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About the Tutorial 

Language is a method of communication with the help of which we can speak, read and 

write. Natural Language Processing (NLP) is the sub field of computer science especially 

Artificial Intelligence (AI) that is concerned about enabling computers to understand and 

process human language. We have various open-source NLP tools but NLTK (Natural 

Language Toolkit) scores very high when it comes to the ease of use and explanation of 

the concept. The learning curve of Python is very fast and NLTK is written in Python so 

NLTK is also having very good learning kit. NLTK has incorporated most of the tasks like 

tokenization, stemming, Lemmatization, Punctuation, Character Count, and Word count. 

It is very elegant and easy to work with.  

 

Audience 

This tutorial will be useful for graduates, post-graduates, and research students who either 

have an interest in NLP or have this subject as a part of their curriculum. The reader can 

be a beginner or an advanced learner.  

 

Prerequisites 

The reader must have basic knowledge about artificial intelligence. He/she should also be 

aware of basic terminologies used in English grammar and Python programming concepts. 

 

 

Copyright & Disclaimer 

 Copyright 2019 by Tutorials Point (I) Pvt. Ltd.  

All the content and graphics published in this e-book are the property of Tutorials Point (I) 

Pvt. Ltd.  The user of this e-book is prohibited to reuse, retain, copy, distribute or republish 

any contents or a part of contents of this e-book in any manner without written consent 

of the publisher.   

We strive to update the contents of our website and tutorials as timely and as precisely as 

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt. 

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our 

website or its contents including this tutorial. If you discover any errors on our website or 

in this tutorial, please notify us at contact@tutorialspoint.com 
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What is Natural Language Processing (NLP)? 

The method of communication with the help of which humans can speak, read, and write, 

is language. In other words, we humans can think, make plans, make decisions in our 

natural language. Here the big question is, in the era of artificial intelligence, machine 

learning and deep learning, can humans communicate in natural language with 

computers/machines? Developing NLP applications is a huge challenge for us because 

computers require structured data, but on the other hand, human speech is unstructured 

and often ambiguous in nature. 

Natural language is that subfield of computer science, more specifically of AI, which 

enables computers/machines to understand, process and manipulate human language. In 

simple words, NLP is a way of machines to analyze, understand and derive meaning from 

human natural languages like Hindi, English, French, Dutch, etc. 

How does it work? 

Before getting deep dive into the working of NLP, we must have to understand how human 

beings use language. Every day, we humans use hundreds or thousands of words and 

other humans interpret them and answer accordingly. It’s a simple communication for 

humans, isn’t it? But we know words run much-much deeper than that and we always 

derive a context from what we say and how we say. That’s why we can say rather than 

focuses on voice modulation, NLP does draw on contextual pattern. 

Let us understand it with an example: 

Man is to woman as king is to what? 

We can interpret it easily and answer as follows: 

Man relates to king, so woman can relate to queen.  

Hence the answer is Queen. 

How humans know what word means what? The answer to this question is that we learn 

through our experience. But, how do machines/computers learn the same?  

Let us understand it with following easy steps: 

 First, we need to feed the machines with enough data so that machines can learn 

from experience. 

 

 Then machine will create word vectors, by using deep learning algorithms, from 

the data we fed earlier as well as from its surrounding data. 

 

 Then by performing simple algebraic operations on these word vectors, machine 

would be able to provide the answers as human beings. 

1. NLTK — Introduction 
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Components of NLP 

Following diagram represents the components of natural language processing (NLP):  

                           

 

Morphological Processing 

Morphological processing is the first component of NLP. It includes breaking of chunks of 

language input into sets of tokens corresponding to paragraphs, sentences and words. For 

example, a word like “everyday” can be broken into two sub-word tokens as “every-

day”.  

Syntax analysis  

Syntax Analysis, the second component, is one of the most important components of NLP. 

The purposes of this component are as follows:  

Input sentence 

Morphological 

Processing 

Syntax Analysis 

Semantic 

Analysis 

Pragmatic 

Analysis 

Target representation 

Lexicon 

Grammar 

Semantic rules 

Contextual 

information 
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 To check that a sentence is well formed or not. 

 

 To break it up into a structure that shows the syntactic relationships between the 

different words.  

 

 E.g. The sentences like “The school goes to the student” would be rejected by 

syntax analyzer. 

Semantic analysis 

Semantic Analysis is the third component of NLP which is used to check the meaningfulness 

of the text. It includes drawing exact meaning, or we can say dictionary meaning from the 

text. E.g. The sentences like “It’s a hot ice-cream.” would be discarded by semantic 

analyzer. 

Pragmatic analysis 

Pragmatic analysis is the fourth component of NLP. It includes fitting the actual objects or 

events that exist in each context with object references obtained by previous component 

i.e. semantic analysis. E.g. The sentences like “Put the fruits in the basket on the 

table” can have two semantic interpretations hence the pragmatic analyzer will choose 

between these two possibilities. 

Examples of NLP Applications 

NLP, an emerging technology, derives various forms of AI we used to see these days. For 

today’s and tomorrow’s increasingly cognitive applications, the use of NLP in creating a 

seamless and interactive interface between humans and machines will continue to be a 

top priority. Following are some of the very useful applications of NLP. 

Machine Translation 

Machine translation (MT) is one of the most important applications of natural language 

processing. MT is basically a process of translating one source language or text into 

another language. Machine translation system can be of either Bilingual or Multilingual. 

Fighting Spam 

Due to enormous increase in unwanted emails, spam filters have become important 

because it is the first line of defense against this problem. By considering its false-positive 

and false-negative issues as the main issues, the functionality of NLP can be used to 

develop spam filtering system.  

N-gram modelling, Word Stemming and Bayesian classification are some of the existing 

NLP models that can be used for spam filtering.  

