punctuation

24. , Comma

25. : Colon, semi-colon

26. (Left bracket character

27.) Right bracket character

28. " Straight double quote

29. ' Left open single quote

30. " Left open double quote

31. ' Right close single quote

32. " Right open double quote

Let us understand it with a Python experiment:

import nltk

from nltk import word_tokenize

sentence = "I am going to school"

print (nltk.pos_tag(word_tokenize(sentence)))

Output

[('I', 'PRP'), ('am', 'VBP'), ('going', 'VBG'), ('to', 'TO'), ('school', 'NN')]

Why POS tagging?

POS tagging is an important part of NLP because it works as the prerequisite for further

NLP analysis as follows:

 Chunking

 Syntax Parsing

 Information extraction

 Machine Translation

 Sentiment Analysis

Natural Language Processing Toolkit

 54

 Grammar analysis & word-sense disambiguation

TaggerI ― Base class

All the taggers reside in NLTK’s nltk.tag package. The base class of these taggers is

TaggerI, means all the taggers inherit from this class.

Methods: TaggerI class have the following two methods which must be implemented by

all its subclasses:

 tag() method: As the name implies, this method takes a list of words as input and

returns a list of tagged words as output.

 evaluate() method: With the help of this method, we can evaluate the accuracy

of the tagger.

The Baseline of POS Tagging

The baseline or the basic step of POS tagging is Default Tagging, which can be performed

using the DefaultTagger class of NLTK. Default tagging simply assigns the same POS tag

to every token. Default tagging also provides a baseline to measure accuracy

improvements.

DefaultTagger class

Default tagging is performed by using DefaultTagging class, which takes the single

argument, i.e., the tag we want to apply.

How does it work?

As told earlier, all the taggers are inherited from TaggerI class. The DefaultTagger is

inherited from SequentialBackoffTagger which is a subclass of TaggerI class. Let us

understand it with the following diagram:

Natural Language Processing Toolkit

 55

As being the part of SeuentialBackoffTagger, the DefaultTagger must implement

choose_tag() method which takes the following three arguments:

 Token’s list

 Current token’s index

 Previous token’s list, i.e., the history

Example

import nltk

from nltk.tag import DefaultTagger

exptagger = DefaultTagger('NN')

exptagger.tag(['Tutorials','Point'])

Natural Language Processing Toolkit

 56

Output

[('Tutorials', 'NN'), ('Point', 'NN')]

In this example, we chose a noun tag because it is the most common types of words.

Moreover, DefaultTagger is also most useful when we choose the most common POS

tag.

Accuracy evaluation

The DefaultTagger is also the baseline for evaluating accuracy of taggers. That is the

reason we can use it along with evaluate() method for measuring accuracy. The

evaluate() method takes a list of tagged tokens as a gold standard to evaluate the tagger.

Following is an example in which we used our default tagger, named exptagger, created

above, to evaluate the accuracy of a subset of treebank corpus tagged sentences:

import nltk

from nltk.tag import DefaultTagger

exptagger = DefaultTagger('NN')

from nltk.corpus import treebank

testsentences = treebank.tagged_sents() [1000:]

exptagger.evaluate (testsentences)

Output

0.13198749536374715

The output above shows that by choosing NN for every tag, we can achieve around 13%

accuracy testing on 1000 entries of the treebank corpus.

Tagging a list of sentences

Rather than tagging a single sentence, the NLTK’s TaggerI class also provides us a

tag_sents() method with the help of which we can tag a list of sentences. Following is

the example in which we tagged two simple sentences:

import nltk

from nltk.tag import DefaultTagger

Natural Language Processing Toolkit

 57

exptagger = DefaultTagger('NN')

exptagger.tag_sents([['Hi', ','], ['How', 'are', 'you', '?']])

Output

[[('Hi', 'NN'), (',', 'NN')], [('How', 'NN'), ('are', 'NN'), ('you', 'NN'),

('?', 'NN')]]

In the above example, we used our earlier created default tagger named exptagger.

Un-tagging a sentence

We can also un-tag a sentence. NLTK provides nltk.tag.untag() method for this purpose.

It will take a tagged sentence as input and provides a list of words without tags. Let us

see an example:

import nltk

from nltk.tag import untag

untag([('Tutorials', 'NN'), ('Point', 'NN')])

Output

['Tutorials', 'Point']

Natural Language Processing Toolkit

 58

What is Unigram Tagger?

As the name implies, unigram tagger is a tagger that only uses a single word as its context

for determining the POS(Part-of-Speech) tag. In simple words, Unigram Tagger is a

context-based tagger whose context is a single word, i.e., Unigram.

How does it work?

NLTK provides a module named UnigramTagger for this purpose. But before getting deep

dive into its working, let us understand the hierarchy with the help of following diagram:

From the above diagram, it is understood that UnigramTagger is inherited from

NgramTagger which is a subclass of ContextTagger, which inherits from

SequentialBackoffTagger.

The working of UnigramTagger is explained with the help of following steps:

11. NLTK ― Unigram Tagger

Natural Language Processing Toolkit

 59

 As we have seen, UnigramTagger inherits from ContextTagger, it implements a

context() method. This context() method takes the same three arguments as

choose_tag() method.

 The result of context() method will be the word token which is further used to create

the model. Once the model is created, the word token is also used to look up the

best tag.

 In this way, UnigramTagger will build a context model from the list of tagged

sentences.

Training a Unigram Tagger

NLTK’s UnigramTagger can be trained by providing a list of tagged sentences at the time

of initialization. In the example below, we are going to use the tagged sentences of the

treebank corpus. We will be using first 2500 sentences from that corpus.

Example

First import the UniframTagger module from nltk:

from nltk.tag import UnigramTagger

Next, import the corpus you want to use. Here we are using treebank corpus:

from nltk.corpus import treebank

Now, take the sentences for training purpose. We are taking first 2500 sentences for

training purpose and will tag them:

 train_sentences = treebank.tagged_sents()[:2500]

Next, apply UnigramTagger on the sentences used for training purpose:

Uni_tagger = UnigramTagger(train_sentences)

Take some sentences, either equal to or less taken for training purpose i.e. 2500, for

testing purpose. Here we are taking first 1500 for testing purpose:

test_sentences = treebank.tagged_sents()[1500:]

Uni_tagger.evaluate(test_sents)

Output

0.8942306156033808

Here, we got around 89 percent accuracy for a tagger that uses single word lookup to

determine the POS tag.

Natural Language Processing Toolkit

 60

Complete implementation example

from nltk.tag import UnigramTagger

from nltk.corpus import treebank

train_sentences = treebank.tagged_sents()[:2500]

Uni_tagger = UnigramTagger(train_sentences)

test_sentences = treebank.tagged_sents()[1500:]

Uni_tagger.evaluate(test_sentences)

Output

0.8942306156033808

Overriding the context model

From the above diagram showing hierarchy for UnigramTagger, we know all the taggers

that inherit from ContextTagger, instead of training their own, can take a pre-built

model. This pre-built model is simply a Python dictionary mapping of a context key to a

tag. And for UnigramTagger, context keys are individual words while for other

NgramTagger subclasses, it will be tuples.