Information retrieval & Web search 

Most of the search engines like Google, Yahoo, Bing, WolframAlpha, etc., base their 

machine translation (MT) technology on NLP deep learning models. Such deep learning 

models allow algorithms to read text on webpage, interprets its meaning and translate it 

to another language.  
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Automatic Text Summarization 

Automatic text summarization is a technique which creates a short, accurate summary of 

longer text documents. Hence, it helps us in getting relevant information in less time. In 

this digital era, we are in a serious need of automatic text summarization because we have 

the flood of information over internet which is not going to stop. NLP and its functionalities 

play an important role in developing an automatic text summarization. 

Grammar Correction 

Spelling correction & grammar correction is a very useful feature of word processor 

software like Microsoft Word. Natural language processing (NLP) is widely used for this 

purpose. 

Question-answering 

Question-answering, another main application of natural language processing (NLP), 

focuses on building systems which automatically answer the question posted by user in 

their natural language.  

Sentiment analysis 

Sentiment analysis is among one other important applications of natural language 

processing (NLP). As its name implies, Sentiment analysis is used to: 

 Identify the sentiments among several posts and  

 Identify the sentiment where the emotions are not expressed explicitly.  

Online E-commerce companies like Amazon, ebay, etc., are using sentiment analysis to 

identify the opinion and sentiment of their customers online. It will help them to 

understand what their customers think about their products and services. 

Speech engines 

Speech engines like Siri, Google Voice, Alexa are built on NLP so that we can communicate 

with them in our natural language.     

Implementing NLP 

In order to build the above-mentioned applications, we need to have specific skill set with 

a great understanding of language and tools to process the language efficiently. To achieve 

this, we have various open-source tools available. Some of them are open-sourced while 

others are developed by organizations to build their own NLP applications. Following is the 

list of some NLP tools: 

 Natural Language Tool Kit (NLTK)  

 Mallet 

 GATE 

 Open NLP 

 UIMA 

 Genism 
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 Stanford toolkit 

Most of these tools are written in Java.  

Natural Language Tool Kit (NLTK) 

Among the above-mentioned NLP tool, NLTK scores very high when it comes to the ease 

of use and explanation of the concept. The learning curve of Python is very fast and NLTK 

is written in Python so NLTK is also having very good learning kit. NLTK has incorporated 

most of the tasks like tokenization, stemming, Lemmatization, Punctuation, Character 

Count, and Word count. It is very elegant and easy to work with.  
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In order to install NLTK, we must have Python installed on our computers. You can go to 

the link https://www.python.org/downloads/ and select the latest version for your OS i.e. 

Windows, Mac and Linux/Unix. For basic tutorial on Python you can refer to the link 

https://www.tutorialspoint.com/python3/index.htm.  

 

Now, once you have Python installed on your computer system, let us understand how we 

can install NLTK. 

Installing NLTK 

We can install NLTK on various OS as follows: 

On Windows 

In order to install NLTK on Windows OS, follow the below steps: 

 First, open the Windows command prompt and navigate to the location of the pip 

folder. 

 Next, enter the following command to install NLTK: 

pip3 install nltk 

Now, open the PythonShell from Windows Start Menu and type the following command in 

order to verify NLTK’s installation: 

2. NLTK ― Getting Started  

https://www.python.org/downloads/
https://www.tutorialspoint.com/python3/index.htm
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Import nltk 

If you get no error, you have successfully installed NLTK on your Windows OS having 

Python3. 

On Mac/Linux 

In order to install NLTK on Mac/Linux OS, write the following command: 

sudo pip install -U nltk 

If you don’t have pip installed on your computer, then follow the instruction given below 

to first install pip: 

First, update the package index by following using following command: 

sudo apt update 

Now, type the following command to install pip for python 3: 

sudo apt install python3-pip 

Through Anaconda 

In order to install NLTK through Anaconda, follow the below steps: 

First, to install Anaconda, go to the link 
https://www.anaconda.com/distribution/#download-section and then select the version of 

Python you need to install.  

 

 

https://www.anaconda.com/distribution/#download-section
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Once you have Anaconda on your computer system, go to its command prompt and write 

the following command: 

conda install -c anaconda nltk 

 

You need to review the output and enter ‘yes’. NLTK will be downloaded and installed in 

your Anaconda package. 

Downloading NLTK’s Dataset and Packages 

Now we have NLTK installed on our computers but in order to use it we need to download 

the datasets (corpus) available in it. Some of the important datasets available are 

stpwords, guntenberg, framenet_v15 and so on. 

With the help of following commands, we can download all the NLTK datasets: 

import nltk 

nltk.download() 
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You will get the following NLTK downloaded window. 

 

Now, click on the download button to download the datasets. 

How to run NLTK script? 

Following is the example in which we are implementing Porter Stemmer algorithm by using 

PorterStemmer nltk class. with this example you would be able to understand how to 

run NLTK script. 
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First, we need to import the natural language toolkit(nltk). 

import nltk 

Now, import the PorterStemmer class to implement the Porter Stemmer algorithm.  

from nltk.stem import PorterStemmer 

Next, create an instance of Porter Stemmer class as follows: 

word_stemmer = PorterStemmer() 

Now, input the word you want to stem. 

word_stemmer.stem('writing') 

Output 

'write' 

 

word_stemmer.stem('eating') 

Output 

'eat' 
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What is Tokenizing?  

It may be defined as the process of breaking up a piece of text into smaller parts, such as 

sentences and words. These smaller parts are called tokens. For example, a word is a 

token in a sentence, and a sentence is a token in a paragraph. 

As we know that NLP is used to build applications such as sentiment analysis, QA systems, 

language translation, smart chatbots, voice systems, etc., hence, in order to build them, 

it becomes vital to understand the pattern in the text. The tokens, mentioned above, are 

very useful in finding and understanding these patterns. We can consider tokenization as 

the base step for other recipes such as stemming and lemmatization.  

NLTK package  

nltk.tokenize is the package provided by NLTK module to achieve the process of 

tokenization. 

Tokenizing sentences into words  

Splitting the sentence into words or creating a list of words from a string is an essential 

part of every text processing activity. Let us understand it with the help of various 

functions/modules provided by nltk.tokenize package. 

word_tokenize module  

word_tokenize module is used for basic word tokenization. Following example will use 

this module to split a sentence into words. 

Example 

import nltk 

from nltk.tokenize import word_tokenize 

word_tokenize('Tutorialspoint.com provides high quality technical tutorials for 

free.') 

Output 

['Tutorialspoint.com', 'provides', 'high', 'quality', 'technical', 'tutorials', 

'for', 'free', '.'] 

TreebankWordTokenizer Class  

word_tokenize module, used above is basically a wrapper function that calls tokenize() 

function as an instance of the TreebankWordTokenizer class. It will give the same 

3. NLTK — Tokenizing Text 
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output as we get while using word_tokenize() module for splitting the sentences into word. 

Let us see the same example implemented above: 

Example 

First, we need to import the natural language toolkit(nltk). 

import nltk 

Now, import the TreebankWordTokenizer class to implement the word tokenizer algorithm:  

from nltk.tokenize import TreebankWordTokenizer 

Next, create an instance of TreebankWordTokenizer class as follows: 

Tokenizer_wrd = TreebankWordTokenizer() 

Now, input the sentence you want to convert to tokens: 

Tokenizer_wrd.tokenize('Tutorialspoint.com provides high quality technical 

tutorials for free.') 

Output 

 ['Tutorialspoint.com', 'provides', 'high', 'quality', 'technical', 

'tutorials', 'for', 'free', '.'] 

Complete implementation example 

Let us see the complete implementation example below: 

import nltk 

from nltk.tokenize import TreebankWordTokenizer 

tokenizer_wrd = TreebankWordTokenizer() 

tokenizer_wrd.tokenize('Tutorialspoint.com provides high quality technical 

tutorials for free.') 

Output 

['Tutorialspoint.com', 'provides', 'high', 'quality', 'technical', 'tutorials', 

'for', 'free', '.'] 

The most significant convention of a tokenizer is to separate contractions. For example, if 

we use word_tokenize() module for this purpose, it will give the output as follows:    

Example 

import nltk 

from nltk.tokenize import word_tokenize 

word_tokenize('won’t') 
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Output 

['wo', "n't"]] 

Such kind of convention by TreebankWordTokenizer is unacceptable. That’s why we 

have two alternative word tokenizers namely PunktWordTokenizer and 

WordPunctTokenizer. 

WordPunktTokenizer Class 

An alternative word tokenizer that splits all punctuation into separate tokens. Let us 

understand it with the following simple example: 

 Example 

from nltk.tokenize import WordPunctTokenizer 

tokenizer = WordPunctTokenizer() 

tokenizer.tokenize(" I can't allow you to go home early") 

Output 

['I', 'can', "'", 't', 'allow', 'you', 'to', 'go', 'home', 'early'] 

 Tokenizing text into sentences  

In this section we are going to split text/paragraph into sentences. NLTK provides 

sent_tokenize module for this purpose.  

Why is it needed? 

An obvious question that came in our mind is that when we have word tokenizer then why 

do we need sentence tokenizer or why do we need to tokenize text into sentences. Suppose 

we need to count average words in sentences, how we can do this? For accomplishing this 

task, we need both sentence tokenization and word tokenization.  

Let us understand the difference between sentence and word tokenizer with the help of 

following simple example: 

Example 

import nltk 

from nltk.tokenize import sent_tokenize 

text = "Let us understand the difference between sentence & word tokenizer. It 

is going to be a simple example." 

sent_tokenize(text) 

Output 
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["Let us understand the difference between sentence & word tokenizer.", 'It is 

going to be a simple example.'] 

Sentence tokenization using regular expressions   

If you feel that the output of word tokenizer is unacceptable and want complete control 

over how to tokenize the text, we have regular expression which can be used while doing 

sentence tokenization. NLTK provide RegexpTokenizer class to achieve this. 

Let us understand the concept with the help of two examples below.  

In first example we will be using regular expression for matching alphanumeric tokens 

plus single quotes so that we don’t split contractions like “won’t”. 

Example 1 

import nltk 

from nltk.tokenize import RegexpTokenizer 

tokenizer = RegexpTokenizer("[\w']+") 

tokenizer.tokenize("won't is a contraction.") 

tokenizer.tokenize("can't is a contraction.") 

 

Output 

["won't", 'is', 'a', 'contraction'] 

["can't", 'is', 'a', 'contraction'] 

In first example, we will be using regular expression to tokenize on whitespace. 

Example 2 

import nltk 

from nltk.tokenize import RegexpTokenizer 

tokenizer = RegexpTokenizer('/s+' , gaps = True) 

tokenizer.tokenize("won't is a contraction.") 

Output 

["won't", 'is', 'a', 'contraction'] 

From the above output, we can see that the punctuation remains in the tokens. The 

parameter gaps = True means the pattern is going to identify the gaps to tokenize on. On 

the other hand, if we will use gaps = False parameter then the pattern would be used to 

identify the tokens which can be seen in following example: 

import nltk 
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from nltk.tokenize import RegexpTokenizer 

tokenizer = RegexpTokenizer('/s+' , gaps = False) 

tokenizer.tokenize("won't is a contraction.") 

 

Output 

[ ] 

It will give us the blank output. 
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Why to train own sentence tokenizer?  

This is very important question that if we have NLTK’s default sentence tokenizer then why 

do we need to train a sentence tokenizer? The answer to this question lies in the quality 

of NLTK’s default sentence tokenizer. The NLTK’s default tokenizer is basically a general-

purpose tokenizer. Although it works very well but it may not be a good choice for 

nonstandard text, that perhaps our text is, or for a text that is having a unique formatting. 

To tokenize such text and get best results, we should train our own sentence tokenizer. 

Implementation Example  

For this example, we will be using the webtext corpus. The text file which we are going to 

use from this corpus is having the text formatted as dialogs shown below: 

Guy: How old are you? 

Hipster girl: You know, I never answer that question. Because to me, it's about 

how mature you are, you know? I mean, a fourteen year old could be more mature 

than a twenty-five year old, right? I'm sorry, I just never answer that 

question. 