We can override this context model by passing another simple model to the

UnigramTagger class instead of passing training set. Let us understand it with the help

of an easy example below:

Example

from nltk.tag import UnigramTagger

from nltk.corpus import treebank

Override_tagger = UnigramTagger(model = {‘Vinken’ : ‘NN’})

Override_tagger.tag(treebank.sents()[0])

Natural Language Processing Toolkit

 61

Output

[('Pierre', None),

 ('Vinken', 'NN'),

 (',', None),

 ('61', None),

 ('years', None),

 ('old', None),

 (',', None),

 ('will', None),

 ('join', None),

 ('the', None),

 ('board', None),

 ('as', None),

 ('a', None),

 ('nonexecutive', None),

 ('director', None),

 ('Nov.', None),

 ('29', None),

 ('.', None)]

As our model contains ‘Vinken’ as the only context key, you can observe from the output

above that only this word got tag and every other word has None as a tag.

Setting a minimum frequency threshold

For deciding which tag is most likely for a given context, the ContextTagger class uses

frequency of occurrence. It will do it by default even if the context word and tag occur only

once, but we can set a minimum frequency threshold by passing a cutoff value to the

UnigramTagger class. In the example below, we are passing the cutoff value in previous

recipe in which we trained a UnigramTagger:

from nltk.tag import UnigramTagger

from nltk.corpus import treebank

train_sentences = treebank.tagged_sents()[:2500]

Uni_tagger = UnigramTagger(train_sentences, cutoff = 4)

test_sentences = treebank.tagged_sents()[1500:]

Natural Language Processing Toolkit

 62

Uni_tagger.evaluate(test_sentences)

Output

0.7357651629613641

Natural Language Processing Toolkit

 63

Combining Taggers

Combining taggers or chaining taggers with each other is one of the important features of

NLTK. The main concept behind combining taggers is that, in case if one tagger doesn’t

know how to tag a word, it would be passed to the chained tagger. To achieve this purpose,

SequentialBackoffTagger provides us the Backoff tagging feature.

Backoff Tagging

As told earlier, backoff tagging is one of the important features of

SequentialBackoffTagger, which allows us to combine taggers in a way that if one

tagger doesn’t know how to tag a word, the word would be passed to the next tagger and

so on until there are no backoff taggers left to check.

How does it work?

Actually, every subclass of SequentialBackoffTagger can take a ‘backoff’ keyword

argument. The value of this keyword argument is another instance of a

SequentialBackoffTagger. Now whenever this SequentialBackoffTagger class is

initialized, an internal list of backoff taggers (with itself as the first element) will be

created. Moreover, if a backoff tagger is given, the internal list of this backoff taggers

would be appended.

In the example below, we are taking DefaulTagger as the backoff tagger in the above

Python recipe with which we have trained the UnigramTagger.

Example

In this example, we are using DefaulTagger as the backoff tagger. Whenever the

UnigramTagger is unable to tag a word, backoff tagger, i.e. DefaultTagger, in our case,

will tag it with ‘NN’.

from nltk.tag import UnigramTagger

from nltk.tag import DefaultTagger

from nltk.corpus import treebank

train_sentences = treebank.tagged_sents()[:2500]

back_tagger = DefaultTagger('NN')

Uni_tagger = UnigramTagger(train_sentences, backoff = back_tagger)

12. NLTK — Combining Taggers

Natural Language Processing Toolkit

 64

test_sentences = treebank.tagged_sents()[1500:]

Uni_tagger.evaluate(test_sentences)

Output

0.9061975746536931

From the above output, you can observe that by adding a backoff tagger the accuracy is

increased by around 2%.

Saving taggers with pickle

As we have seen that training a tagger is very cumbersome and also takes time. To save

time, we can pickle a trained tagger for using it later. In the example below, we are going

to do this to our already trained tagger named ‘Uni_tagger’.

Example

import pickle

f = open('Uni_tagger.pickle','wb')

pickle.dump(Uni_tagger, f)

f.close()

f = open('Uni_tagger.pickle','rb')

Uni_tagger = pickle.load(f)

NgramTagger Class

From the hierarchy diagram discussed in previous unit, UnigramTagger is inherited from

NgramTagger class but we have two more subclasses of NgarmTagger class:

BigramTagger subclass

Actually an ngram is a subsequence of n items, hence, as name implies, BigramTagger

subclass looks at the two items. First item is the previous tagged word and the second

item is current tagged word.

TrigramTagger subclass

Natural Language Processing Toolkit

 65

On the same note of BigramTagger, TrigramTagger subclass looks at the three items

i.e. two previous tagged words and one current tagged word.

Practically if we apply BigramTagger and TrigramTagger subclasses individually as we

did with UnigramTagger subclass, they both perform very poorly. Let us see in the

examples below:

Using BigramTagger Subclass

from nltk.tag import BigramTagger

from nltk.corpus import treebank

train_sentences = treebank.tagged_sents()[:2500]

Bi_tagger = BigramTagger(train_sentences)

test_sentences = treebank.tagged_sents()[1500:]

Bi_tagger.evaluate(test_sentences)

Output

0.44669191071913594

Using TrigramTagger Subclass

from nltk.tag import TrigramTagger

from nltk.corpus import treebank

train_sentences = treebank.tagged_sents()[:2500]

Tri_tagger = TrigramTagger(train_sentences)

test_sentences = treebank.tagged_sents()[1500:]

Tri_tagger.evaluate(test_sentences)

Natural Language Processing Toolkit

 66

Output

0.41949863394526193

You can compare the performance of UnigramTagger, we used previously (gave around

89% accuracy) with BigramTagger (gave around 44% accuracy) and TrigramTagger (gave

around 41% accuracy). The reason is that Bigram and Trigram taggers cannot learn

context from the first word(s) in a sentence. On the other hand, UnigramTagger class

doesn’t care about the previous context and guesses the most common tag for each word,

hence able to have high baseline accuracy.

Combining ngram taggers

As from the above examples, it is obvious that Bigram and Trigram taggers can contribute

when we combine them with backoff tagging. In the example below, we are combining

Unigram, Bigram and Trigram taggers with backoff tagging. The concept is same as the

previous recipe while combining the UnigramTagger with backoff tagger. The only

difference is that we are using the function named backoff_tagger() from tagger_util.py,

given below, for backoff operation.

def backoff_tagger(train_sentences, tagger_classes, backoff=None):

 for cls in tagger_classes:

 backoff = cls(train_sentences, backoff=backoff)

 return backoff

Example

from tagger_util import backoff_tagger

from nltk.tag import UnigramTagger

from nltk.tag import BigramTagger

from nltk.tag import TrigramTagger

from nltk.tag import DefaultTagger

from nltk.corpus import treebank

train_sentences = treebank.tagged_sents()[:2500]

back_tagger = DefaultTagger('NN')

Natural Language Processing Toolkit

 67

Combine_tagger = backoff_tagger(train_sentences, [UnigramTagger, BigramTagger,

TrigramTagger], backoff=back_tagger)

test_sentences = treebank.tagged_sents()[1500:]

Combine_tagger.evaluate(test_sentences)

Output

0.9234530029238365

From the above output, we can see it increases the accuracy by around 3%.