Guy: But, uh, you're older than eighteen, right? 

Hipster girl: Oh, yeah. 

We have saved this text file with the name of training_tokenizer. NLTK provides a class 

named PunktSentenceTokenizer with the help of which we can train on raw text to 

produce a custom sentence tokenizer. We can get raw text either by reading in a file or 

from an NLTK corpus using the raw() method. 

Let us see the example below to get more insight into it: 

First, import PunktSentenceTokenizer class from nltk.tokenize package: 

from nltk.tokenize import PunktSentenceTokenizer 

Now, import webtext corpus from nltk.corpus package 

from nltk.corpus import webtext 

Next, by using raw() method, get the raw text from training_tokenizer.txt file as 

follows:  

text = webtext.raw('C://Users/Leekha/training_tokenizer.txt') 

Now, create an instance of PunktSentenceTokenizer and print the tokenize sentences 

from text file as follows: 

4. NLTK — Training Tokenizer & Filtering 
Stopwords 
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sent_tokenizer = PunktSentenceTokenizer(text) 

sents_1 = sent_tokenizer.tokenize(text) 

print(sents_1[0]) 

Output 

White guy: So, do you have any plans for this evening? 

print(sents_1[1]) 

Output: 

Asian girl: Yeah, being angry! 

print(sents_1[670]) 

Output: 

Guy: A hundred bucks? 

print(sents_1[675]) 

Output: 

Girl: But you already have a Big Mac... 

Complete implementation example 

from nltk.tokenize import PunktSentenceTokenizer 

from nltk.corpus import webtext 

text = webtext.raw('C://Users/Leekha/training_tokenizer.txt') 

sent_tokenizer = PunktSentenceTokenizer(text) 

sents_1 = sent_tokenizer.tokenize(text) 

print(sents_1[0]) 

Output 

White guy: So, do you have any plans for this evening? 

To understand the difference between NLTK’s default sentence tokenizer and our own 

trained sentence tokenizer, let us tokenize the same file with default sentence tokenizer 

i.e. sent_tokenize(). 

from nltk.tokenize import sent_tokenize 

     from nltk.corpus import webtext 

     text = webtext.raw('C://Users/Leekha/training_tokenizer.txt') 

sents_2 = sent_tokenize(text) 

 

print(sents_2[0]) 

Output: 
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White guy: So, do you have any plans for this evening? 

 

print(sents_2[675]) 

Output: 

Hobo: Y'know what I'd do if I was rich? 

With the help of difference in the output, we can understand the concept that why it is 

useful to train our own sentence tokenizer. 

What are stopwords?  

Some common words that are present in text but do not contribute in the meaning of a 

sentence. Such words are not at all important for the purpose of information retrieval or 

natural language processing. The most common stopwords are ‘the’ and ‘a’. 

NLTK stopwords corpus 

Actually, Natural Language Tool kit comes with a stopword corpus containing word lists 

for many languages. Let us understand its usage with the help of the following example: 

First, import the stopwords copus from nltk.corpus package: 

from nltk.corpus import stopwords 

Now, we will be using stopwords from English Languages 

english_stops = set(stopwords.words('english')) 

words = ['I', 'am', 'a', 'writer'] 

[word for word in words if word not in english_stops] 

Output 

['I', 'writer'] 

Complete implementation example 

from nltk.corpus import stopwords 

english_stops = set(stopwords.words('english')) 

words = ['I', 'am', 'a', 'writer'] 

[word for word in words if word not in english_stops] 

Output 

['I', 'writer'] 
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Finding complete list of supported languages 

With the help of following Python script, we can also find the complete list of languages 

supported by NLTK stopwords corpus: 

from nltk.corpus import stopwords 

stopwords.fileids() 

Output 

['arabic', 'azerbaijani', 'danish', 'dutch', 'english', 'finnish', 'french', 

'german', 'greek', 'hungarian', 'indonesian', 'italian', 'kazakh', 'nepali', 

'norwegian', 'portuguese', 'romanian', 'russian', 'slovene', 'spanish', 

'swedish', 'tajik', 'turkish'] 
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What is Wordnet?  

Wordnet is a large lexical database of English, which was created by Princeton. It is a part 

of the NLTK corpus. Nouns, verbs, adjectives and adverbs all are grouped into set of 

synsets, i.e., cognitive synonyms. Here each set of synsets express a distinct meaning. 

Following are some use cases of Wordnet: 

 It can be used to look up the definition of a word 

 We can find synonyms and antonyms of a word 

 Word relations and similarities can be explored using Wordnet 

 Word sense disambiguation for those words having multiple uses and definitions 

How to import Wordnet? 

Wordnet can be imported with the help of following command: 

from nltk.corpus import wordnet 

For more compact command, use the following: 

from nltk.corpus import wordnet as wn 

Synset instances  

Synset are groupings of synonyms words that express the same concept. When you use 

Wordnet to look up words, you will get a list of Synset instances.  

wordnet.synsets(word) 

To get a list of Synsets, we can look up any word in Wordnet by using 

wordnet.synsets(word). For example, in next Python recipe, we are going to look up 

the Synset for the ‘dog’ along with some properties and methods of Synset: 

Example 

First, import the wordnet as follows: 

from nltk.corpus import wordnet as wn 

Now, provide the word you want to look up the Synset for: 

syn = wn.synsets('dog')[0] 

 

5. NLTK ― Looking up words in Wordnet 
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Here, we are using name() method to get the unique name for the synset which can be 

used to get the Synset directly: 

syn.name() 

Output: 

 'dog.n.01' 

Next, we are using definition() method which will give us the definition of the word: 

syn.definition() 

Output:  

'a member of the genus Canis (probably descended from the common wolf) that has 

been domesticated by man since prehistoric times; occurs in many breeds' 

Another method is examples() which will give us the examples related to the word: 

syn.examples() 

Output: 

['the dog barked all night'] 

Complete implementation example 

from nltk.corpus import wordnet as wn 

syn = wn.synsets('dog')[0] 

syn.name() 

syn.definition() 

syn.examples() 

Getting Hypernyms  

Synsets are organized in an inheritance tree like structure in which Hypernyms represents 

more abstracted terms while Hyponyms represents the more specific terms. One of the 

important things is that this tree can be traced all the way to a root hypernym. Let us 

understand the concept with the help of the following example: 

from nltk.corpus import wordnet as wn 

syn = wn.synsets('dog')[0] 

syn.hypernyms() 

Output 

[Synset('canine.n.02'), Synset('domestic_animal.n.01')] 

Here, we can see that canine and domestic_animal are the hypernyms of ‘dog’. 
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Now, we can find hyponyms of ‘dog’ as follows: 

syn.hypernyms()[0].hyponyms() 

Output 

[Synset('bitch.n.04'), 

 Synset('dog.n.01'), 

 Synset('fox.n.01'), 

 Synset('hyena.n.01'), 

 Synset('jackal.n.01'), 

 Synset('wild_dog.n.01'), 

 Synset('wolf.n.01')] 

From the above output, we can see that ‘dog’ is only one of the many hyponyms of 

‘domestic_animals’.  

To find the root of all these, we can use the following command: 

syn.root_hypernyms() 

Output 

[Synset('entity.n.01')] 

From the above output, we can see it has only one root. 

Complete implementation example 

from nltk.corpus import wordnet as wn 

syn = wn.synsets('dog')[0] 

syn.hypernyms() 

syn.hypernyms()[0].hyponyms() 

syn.root_hypernyms() 

Output 

[Synset('entity.n.01')] 
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Lemmas in Wordnet  

In linguistics, the canonical form or morphological form of a word is called a lemma. To 

find a synonym as well as antonym of a word, we can also lookup lemmas in WordNet. Let 

us see how. 

Finding Synonyms 

By using the lemma() method, we can find the number of synonyms of a Synset. Let us 

apply this method on ‘dog’ synset: 

Example 

from nltk.corpus import wordnet as wn 

syn = wn.synsets('dog')[0] 

lemmas = syn.lemmas() 

len(lemmas) 

Output 

3 

The above output shows ‘dog’ has three lemmas. 

Getting the name of the first lemma as follows: 

lemmas[0].name() 

Output:  

'dog' 

Getting the name of the second lemma as follows: 

lemmas[1].name() 

Output:  

'domestic_dog' 

Getting the name of the third lemma as follows: 

lemmas[2].name() 

Output: 

 'Canis_familiaris'   

Actually, a Synset represents a group of lemmas that all have similar meaning while a 

lemma represents a distinct word form. 

Finding Antonyms 

In WordNet, some lemmas also have antonyms. For example, the word ‘good ‘has a total 

of 27 synets, among them, 5 have lemmas with antonyms.  Let us find the antonyms 

(when the word ‘good’ used as noun and when the word ‘good’ used as adjective). 
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Example 1 

from nltk.corpus import wordnet as wn 

  syn1 = wn.synset('good.n.02') 

     antonym1 = syn1.lemmas()[0].antonyms()[0] 

antonym1.name() 

Output 

'evil' 

 

antonym1.synset().definition() 

Output 

'the quality of being morally wrong in principle or practice' 

The above example shows that the word ‘good’, when used as noun, have the first 

antonym ‘evil’. 

Example 2 

from nltk.corpus import wordnet as wn 

  syn2 = wn.synset('good.a.01') 

     antonym2 = syn2.lemmas()[0].antonyms()[0] 

antonym2.name() 

Output 

'bad' 

 

antonym2.synset().definition() 

Output 

'having undesirable or negative qualities’ 

The above example shows that the word ‘good’, when used as adjective, have the first 

antonym ‘bad’. 
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What is Stemming? 

Stemming is a technique used to extract the base form of the words by removing affixes 

from them. It is just like cutting down the branches of a tree to its stems. For example, 

the stem of the words eating, eats, eaten is eat.  

Search engines use stemming for indexing the words. That’s why rather than storing all 

forms of a word, a search engine can store only the stems. In this way, stemming reduces 

the size of the index and increases retrieval accuracy.  

Various Stemming algorithms 

In NLTK, stemmerI, which have stem() method, interface has all the stemmers which 

we are going to cover next. Let us understand it with the following diagram: 

 

Porter stemming algorithm 

It is one of the most common stemming algorithms which is basically designed to remove 

and replace well-known suffixes of English words.  

PorterStemmer class 

NLTK has PorterStemmer class with the help of which we can easily implement Porter 

Stemmer algorithms for the word we want to stem. This class knows several regular word 

forms and suffixes with the help of which it can transform the input word to a final stem. 

The resulting stem is often a shorter word having the same root meaning. Let us see an 

example: 

First, we need to import the natural language toolkit(nltk). 

6. NLTK ― Stemming & Lemmatization 
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import nltk 

Now, import the PorterStemmer class to implement the Porter Stemmer algorithm.  

from nltk.stem import PorterStemmer 

Next, create an instance of Porter Stemmer class as follows: 

word_stemmer = PorterStemmer() 

Now, input the word you want to stem. 

word_stemmer.stem('writing') 

Output 

'write' 

 

word_stemmer.stem('eating') 

Output 

'eat' 

Complete implementation example 

import nltk 

 

from nltk.stem import PorterStemmer 

 

word_stemmer = PorterStemmer() 

 

word_stemmer.stem('writing') 

Output 

'write' 

Lancaster stemming algorithm 

It was developed at Lancaster University and it is another very common stemming 

algorithms.  

LancasterStemmer class 
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NLTK has LancasterStemmer class with the help of which we can easily implement 

Lancaster Stemmer algorithms for the word we want to stem. Let us see an example: 

First, we need to import the natural language toolkit(nltk). 

import nltk 

Now, import the LancasterStemmer class to implement Lancaster Stemmer algorithm  

from nltk.stem import LancasterStemmer 

Next, create an instance of  LancasterStemmer class as follows: 

Lanc_stemmer = LancasterStemmer() 

Now, input the word you want to stem. 