Natural Language Processing Toolkit

 68

Affix Tagger

One another important class of ContextTagger subclass is AffixTagger. In AffixTagger

class, the context is either prefix or suffix of a word. That is the reason AffixTagger class

can learn tags based on fixed-length substrings of the beginning or ending of a word.

How does it work?

Its working depends upon the argument named affix_length which specifies the length of

the prefix or suffix. The default value is 3. But how it distinguishes whether AffixTagger

class learned word’s prefix or suffix?

 affix_length=positive: If the value of affix_lenght is positive then it means that

the AffixTagger class will learn word’s prefixes.

 affix_length=negative: If the value of affix_lenght is negative then it means that

the AffixTagger class will learn word’s suffixes.

To make it clearer, in the example below, we will be using AffixTagger class on tagged

treebank sentences.

Example 1

In this example, AffixTagger will learn word’s prefix because we are not specifying any

value for affix_length argument. The argument will take default value 3:

from nltk.tag import AffixTagger

from nltk.corpus import treebank

train_sentences = treebank.tagged_sents()[:2500]

Prefix_tagger = AffixTagger(train_sentences)

test_sentences = treebank.tagged_sents()[1500:]

Prefix_tagger.evaluate(test_sentences)

13. NLTK ― More NLTK Taggers

Natural Language Processing Toolkit

 69

Output

0.2800492099250667

Let us see in the example below what will be the accuracy when we provide value 4 to

affix_length argument:

from nltk.tag import AffixTagger

from nltk.corpus import treebank

train_sentences = treebank.tagged_sents()[:2500]

Prefix_tagger = AffixTagger(train_sentences, affix_length=4)

test_sentences = treebank.tagged_sents()[1500:]

Prefix_tagger.evaluate(test_sentences)

Output

0.18154947354966527

Example 2

In this example, AffixTagger will learn word’s suffix because we will specify negative value

for affix_length argument.

from nltk.tag import AffixTagger

from nltk.corpus import treebank

train_sentences = treebank.tagged_sents()[:2500]

Suffix_tagger = AffixTagger(train_sentences, affix_length=-3)

test_sentences = treebank.tagged_sents()[1500:]

Suffix_tagger.evaluate(test_sentences)

Natural Language Processing Toolkit

 70

Output

0.2800492099250667

Brill Tagger

Brill Tagger is a transformation-based tagger. NLTK provides BrillTagger class which is

the first tagger that is not a subclass of SequentialBackoffTagger. Opposite to it, a

series of rules to correct the results of an initial tagger is used by BrillTagger.

How does it work?

To train a BrillTagger class using BrillTaggerTrainer we define the following function:

def train_brill_tagger(initial_tagger, train_sentences, **kwargs):

 templates = [

 brill.Template(brill.Pos([-1])),

 brill.Template(brill.Pos([1])),

 brill.Template(brill.Pos([-2])),

 brill.Template(brill.Pos([2])),

 brill.Template(brill.Pos([-2, -1])),

 brill.Template(brill.Pos([1, 2])),

 brill.Template(brill.Pos([-3, -2, -1])),

 brill.Template(brill.Pos([1, 2, 3])),

 brill.Template(brill.Pos([-1]), brill.Pos([1])),

 brill.Template(brill.Word([-1])),

 brill.Template(brill.Word([1])),

 brill.Template(brill.Word([-2])),

 brill.Template(brill.Word([2])),

 brill.Template(brill.Word([-2, -1])),

 brill.Template(brill.Word([1, 2])),

 brill.Template(brill.Word([-3, -2, -1])),

 brill.Template(brill.Word([1, 2, 3])),

 brill.Template(brill.Word([-1]), brill.Word([1])),

]

 trainer = brill_trainer.BrillTaggerTrainer(initial_tagger, templates,

deterministic=True)

 return trainer.train(train_sentences, **kwargs)

Natural Language Processing Toolkit

 71

As we can see, this function requires initial_tagger and train_sentences. It takes an

initial_tagger argument and a list of templates, which implements the BrillTemplate

interface. The BrillTemplate interface is found in the nltk.tbl.template module. One of

such implementation is brill.Template class.

The main role of transformation-based tagger is to generate transformation rules that

correct the initial tagger’s output to be more in-line with the training sentences. Let us see

the workflow below:

Example

For this example, we will be using combine_tagger which we created while combing

taggers (in the previous recipe) from a backoff chain of NgramTagger classes, as

initial_tagger. First, let us evaluate the result using Combine.tagger and then use that

as initial_tagger to train brill tagger.

from tagger_util import backoff_tagger

from nltk.tag import UnigramTagger

from nltk.tag import BigramTagger

from nltk.tag import TrigramTagger

from nltk.tag import DefaultTagger

from nltk.corpus import treebank

train_sentences = treebank.tagged_sents()[:2500]

Natural Language Processing Toolkit

 72

back_tagger = DefaultTagger('NN')

Combine_tagger = backoff_tagger(train_sentences, [UnigramTagger, BigramTagger,

TrigramTagger], backoff=back_tagger)

test_sentences = treebank.tagged_sents()[1500:]

Combine_tagger.evaluate(test_sentences)

Output

0.9234530029238365

Now, let us see the evaluation result when Combine_tagger is used as initial_tagger

to train brill tagger:

from tagger_util import train_brill_tagger

brill_tagger = train_brill_tagger(combine_tagger, train_sentences)

brill_tagger.evaluate(test_sentences)

Output

0.9246832510505041

We can notice that BrillTagger class has slight increased accuracy over the

Combine_tagger.

Complete implementation example

from tagger_util import backoff_tagger

from nltk.tag import UnigramTagger

from nltk.tag import BigramTagger

from nltk.tag import TrigramTagger

from nltk.tag import DefaultTagger

from nltk.corpus import treebank

train_sentences = treebank.tagged_sents()[:2500]

Natural Language Processing Toolkit

 73

back_tagger = DefaultTagger('NN')

Combine_tagger = backoff_tagger(train_sentences, [UnigramTagger, BigramTagger,

TrigramTagger], backoff=back_tagger)

test_sentences = treebank.tagged_sents()[1500:]

Combine_tagger.evaluate(test_sentences)

from tagger_util import train_brill_tagger

brill_tagger = train_brill_tagger(combine_tagger, train_sentences)

brill_tagger.evaluate(test_sentences)

Output

0.9234530029238365

0.9246832510505041

TnT Tagger

TnT Tagger, stands for Trigrams’nTags, is a statistical tagger which is based on second

order Markov models.

How does it work?

We can understand the working of TnT tagger with the help of following steps:

 First based on training data, TnT tegger maintains several internal FreqDist and

ConditionalFreqDist instances.

 After that unigrams, bigrams and trigrams will be counted by these frequency

distributions.

 Now, during tagging, by using frequencies, it will calculate the probabilities of

possible tags for each word.

That’s why instead of constructing a backoff chain of NgramTagger, it uses all the ngram

models together to choose the best tag for each word. Let us evaluate the accuracy with

TnT tagger in the following example:

from nltk.tag import tnt

from nltk.corpus import treebank

train_sentences = treebank.tagged_sents()[:2500]

Natural Language Processing Toolkit

 74

tnt_tagger = tnt.TnT()

tnt_tagger.train(train_sentences)

test_sentences = treebank.tagged_sents()[1500:]

tnt_tagger.evaluate(test_sentences)

Output

0.9165508316157791

We have a slight less accuracy than we got with Brill Tagger.