Lanc_stemmer.stem('eats') 

Output 

'eat' 

Complete implementation example 

import nltk 

 

from nltk.stem import LancatserStemmer 

 

Lanc_stemmer = LancasterStemmer() 

 

Lanc_stemmer.stem('eats') 

Output  

'eat' 

Regular Expression stemming algorithm 

With the help of this stemming algorithm, we can construct our own stemmer.   

RegexpStemmer class 

NLTK has RegexpStemmer class with the help of which we can easily implement Regular 

Expression Stemmer algorithms. It basically takes a single regular expression and removes 

any prefix or suffix that matches the expression. Let us see an example: 

First, we need to import the natural language toolkit(nltk). 
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import nltk 

Now, import the RegexpStemmer class to implement the Regular Expression Stemmer 

algorithm  

from nltk.stem import RegexpStemmer 

Next, create an instance of RegexpStemmer class and provides the suffix or prefix you 

want to remove from the word as follows: 

Reg_stemmer = RegexpStemmer(‘ing’) 

Now, input the word you want to stem. 

Reg_stemmer.stem('eating') 

Output 

 'eat' 

 

Reg_stemmer.stem('ingeat') 

Output 

'eat' 

Reg_stemmer.stem('eats') 

Output 

'eat' 

Complete implementation example 

import nltk 

 

from nltk.stem import RegexpStemmer 

 

Reg_stemmer = RegexpStemmer() 

 

Reg_stemmer.stem('ingeat') 

Output 

'eat' 
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Snowball stemming algorithm 

It is another very useful stemming algorithm.   

SnowballStemmer class 

NLTK has SnowballStemmer class with the help of which we can easily implement 

Snowball Stemmer algorithms. It supports 15 non-English languages. In order to use this 

steaming class, we need to create an instance with the name of the language we are using 

and then call the stem() method.  Let us see an example: 

First, we need to import the natural language toolkit(nltk). 

import nltk 

Now, import the SnowballStemmer class to implement Snowball Stemmer algorithm  

from nltk.stem import SnowballStemmer 

Let us see the languages it supports: 

SnowballStemmer.languages 

Output 

('arabic', 

'danish', 

'dutch', 

'english', 

'finnish', 

'french', 

'german', 

'hungarian', 

'italian', 

'norwegian', 

'porter', 

'portuguese', 

'romanian', 

'russian', 

'spanish', 

'swedish') 

Next, create an instance of SnowballStemmer class with the language you want to use. 

Here, we are creating the stemmer for ‘French’ language. 

French_stemmer = SnowballStemmer(‘french’) 
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Now, call the stem() method and input the word you want to stem. 

French_stemmer.stem (‘Bonjoura’) 

Output 

'bonjour' 

Complete implementation example 

import nltk 

 

from nltk.stem import SnowballStemmer 

 

French_stemmer = SnowballStemmer(‘french’) 

 

French_stemmer.stem (‘Bonjoura’) 

Output 

'bonjour' 

What is Lemmatization? 

Lemmatization technique is like stemming. The output we will get after lemmatization is 

called ‘lemma’, which is a root word rather than root stem, the output of stemming. After 

lemmatization, we will be getting a valid word that means the same thing. 

NLTK provides WordNetLemmatizer class which is a thin wrapper around the wordnet 

corpus. This class uses morphy() function to the WordNet CorpusReader class to find 

a lemma. Let us understand it with an example: 

Example 

First, we need to import the natural language toolkit(nltk). 

import nltk 

Now, import the WordNetLemmatizer class to implement the lemmatization technique. 

from nltk.stem import WordNetLemmatizer 

Next, create an instance of WordNetLemmatizer class. 

lemmatizer = WordNetLemmatizer() 

Now, call the lemmatize() method and input the word of which you want to find lemma. 
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lemmatizer.lemmatize('eating') 

Output  

'eating' 

 

lemmatizer.lemmatize('books') 

 

Output 

'book' 

Complete implementation example 

import nltk 

 

from nltk.stem import WordNetLemmatizer 

 

lemmatizer = WordNetLemmatizer() 

 

lemmatizer.lemmatize('books') 

Output 

'book' 

Difference between Stemming & Lemmatization 

Let us understand the difference between Stemming and Lemmatization with the help of 

the following example: 

import nltk 

 

from nltk.stem import PorterStemmer 

 

word_stemmer = PorterStemmer() 

 

word_stemmer.stem('believes') 

 

Output 
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believ 

 

import nltk 

 

from nltk.stem import WordNetLemmatizer 

 

lemmatizer = WordNetLemmatizer() 

 

lemmatizer.lemmatize(' believes ') 

 

Output 

belief 

 

The output of both programs tells the major difference between stemming and 

lemmatization. PorterStemmer class chops off the ‘es’ from the word. On the other hand, 

WordNetLemmatizer class finds a valid word. In simple words, stemming technique only 

looks at the form of the word whereas lemmatization technique looks at the meaning of 

the word. It means after applying lemmatization, we will always get a valid word. 
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Stemming and lemmatization can be considered as a kind of linguistic compression. In the 

same sense, word replacement can be thought of as text normalization or error correction.  

But why we needed word replacement? Suppose if we talk about tokenization, then it is 

having issues with contractions (like can’t, won’t, etc.). So, to handle such issues we need 

word replacement. For example, we can replace contractions with their expanded forms.   

Word replacement using regular expression 

First, we are going to replace words that matches the regular expression. But for this we 

must have a basic understanding of regular expressions as well as python re module. In 

the example below, we will be replacing contraction with their expanded forms (e.g. “can’t” 

will be replaced with “cannot”), all that by using regular expressions.  