Please note that we need to call train() before evaluate() otherwise we will get 0%

accuracy.

Natural Language Processing Toolkit

 75

Parsing and its relevance in NLP

The word ‘Parsing’ whose origin is from Latin word ‘pars’ (which means ‘part’), is used

to draw exact meaning or dictionary meaning from the text. It is also called Syntactic

analysis or syntax analysis. Comparing the rules of formal grammar, syntax analysis

checks the text for meaningfulness. The sentence like “Give me hot ice-cream”, for

example, would be rejected by parser or syntactic analyzer.

In this sense, we can define parsing or syntactic analysis or syntax analysis as follows:

It may be defined as the process of analyzing the strings of symbols in natural language

conforming to the rules of formal grammar.

We can understand the relevance of parsing in NLP with the help of following points:

 Parser is used to report any syntax error.

 It helps to recover from commonly occurring error so that the processing of the

remainder of program can be continued.

 Parse tree is created with the help of a parser.

 Parser is used to create symbol table, which plays an important role in NLP.

 Parser is also used to produce intermediate representations (IR).

Deep Vs Shallow Parsing

Deep Parsing Shallow Parsing

14. NLTK ― Parsing

Natural Language Processing Toolkit

 76

In deep parsing, the search strategy will

give a complete syntactic structure to a

sentence.

It is the task of parsing a limited part of

the syntactic information from the given

task.

It is suitable for complex NLP applications. It can be used for less complex NLP

applications.

Dialogue systems and summarization are

the examples of NLP applications where

deep parsing is used.

Information extraction and text mining are

the examples of NLP applications where

deep parsing is used.

It is also called full parsing. It is also called chunking.

Various types of parsers

As discussed, a parser is basically a procedural interpretation of grammar. It finds an

optimal tree for the given sentence after searching through the space of a variety of trees.

Let us see some of the available parsers below:

Recursive descent parser

Recursive descent parsing is one of the most straightforward forms of parsing. Following

are some important points about recursive descent parser:

 It follows a top down process.

 It attempts to verify that the syntax of the input stream is correct or not.

 It reads the input sentence from left to right.

 One necessary operation for recursive descent parser is to read characters from

the input stream and matching them with the terminals from the grammar.

Shift-reduce parser

Following are some important points about shift-reduce parser:

 It follows a simple bottom-up process.

 It tries to find a sequence of words and phrases that correspond to the right-hand

side of a grammar production and replaces them with the left-hand side of the

production.

 The above attempt to find a sequence of word continues until the whole sentence

is reduced.

 In other simple words, shift-reduce parser starts with the input symbol and tries to

construct the parser tree up to the start symbol.

Chart parser

Following are some important points about chart parser:

 It is mainly useful or suitable for ambiguous grammars, including grammars of

natural languages.

Natural Language Processing Toolkit

 77

 It applies dynamic programing to the parsing problems.

 Because of dynamic programing, partial hypothesized results are stored in a

structure called a ‘chart’.

 The ‘chart’ can also be re-used.

Regexp parser

Regexp parsing is one of the mostly used parsing technique. Following are some important

points about Regexp parser:

 As the name implies, it uses a regular expression defined in the form of grammar

on top of a POS-tagged string.

 It basically uses these regular expressions to parse the input sentences and

generate a parse tree out of this.

Following is a working example of Regexp Parser:

import nltk

sentence = [("a", "DT"),("clever",

"JJ"),("fox","NN"),("was","VBP"),("jumping","VBP"),("over","IN"),("the","DT"),(

"wall","NN")]

grammar = "NP:{<DT>?<JJ>*<NN>}"

Reg_parser=nltk.RegexpParser(grammar)

Reg_parser.parse(sentence)

Output=Reg_parser.parse(sentence)

Output.draw()

Output

Natural Language Processing Toolkit

 78

Dependency Parsing

Dependency Parsing (DP), a modern parsing mechanism, whose main concept is that each

linguistic unit i.e. words relates to each other by a direct link. These direct links are actually

‘dependencies’ in linguistic. For example, the following diagram shows dependency

grammar for the sentence “John can hit the ball”.

NLTK Package

We have following the two ways to do dependency parsing with NLTK:

Probabilistic, projective dependency parser

This is the first way we can do dependency parsing with NLTK. But this parser has the

restriction of training with a limited set of training data.

Stanford parser

This is another way we can do dependency parsing with NLTK. Stanford parser is a state-

of-the-art dependency parser. NLTK has a wrapper around it. To use it we need to

download following two things:

The Stanford CoreNLP parser.

Language model for desired language. For example, English language model.

Example

Once you downloaded the model, we can use it through NLTK as follows:

from nltk.parse.stanford import StanfordDependencyParser

path_jar = 'path_to/stanford-parser-full-2014-08-27/stanford-parser.jar'

https://nlp.stanford.edu/software/lex-parser.shtml#Download
https://stanfordnlp.github.io/CoreNLP/

Natural Language Processing Toolkit

 79

path_models_jar = 'path_to/stanford-parser-full-2014-08-27/stanford-parser-

3.4.1-models.jar'

dep_parser = StanfordDependencyParser(path_to_jar=path_jar,

path_to_models_jar=path_models_jar)

result = dep_parser.raw_parse('I shot an elephant in my sleep')

depndency = result.next()

list(dependency.triples())

Output

[((u'shot', u'VBD'), u'nsubj', (u'I', u'PRP')),

 ((u'shot', u'VBD'), u'dobj', (u'elephant', u'NN')),

 ((u'elephant', u'NN'), u'det', (u'an', u'DT')),

 ((u'shot', u'VBD'), u'prep', (u'in', u'IN')),

 ((u'in', u'IN'), u'pobj', (u'sleep', u'NN')),

 ((u'sleep', u'NN'), u'poss', (u'my', u'PRP$'))]

Natural Language Processing Toolkit

 80

What is Chunking?

Chunking, one of the important processes in natural language processing, is used to

identify parts of speech (POS) and short phrases. In other simple words, with chunking,

we can get the structure of the sentence. It is also called partial parsing.

Chunk patterns and chinks

Chunk patterns are the patterns of part-of-speech (POS) tags that define what kind of

words made up a chunk. We can define chunk patterns with the help of modified regular

expressions.

Moreover, we can also define patterns for what kind of words should not be in a chunk and

these unchunked words are known as chinks.

Implementation example

In the example below, along with the result of parsing the sentence “the book has many

chapters”, there is a grammar for noun phrases that combines both a chunk and a chink

pattern:

import nltk

sentence = [("the", "DT"),("book",

"NN"),("has","VBZ"),("many","JJ"),("chapters","NNS")]

chunker=nltk.RegexpParser(r'''

NP:{<DT><NN.*><.*>*<NN.*>}

}<VB.*>{

''')

chunker.parse(sentence)

Output=chunker.parse(sentence)

Output.draw()

Output

15. NLTK ― Chunking & Information Extraction

Natural Language Processing Toolkit

 81

As seen above, the pattern for specifying a chunk is to use curly braces as follows:

{<DT><NN>}

And to specify a chink, we can flip the braces such as follows:

}<VB>{.

Now, for a particular phrase type, these rules can be combined into a grammar.

Information Extraction

We have gone through taggers as well as parsers that can be used to build information

extraction engine. Let us see a basic information extraction pipeline:

Natural Language Processing Toolkit

 82

 Information extraction has many applications including:

 Business intelligence

 Resume harvesting

 Media analysis

 Sentiment detection

 Patent search

 Email scanning

Natural Language Processing Toolkit

 83

Named-entity recognition (NER)

Named-entity recognition (NER) is actually a way of extracting some of most common

entities like names, organizations, location, etc. Let us see an example that took all the

preprocessing steps such as sentence tokenization, POS tagging, chunking, NER, and

follows the pipeline provided in the figure above.

Example

Import nltk

file=open (# provide here the absolute path for the file of text for which we

want NER)

data_text=file.read()

sentences = nltk.sent_tokenize(data_text)

tokenized_sentences = [nltk.word_tokenize(sentence) for sentence in

sentences]

tagged_sentences = [nltk.pos_tag(sentence) for sentence in tokenized_

sentences]

for sent in tagged_sentences:

print nltk.ne_chunk(sent)

Some of the modified Named-entity recognition (NER) can also be used to extract entities

such as product names, bio-medical entities, brand name and much more.

Relation extraction

Relation extraction, another commonly used information extraction operation, is the

process of extracting the different relationships between various entities. There can be

different relationships like inheritance, synonyms, analogous, etc., whose definition

depends on the information need. For example, suppose if we want to look for write of a

book then the authorship would be a relation between the author name and book name.

Example

In the following example, we use the same IE pipeline, as shown in the above diagram,

that we used till Named-entity relation (NER) and extend it with a relation pattern based

on the NER tags.

import nltk

import re

IN = re.compile(r'.*\bin\b(?!\b.+ing)')

for doc in nltk.corpus.ieer.parsed_docs('NYT_19980315'):

 for rel in nltk.sem.extract_rels('ORG', 'LOC', doc, corpus='ieer', pattern

= IN):

print(nltk.sem.rtuple(rel))

Natural Language Processing Toolkit

 84

Output

[ORG: 'WHYY'] 'in' [LOC: 'Philadelphia']

[ORG: 'McGlashan & Sarrail'] 'firm in' [LOC: 'San Mateo']

[ORG: 'Freedom Forum'] 'in' [LOC: 'Arlington']

[ORG: 'Brookings Institution'] ', the research group in' [LOC: 'Washington']

[ORG: 'Idealab'] ', a self-described business incubator based in' [LOC: 'Los

Angeles']

[ORG: 'Open Text'] ', based in' [LOC: 'Waterloo']

[ORG: 'WGBH'] 'in' [LOC: 'Boston']

[ORG: 'Bastille Opera'] 'in' [LOC: 'Paris']

[ORG: 'Omnicom'] 'in' [LOC: 'New York']

[ORG: 'DDB Needham'] 'in' [LOC: 'New York']

[ORG: 'Kaplan Thaler Group'] 'in' [LOC: 'New York']

[ORG: 'BBDO South'] 'in' [LOC: 'Atlanta']

[ORG: 'Georgia-Pacific'] 'in' [LOC: 'Atlanta']

In the above code, we have used an inbuilt corpus named ieer. In this corpus, the

sentences are tagged till Named-entity relation (NER). Here we only need to specify the

relation pattern that we want and the kind of NER we want the relation to define. In our

example, we defined relationship between an organization and a location. We extracted

all the combinations of these patterns.

Natural Language Processing Toolkit

 85

Why transforming Chunks?

Till now we have got chunks or phrases from sentences but what are we supposed to do

with them. One of the important tasks is to transform them. But why? It is to do the

following:

 grammatical correction and

 rearranging phrases

Filtering insignificant/useless words

Suppose if you want to judge the meaning of a phrase then there are many commonly

used words such as, ‘the’, ‘a’, are insignificant or useless. For example, see the following

phrase:

‘The movie was good’.

Here the most significant words are ‘movie’ and ‘good’. Other words, ‘the’ and ‘was’ both

are useless or insignificant. It is because without them also we can get the same meaning

of the phrase. ‘Good movie’.

In the following python recipe, we will learn how to remove useless/insignificant words

and keep the significant words with the help of POS tags.

Example

First, by looking through treebank corpus for stopwords we need to decide which part-

of-speech tags are significant and which are not. Let us see the following table of

insignificant words and tags:

Word Tag

a DT

All PDT

An DT

And CC

Or CC

That WDT

The DT

16. NLTK ― Transforming Chunks

Natural Language Processing Toolkit

 86

From the above table, we can see other than CC, all the other tags end with DT which

means we can filter out insignificant words by looking at the tag’s suffix.

For this example, we are going to use a function named filter() which takes a single chunk

and returns a new chunk without any insignificant tagged words. This function filters out

any tags that end with DT or CC.

import nltk

def filter(chunk, tag_suffixes=['DT', 'CC']):

 significant = []

 for word, tag in chunk:

 ok = True

 for suffix in tag_suffixes:

 if tag.endswith(suffix):

 ok = False

 break

 if ok:

 significant.append((word, tag))

 return (significant)

Now, let us use this function filter() in our Python recipe to delete insignificant words:

from chunk_parse import filter

filter([('the', 'DT'),('good', 'JJ'),('movie', 'NN')])

Output

[('good', 'JJ'), ('movie', 'NN')]

Verb Correction

Many times, in real-world language we see incorrect verb forms. For example, ‘is you fine?’

is not correct. The verb form is not correct in this sentence. The sentence should be ‘are

you fine?’ NLTK provides us the way to correct such mistakes by creating verb correction

mappings. These correction mappings are used depending on whether there is a plural or

singular noun in the chunk.

Example

To implement Python recipe, we first need to need define verb correction mappings. Let

us create two mapping as follows:

Plural to Singular mappings

plural= {

Natural Language Processing Toolkit

 87

('is', 'VBZ'): ('are', 'VBP'),

('was', 'VBD'): ('were', 'VBD')

}

Singular to Plural mappings

singular = {

('are', 'VBP'): ('is', 'VBZ'),

('were', 'VBD'): ('was', 'VBD')

}

As seen above, each mapping has a tagged verb which maps to another tagged verb. The

initial mappings in our example cover the basic of mappings is to are, was to were, and

vice versa.

Next, we will define a function named verbs(), in which you can pass a chink with incorrect

verb form and ‘ll get a corrected chunk back. To get it done, verb() function uses a helper

function named index_chunk() which will search the chunk for the position of the first

tagged word.

Let us see these functions:

def index_chunk(chunk, pred, start=0, step=1):

 l = len(chunk)

 end = l if step > 0 else -1

 for i in range(start, end, step):

 if pred(chunk[i]):

 return i

 return None

def tag_startswith(prefix):

 def f(wt):

 return wt[1].startswith(prefix)

 return f

def verbs(chunk):

 vbidx = index_chunk(chunk, tag_startswith('VB'))

 if vbidx is None:

 return chunk

 verb, vbtag = chunk[vbidx]

 nnpred = tag_startswith('NN')

 nnidx = index_chunk(chunk, nnpred, start=vbidx+1)

 if nnidx is None:

Natural Language Processing Toolkit

 88

 nnidx = index_chunk(chunk, nnpred, start=vbidx-1, step=-1)

 if nnidx is None:

 return chunk

 noun, nntag = chunk[nnidx]

 if nntag.endswith('S'):

 chunk[vbidx] = plural.get((verb, vbtag), (verb, vbtag))

 else:

 chunk[vbidx] = singular.get((verb, vbtag), (verb,

vbtag))

 return chunk

Save these functions in a Python file in your local directory where Python or Anaconda is

installed and run it. I have saved it as verbcorrect.py.