Example 

First, import the necessary package re to work with regular expressions. 

import re 

from nltk.corpus import wordnet 

Next, define the replacement patterns of your choice as follows: 

R_patterns = [ 

 (r'won\'t', 'will not'), 

 (r'can\'t', 'cannot'), 

 (r'i\'m', 'i am'), 

 r'(\w+)\'ll', '\g<1> will'), 

 (r'(\w+)n\'t', '\g<1> not'), 

 (r'(\w+)\'ve', '\g<1> have'), 

 (r'(\w+)\'s', '\g<1> is'), 

 (r'(\w+)\'re', '\g<1> are'), 

  

] 

Now, create a class that can be used for replacing words: 

class REReplacer(object): 

  

 def __init__(self, pattern=R_patterns): 

  self.pattern = [(re.compile(regex), repl) for (regex, repl) in 

patterns] 

7. NLTK ― Word Replacement 
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 def replace(self, text): 

  s = text 

   

  for (pattern, repl) in self.pattern: 

   s = re.sub(pattern, repl, s) 

   

  return s 

Save this python program (say repRE.py) and run it from python command prompt. After 

running it, import REReplacer class when you want to replace words. Let us see how. 

from repRE import REReplacer 

 

rep_word = REReplacer() 

 

rep_word.replace("I won't do it") 

 

Output:  

'I will not do it' 

 

rep_word.replace("I can’t do it") 

 

Output:  

'I cannot do it' 

Complete implementation example 

import re 

from nltk.corpus import wordnet 

 

R_patterns = [ 

(r'won\'t', 'will not'), 

(r'can\'t', 'cannot'), 

(r'i\'m', 'i am'), 

 

r'(\w+)\'ll', '\g<1> will'), 

(r'(\w+)n\'t', '\g<1> not'), 
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(r'(\w+)\'ve', '\g<1> have'), 

(r'(\w+)\'s', '\g<1> is'), 

(r'(\w+)\'re', '\g<1> are'), 

  

] 

 

class REReplacer(object): 

 

def __init__(self, patterns=R_patterns): 

 self.patterns = [(re.compile(regex), repl) for (regex, repl) in patterns] 

  

def replace(self, text): 

 s = text 

 

 for (pattern, repl) in self.patterns: 

  s = re.sub(pattern, repl, s) 

 

 return s 

Now once you saved the above program and run it, you can import the class and use it as 

follows: 

from replacerRE import REReplacer 

 

rep_word = REReplacer() 

 

rep_word.replace("I won't do it") 

Output 

'I will not do it' 

Replacement before text processing 

One of the common practices while working with natural language processing (NLP) is to 

clean up the text before text processing. In this concern we can also use our REReplacer 

class created above in previous example, as a preliminary step before text processing i.e. 

tokenization.  

Example 

from nltk.tokenize import word_tokenize 
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from replacerRE import REReplacer 

 

rep_word = REReplacer() 

 

word_tokenize("I won't be able to do this now") 

 

Output:  

 ['I', 'wo', "n't", 'be', 'able', 'to', 'do', 'this', 'now'] 

 

word_tokenize(rep_word.replace("I won't be able to do this now")) 

 

Output:  

 ['I', 'will', 'not', 'be', 'able', 'to', 'do', 'this', 'now'] 

In the above Python recipe, we can easily understand the difference between the output 

of word tokenizer without and with using regular expression replace. 

Removal of repeating characters 

Do we strictly grammatical in our everyday language? No, we are not. For example, 

sometimes we write ‘Hiiiiiiiiiiii Mohan’ in order to emphasize the word ‘Hi’. But computer 

system does not know that ‘Hiiiiiiiiiiii’ is a variation of the word “Hi”.  In the example below, 

we will be creating a class named rep_word_removal which can be used for removing 

the repeating words.  

Example 

First, import the necessary package re to work with regular expressions 

import re 

from nltk.corpus import wordnet 

Now, create a class that can be used for removing the repeating words: 

class Rep_word_removal(object): 

 def __init__(self): 

  self.repeat_regexp = re.compile(r'(\w*)(\w)\2(\w*)') 

  self.repl = r'\1\2\3' 

 

 

 def replace(self, word): 

  if wordnet.synsets(word): 
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   return word 

   

  repl_word = self.repeat_regexp.sub(self.repl, word) 

   

  if repl_word != word: 

   return self.replace(repl_word) 

  else: 

   return repl_word 

Save this python program (say removalrepeat.py) and run it from python command 

prompt. After running it, import Rep_word_removal class when you want to remove the 

repeating words. Let us see how? 

from removalrepeat import Rep_word_removal 

 

rep_word = Rep_word_removal() 

 

rep_word.replace ("Hiiiiiiiiiiiiiiiiiiiii") 

 

Output:  

'Hi' 

 

rep_word.replace("Hellooooooooooooooo") 

 

Output:  

'Hello' 

Complete implementation example 

import re 

from nltk.corpus import wordnet 

 

 

class Rep_word_removal(object): 

 def __init__(self): 

  self.repeat_regexp = re.compile(r'(\w*)(\w)\2(\w*)') 

  self.repl = r'\1\2\3' 

 

 def replace(self, word): 
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  if wordnet.synsets(word): 

   return word 

   

  replace_word = self.repeat_regexp.sub(self.repl, word) 

   

  if replace_word != word: 

   return self.replace(replace_word) 

  else: 

   return replace_word 

 

Now once you saved the above program and run it, you can import the class and use it as 

follows: 

from removalrepeat import Rep_word_removal 

 

rep_word = Rep_word_removal() 

 

rep_word.replace ("Hiiiiiiiiiiiiiiiiiiiii") 

 

Output 

'Hi' 
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Replacing words with common synonyms 

While working with NLP, especially in the case of frequency analysis and text indexing, it 

is always beneficial to compress the vocabulary without losing meaning because it saves 

lots of memory. To achieve this, we must have to define mapping of a word to its 

synonyms. In the example below, we will be creating a class named word_syn_replacer 

which can be used for replacing the words with their common synonyms.  