Now, let us call verbs() function on a POS tagged is you fine chunk:

from verbcorrect import verbs

verbs([('is', 'VBZ'), ('you', 'PRP$'), ('fine', 'VBG')])

Output

[('are', 'VBP'), ('you', 'PRP$'), ('fine','VBG')]

Eliminating passive voice from phrases

Another useful task is to eliminate passive voice from phrases. This can be done with the

help of swapping the words around a verb. For example, ‘the tutorial was great’ can be

transformed into ‘the great tutorial’.

Example

To achieve this we are defining a function named eliminate_passive() that will swap the

right-hand side of the chunk with the left-hand side by using the verb as the pivot point.

In order to find the verb to pivot around, it will also use the index_chunk() function

defined above.

def eliminate_passive(chunk):

 def vbpred(wt):

 word, tag = wt

 return tag != 'VBG' and tag.startswith('VB') and len(tag) > 2

 vbidx = index_chunk(chunk, vbpred)

 if vbidx is None:

 return chunk

 return chunk[vbidx+1:] + chunk[:vbidx]

Natural Language Processing Toolkit

 89

Now, let us call eliminate_passive() function on a POS tagged the tutorial was great

chunk:

from passiveverb import eliminate_passive

eliminate_passive([('the', 'DT'), ('tutorial', 'NN'), ('was', 'VBD'),('great',

'JJ')])

Output

[('great', 'JJ'), ('the', 'DT'), ('tutorial', 'NN')]

Swapping noun cardinals

As we know, a cardinal word such as 5, is tagged as CD in a chunk. These cardinal words

often occur before or after a noun but for normalization purpose it is useful to put them

before the noun always. For example, the date January 5 can be written as 5 January.

Let us understand it with the following example.

Example

To achieve this we are defining a function named swapping_cardinals() that will swap

any cardinal that occurs immediately after a noun with the noun. With this the cardinal

will occur immediately before the noun. In order to do equality comparison with the given

tag, it uses a helper function which we named as tag_eql().

def tag_eql(tag):

 def f(wt):

 return wt[1] == tag

 return f

Now we can define swapping_cardinals():

def swapping_cardinals (chunk):

 cdidx = index_chunk(chunk, tag_eql('CD'))

 if not cdidx or not chunk[cdidx-1][1].startswith('NN'):

 return chunk

 noun, nntag = chunk[cdidx-1]

 chunk[cdidx-1] = chunk[cdidx]

 chunk[cdidx] = noun, nntag

 return chunk

Now, Let us call swapping_cardinals() function on a date “January 5”:

from Cardinals import swapping_cardinals()

swapping_cardinals([('Janaury', 'NNP'), ('5', 'CD')])

Natural Language Processing Toolkit

 90

Output

[('10', 'CD'), ('January', 'NNP')]

10 January

Natural Language Processing Toolkit

 91

Following are the two reasons to transform the trees:

 To modify deep parse tree and

 To flatten deep parse trees

Converting Tree or Subtree to Sentence

The first recipe we are going to discuss here is to convert a Tree or subtree back to a

sentence or chunk string. This is very simple, let us see in the following example:

Example

from nltk.corpus import treebank_chunk

tree = treebank_chunk.chunked_sents()[2]

' '.join([w for w, t in tree.leaves()])

Output

'Rudolph Agnew , 55 years old and former chairman of Consolidated Gold Fields

PLC , was named a nonexecutive director of this British industrial conglomerate

.'

Deep tree flattening

Deep trees of nested phrases can’t be used for training a chunk hence we must flatten

them before using. In the following example, we are going to use 3rd parsed sentence,

which is deep tree of nested phrases, from the treebank corpus.

Example

To achieve this, we are defining a function named deeptree_flat() that will take a single

Tree and will return a new Tree that keeps only the lowest level trees. In order to do most

of the work, it uses a helper function which we named as childtree_flat().

 from nltk.tree import Tree

def childtree_flat(trees):

 children = []

 for t in trees:

 if t.height() < 3:

 children.extend(t.pos())

 elif t.height() == 3:

17. NLTK ― Transforming Trees

Natural Language Processing Toolkit

 92

 children.append(Tree(t.label(), t.pos()))

 else:

 children.extend(flatten_childtrees([c for c in t]))

 return children

def deeptree_flat(tree):

 return Tree(tree.label(), flatten_childtrees([c for c in tree]))

Now, let us call deeptree_flat() function on 3rd parsed sentence, which is deep tree of

nested phrases, from the treebank corpus. We saved these functions in a file named

deeptree.py.

from deeptree import deeptree_flat

from nltk.corpus import treebank

deeptree_flat(treebank.parsed_sents()[2])

Output

Tree('S', [Tree('NP', [('Rudolph', 'NNP'), ('Agnew', 'NNP')]), (',', ','),

Tree('NP', [('55', 'CD'), ('years', 'NNS')]), ('old', 'JJ'), ('and', 'CC'),

Tree('NP', [('former', 'JJ'), ('chairman', 'NN')]), ('of', 'IN'), Tree('NP',

[('Consolidated', 'NNP'), ('Gold', 'NNP'), ('Fields', 'NNP'), ('PLC', 'NNP')]),

(',', ','), ('was', 'VBD'), ('named', 'VBN'), Tree('NP-SBJ', [('*-1', '-NONE-

')]), Tree('NP', [('a', 'DT'), ('nonexecutive', 'JJ'), ('director', 'NN')]),

('of', 'IN'), Tree('NP', [('this', 'DT'), ('British', 'JJ'), ('industrial',

'JJ'), ('conglomerate', 'NN')]), ('.', '.')])

Building Shallow tree

In the previous section, we flatten a deep tree of nested phrases by only keeping the

lowest level subtrees. In this section, we are going to keep only the highest-level subtrees

i.e. to build the shallow tree. In the following example we are going to use 3rd parsed

sentence, which is deep tree of nested phrases, from the treebank corpus.

Example

To achieve this, we are defining a function named tree_shallow() that will eliminate all

the nested subtrees by keeping only the top subtree labels.

 from nltk.tree import Tree

def tree_shallow(tree):

 children = []

 for t in tree:

 if t.height() < 3:

 children.extend(t.pos())

 else:

Natural Language Processing Toolkit

 93

 children.append(Tree(t.label(), t.pos()))

 return Tree(tree.label(), children)

Now, let us call tree_shallow() function on 3rd parsed sentence, which is deep tree of

nested phrases, from the treebank corpus. We saved these functions in a file named

shallowtree.py.

from shallowtree import shallow_tree

from nltk.corpus import treebank

tree_shallow(treebank.parsed_sents()[2])

Output

Tree('S', [Tree('NP-SBJ-1', [('Rudolph', 'NNP'), ('Agnew', 'NNP'), (',', ','),

('55', 'CD'), ('years', 'NNS'), ('old', 'JJ'), ('and', 'CC'), ('former', 'JJ'),

('chairman', 'NN'), ('of', 'IN'), ('Consolidated', 'NNP'), ('Gold', 'NNP'),

('Fields', 'NNP'), ('PLC', 'NNP'), (',', ',')]), Tree('VP', [('was', 'VBD'),

('named', 'VBN'), ('*-1', '-NONE-'), ('a', 'DT'), ('nonexecutive', 'JJ'),

('director', 'NN'), ('of', 'IN'), ('this', 'DT'), ('British', 'JJ'),

('industrial', 'JJ'), ('conglomerate', 'NN')]), ('.', '.')])

We can see the difference with the help of getting the height of the trees:

from nltk.corpus import treebank

tree_shallow(treebank.parsed_sents()[2]).height()

Output

3

from nltk.corpus import treebank

treebank.parsed_sents()[2].height()

Output

9

Natural Language Processing Toolkit

 94

Tree labels conversion

In parse trees there are variety of Tree label types that are not present in chunk trees.

But while using parse tree to train a chunker, we would like to reduce this variety by

converting some of Tree labels to more common label types. For example, we have two

alternative NP subtrees namely NP-SBL and NP-TMP. We can convert both of them into

NP. Let us see how to do it in the following example.

Example

To achieve this we are defining a function named tree_convert() that takes following two

arguments:

 Tree to convert

 A label conversion mapping

This function will return a new Tree with all matching labels replaced based on the values

in the mapping.

from nltk.tree import Tree

def tree_convert(tree, mapping):

 children = []

 for t in tree:

 if isinstance(t, Tree):

 children.append(convert_tree_labels(t, mapping))

 else:

 children.append(t)

 label = mapping.get(tree.label(), tree.label())

 return Tree(label, children)

Now, let us call tree_convert() function on 3rd parsed sentence, which is deep tree of

nested phrases, from the treebank corpus. We saved these functions in a file named

converttree.py.

from converttree import tree_convert

from nltk.corpus import treebank

mapping = {'NP-SBJ': 'NP', 'NP-TMP': 'NP'}

convert_tree_labels(treebank.parsed_sents()[2], mapping)

Output

Tree('S', [Tree('NP-SBJ-1', [Tree('NP', [Tree('NNP', ['Rudolph']), Tree('NNP',

['Agnew'])]), Tree(',', [',']), Tree('UCP', [Tree('ADJP', [Tree('NP',

[Tree('CD', ['55']), Tree('NNS', ['years'])]), Tree('JJ', ['old'])]),

Tree('CC', ['and']), Tree('NP', [Tree('NP', [Tree('JJ', ['former']), Tree('NN',

['chairman'])]), Tree('PP', [Tree('IN', ['of']), Tree('NP', [Tree('NNP',

['Consolidated']), Tree('NNP', ['Gold']), Tree('NNP', ['Fields']), Tree('NNP',

['PLC'])])])])]), Tree(',', [','])]), Tree('VP', [Tree('VBD', ['was']),

Natural Language Processing Toolkit

 95

Tree('VP', [Tree('VBN', ['named']), Tree('S', [Tree('NP', [Tree('-NONE-', ['*-

1'])]), Tree('NP-PRD', [Tree('NP', [Tree('DT', ['a']), Tree('JJ',

['nonexecutive']), Tree('NN', ['director'])]), Tree('PP', [Tree('IN', ['of']),

Tree('NP', [Tree('DT', ['this']), Tree('JJ', ['British']), Tree('JJ',

['industrial']), Tree('NN', ['conglomerate'])])])])])])]), Tree('.', ['.'])])

Natural Language Processing Toolkit

 96

What is text classification?

Text classification, as the name implies, is the way to categorize pieces of text or

documents. But here the question arises that why we need to use text classifiers? Once

examining the word usage in a document or piece of text, classifiers will be able to decide

what class label should be assigned to it.

Binary Classifier

As name implies, binary classifier will decide between two labels. For example, positive or

negative. In this the piece of text or document can either be one label or another, but not

both.

Multi-label Classifier

Opposite to binary classifier, multi-label classifier can assign one or more labels to a piece

of text or document.

Labeled Vs Unlabeled Feature set

A key-value mapping of feature names to feature values is called a feature set. Labeled

feature sets or training data is very important for classification training so that it can later

classify unlabeled feature set.

Labeled Feature Set Unlabeled Feature Set

It is a tuple that look like (feat, label).

It is a feat itself.

It is an instance with a known class label. Without associated label, we can call it an

instance.

Used for training a classification algorithm. Once trained, classification algorithm can

classify an unlabeled feature set.

Text Feature Extraction

Text feature extraction, as the name implies, is the process of transforming a list of words

into a feature set that is usable by a classifier. We must have to transform our text into

‘dict’ style feature sets because Natural Language Tool Kit (NLTK) expect ‘dict’ style

feature sets.

Bag of Words (BoW) model

BoW, one of the simplest models in NLP, is used to extract the features from piece of text

or document so that it can be used in modeling such that in ML algorithms. It basically

18. NLTK ― Text Classification

Natural Language Processing Toolkit

 97

constructs a word presence feature set from all the words of an instance. The concept

behind this method is that it doesn’t care about how many times a word occurs or about

the order of the words, it only cares weather the word is present in a list of words or not.

Example

For this example, we are going to define a function named bow():

def bow(words):

 return dict([(word, True) for word in words])

Now, let us call bow() function on words. We saved this functions in a file named

bagwords.py.

from bagwords import bow

bow(['we', 'are', 'using', 'tutorialspoint'])

Output

{'we': True, 'are': True, 'using': True, 'tutorialspoint': True}

Training classifiers

In previous sections, we learned how to extract features from the text. So now we can

train a classifier. The first and easiest classifier is NaiveBayesClassifier class.

Naïve Bayes Classifier

To predict the probability that a given feature set belongs to a particular label, it uses

Bayes theorem. The formula of Bayes theorem is as follows:

Here,

P(A|B): It is also called the posterior probability i.e. the probability of first event i.e. A to

occur given that second event i.e. B occurred.

P(B|A): It is the probability of second event i.e. B to occur after first event i.e. A occurred.

P(A), P(B): It is also called prior probability i.e. the probability of first event i.e. A or

second event i.e. B to occur.

To train Naïve Bayes classifier, we will be using the movie_reviews corpus from NLTK.

This corpus has two categories of text, namely: pos and neg. These categories make a

classifier trained on them a binary classifier. Every file in the corpus is composed of two,

Natural Language Processing Toolkit

 98

one is positive movie review and other is negative movie review. In our example, we are

going to use each file as a single instance for both training and testing the classifier.

Example

For training classifier, we need a list of labeled feature sets, which will be in the form

[(featureset, label)]. Here the featureset variable is a dict and label is the known class

label for the featureset. We are going to create a function named label_corpus() which

will take a corpus named movie_reviews and also a function named feature_detector,

which defaults to bag of words. It will construct and returns a mapping of the form,

{label: [featureset]}. After that we will use this mapping to create a list of labeled training

instances and testing instances.

import collections

def label_corpus(corp, feature_detector=bow):

 label_feats = collections.defaultdict(list)

 for label in corp.categories():

 for fileid in corp.fileids(categories=[label]):

 feats = feature_detector(corp.words(fileids=[fileid]))

 label_feats[label].append(feats)

 return label_feats

With the help of above function we will get a mapping {label:fetaureset}. Now we are

going to define one more function named split() that will take a mapping returned from

label_corpus() function and splits each list of feature sets into labeled training as well

as testing instances.

def split(lfeats, split=0.75):

 train_feats = []

 test_feats = []

 for label, feats in lfeats.items():

 cutoff = int(len(feats) * split)

 train_feats.extend([(feat, label) for feat in feats[:cutoff]])

 test_feats.extend([(feat, label) for feat in feats[cutoff:]])

 return train_feats, test_feats

 Now, let us use these functions on our corpus, i.e. movie_reviews:

from nltk.corpus import movie_reviews

from featx import label_feats_from_corpus, split_label_feats

movie_reviews.categories()

Output

['neg', 'pos']

Natural Language Processing Toolkit

 99

lfeats = label_feats_from_corpus(movie_reviews)

lfeats.keys()

Output

dict_keys(['neg', 'pos'])

train_feats, test_feats = split_label_feats(lfeats, split=0.75)

len(train_feats)

Output

1500

len(test_feats)

Output

500

We have seen that in movie_reviews corpus, there are 1000 pos files and 1000 neg files.

We also end up with 1500 labeled training instances and 500 labeled testing instances.

Now let us train NaïveBayesClassifier using its train() class method:

from nltk.classify import NaiveBayesClassifier

NBC = NaiveBayesClassifier.train(train_feats)

NBC.labels()

Output

['neg', 'pos']

Decision Tree Classifier

Another important classifier is decision tree classifier. Here to train it the

DecisionTreeClassifier class will create a tree structure. In this tree structure each node

corresponds to a feature name and the branches correspond to the feature values. And

down the branches we will get to the leaves of the tree i.e. the classification labels.

To train decision tree classifier, we will use the same training and testing features i.e.

train_feats and test_feats, variables we have created from movie_reviews corpus.

Example

Natural Language Processing Toolkit

 100

To train this classifier, we will call DecisionTreeClassifier.train() class method as

follows:

from nltk.classify import DecisionTreeClassifier

decisiont_classifier = DecisionTreeClassifier.train(train_feats, binary=True,

entropy_cutoff=0.8, depth_cutoff=5, support_cutoff=30)

accuracy(decisiont_classifier, test_feats)

Output

0.725

Maximum Entropy Classifier

Another important classifier is MaxentClassifier which is also known as a conditional

exponential classifier or logistic regression classifier. Here to train it, the

MaxentClassifier class will convert labeled feature sets to vector using encoding.

To train decision tree classifier, we will use the same training and testing features i.e.

train_feats and test_feats, variables we have created from movie_reviews corpus.

Example

To train this classifier, we will call MaxentClassifier.train() class method as follows:

from nltk.classify import MaxentClassifier

maxent_classifier = MaxentClassifier.train(train_feats,algorithm='gis',

trace=0, max_iter=10, min_lldelta=0.5)

accuracy(maxent_classifier, test_feats)

Output

0.786

Scikit-learn Classifier

One of the best machine learning (ML) libraries is Scikit-learn. It actually contains all sorts

of ML algorithms for various purposes, but they all have the same fit design pattern as

follows:

 Fitting the model to the data

 And use that model to make predictions

Rather than accessing scikit-learn models directly, here we are going to use NLTK’s

SklearnClassifier class. This class is a wrapper class around a scikit-learn model to make

it conform to NLTK’s Classifier interface.

We will follow following steps to train a SklearnClassifier class:

Step 1

Natural Language Processing Toolkit

 101

First we will create training features as we did in previous recipes.

Step 2

Now, choose and import a Scikit-learn algorithm.

Step 3

Next, we need to construct a SklearnClassifier class with the chosen algorithm.

Step 4

Last, we will train SklearnClassifier class with our training features.

Let us implement these steps in the below Python recipe:

from nltk.classify.scikitlearn import SklearnClassifier

from sklearn.naive_bayes import MultinomialNB

sklearn_classifier = SklearnClassifier(MultinomialNB())

sklearn_classifier.train(train_feats)

<SklearnClassifier(MultinomialNB(alpha=1.0,class_prior=None,fit_prior=True))>

accuracy(sk_classifier, test_feats)

Output

0.885

Measuring precision and recall

While training various classifiers we have measured their accuracy also. But apart from

accuracy there are number of other metrics which are used to evaluate the classifiers. Two

of these metrics are precision and recall.

Example

In this example, we are going to calculate precision and recall of the NaiveBayesClassifier

class we trained earlier. To achieve this we will create a function named metrics_PR()

which will take two arguments, one is the trained classifier and other is the labeled test

features. Both the arguments are same as we passed while calculating the accuracy of the

classifiers:

import collections

from nltk import metrics

def metrics_PR(classifier, testfeats):

 refsets = collections.defaultdict(set)

 testsets = collections.defaultdict(set)

 for i, (feats, label) in enumerate(testfeats):

 refsets[label].add(i)

 observed = classifier.classify(feats)

Natural Language Processing Toolkit

 102

 testsets[observed].add(i)

 precisions = {}

 recalls = {}

 for label in classifier.labels():

 precisions[label] = metrics.precision(refsets[label],testsets[label])

 recalls[label] = metrics.recall(refsets[label], testsets[label])

 return precisions, recalls

Let us call this function to find the precision and recall:

from metrics_classification import metrics_PR

nb_precisions, nb_recalls = metrics_PR(nb_classifier,test_feats)

nb_precisions['pos']

Output

0.6713532466435213

nb_precisions['neg']

Output

0.9676271186440678

nb_recalls['pos']

Output

0.96

nb_recalls['neg']

Output

0.478

Combination of classifier and voting

Combining classifiers is one of the best ways to improve classification performance. And

voting is one of the best ways to combine multiple classifiers. For voting we need to have

odd number of classifiers. In the following Python recipe we are going to combine three

Natural Language Processing Toolkit

 103

classifiers namely NaiveBayesClassifier class, DecisionTreeClassifier class and

MaxentClassifier class.

To achieve this we are going to define a function named voting_classifiers() as follows:

import itertools

from nltk.classify import ClassifierI

from nltk.probability import FreqDist

class Voting_classifiers(ClassifierI):

 def __init__(self, *classifiers):

 self._classifiers = classifiers

 self._labels = sorted(set(itertools.chain(*[c.labels() for c in

classifiers])))

 def labels(self):

 return self._labels

 def classify(self, feats):

 counts = FreqDist()

 for classifier in self._classifiers:

 counts[classifier.classify(feats)] += 1

 return counts.max()

Let us call this function to combine three classifiers and find the accuracy:

from vote_classification import Voting_classifiers

combined_classifier = Voting_classifiers(NBC, decisiont_classifier,

maxent_classifier)

combined_classifier.labels()

Output

['neg', 'pos']

accuracy(combined_classifier, test_feats)

Output

0.948

From the above output, we can see that the combined classifiers got highest accuracy than

the individual classifiers.