Example 

First, import the necessary package re to work with regular expressions. 

import re 

from nltk.corpus import wordnet 

Next, create the class that takes a word replacement mapping: 

class word_syn_replacer(object): 

  def __init__(self, word_map): 

  self.word_map = word_map 

  

 def replace(self, word): 

  return self.word_map.get(word, word) 

Save this python program (say replacesyn.py) and run it from python command prompt. 

After running it, import word_syn_replacer class when you want to replace words with 

common synonyms. Let us see how. 

from replacesyn import word_syn_replacer 

 

rep_syn = word_syn_replacer ({‘bday’: ‘birthday’) 

 

rep_syn.replace(‘bday’) 

 

Output 

'birthday' 

 

 

8. NLTK ― Synonym & Antonym Replacement 
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Complete implementation example 

import re 

from nltk.corpus import wordnet 

 

 

class word_syn_replacer(object): 

  def __init__(self, word_map): 

  self.word_map = word_map 

  

 def replace(self, word): 

  return self.word_map.get(word, word) 

Now once you saved the above program and run it, you can import the class and use it as 

follows: 

from replacesyn import word_syn_replacer 

 

rep_syn = word_syn_replacer ({‘bday’: ‘birthday’) 

 

rep_syn.replace(‘bday’) 

Output 

'birthday' 

The disadvantage of the above method is that we should have to hardcode the synonyms 

in a Python dictionary. We have two better alternatives in the form of CSV and YAML file. 

We can save our synonym vocabulary in any of the above-mentioned files and can 

construct word_map dictionary from them. Let us understand the concept with the help 

of examples.   

Using CSV file 

In order to use CSV file for this purpose, the file should have two columns, first column 

consist of word and the second column consists of the synonyms meant to replace it.  Let 

us save this file as syn.csv. In the example below, we will be creating a class named 

CSVword_syn_replacer which will extends word_syn_replacer in replacesyn.py file 

and will be used to construct the word_map dictionary from syn.csv file.  

Example 

First, import the necessary packages  

import csv 
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Next, create the class that takes a word replacement mapping: 

class CSVword_syn_replacer(word_syn_replacer): 

  def __init__(self, fname): 

   word_map = {} 

   

   for line in csv.reader(open(fname)): 

    word, syn = line 

    word_map[word] = syn 

   

   super(Csvword_syn_replacer, self).__init__(word_map) 

After running it, import CSVword_syn_replacer class when you want to replace words with 

common synonyms. Let us see how? 

from replacesyn import CSVword_syn_replacer 

 

rep_syn = CSVword_syn_replacer (‘syn.csv’) 

 

rep_syn.replace(‘bday’) 

Output  

'birthday' 

Complete implementation example 

import csv 

 

class CSVword_syn_replacer(word_syn_replacer): 

def __init__(self, fname): 

word_map = {} 

   

for line in csv.reader(open(fname)): 

  word, syn = line 

  word_map[word] = syn 

   

super(Csvword_syn_replacer, self).__init__(word_map) 
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Now once you saved the above program and run it, you can import the class and use it as 

follows: 

from replacesyn import CSVword_syn_replacer 

 

rep_syn = CSVword_syn_replacer (‘syn.csv’) 

 

rep_syn.replace(‘bday’) 

Output 

'birthday' 

Using YAML file 

As we have used CSV file, we can also use YAML file to for this purpose (we must have 

PyYAML installed). Let us save the file as syn.yaml. In the example below, we will be 

creating a class named YAMLword_syn_replacer which will extends 

word_syn_replacer in replacesyn.py file and will be used to construct the word_map 

dictionary from syn.yaml file.  

Example 

First, import the necessary packages.  

import yaml 

Next, create the class that takes a word replacement mapping: 

class YAMLword_syn_replacer(word_syn_replacer): 

  def __init__(self, fname): 

  word_map = yaml.load(open(fname)) 

  super(YamlWordReplacer, self).__init__(word_map) 

After running it, import YAMLword_syn_replacer class when you want to replace words 

with common synonyms. Let us see how? 

from replacesyn import YAMLword_syn_replacer 

rep_syn = YAMLword_syn_replacer (‘syn.yaml’) 

rep_syn.replace(‘bday’) 

 

Output 

'birthday' 
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Complete implementation example 

import yaml 

 

class YAMLword_syn_replacer(word_syn_replacer): 

def __init__(self, fname): 

 word_map = yaml.load(open(fname)) 

 super(YamlWordReplacer, self).__init__(word_map) 

Now once you saved the above program and run it, you can import the class and use it as 

follows: 

from replacesyn import YAMLword_syn_replacer 

 

rep_syn = YAMLword_syn_replacer (‘syn.yaml’) 

 

rep_syn.replace(‘bday’) 

Output  

'birthday' 

Antonym replacement 

As we know that an antonym is a word having opposite meaning of another word, and the 

opposite of synonym replacement is called antonym replacement. In this section, we will 

be dealing with antonym replacement, i.e., replacing words with unambiguous antonyms 

by using WordNet. In the example below, we will be creating a class named 

word_antonym_replacer which have two methods, one for replacing the word and other 

for removing the negations.  

Example 

First, import the necessary packages. 

from nltk.corpus import wordnet 

Next, create the class named word_antonym_replacer: 

class word_antonym_replacer(object): 

 def replace(self, word, pos=None): 

   

  antonyms = set() 

   

  for syn in wordnet.synsets(word, pos=pos): 

   for lemma in syn.lemmas(): 
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    for antonym in lemma.antonyms(): 

     antonyms.add(antonym.name()) 

   

  if len(antonyms) == 1: 

   return antonyms.pop() 

  else: 

   return None 

  

 def replace_negations(self, sent): 

   

  i, l = 0, len(sent) 

  words = [] 

   

  while i < l: 

   word = sent[i] 

    

   if word == 'not' and i+1 < l: 

    ant = self.replace(sent[i+1]) 

     

    if ant: 

     words.append(ant) 

     i += 2 

     continue 

    

   words.append(word) 

   i += 1 

   

  return words 

Save this python program (say replaceantonym.py) and run it from python command 

prompt. After running it, import word_antonym_replacer class when you want to 

replace words with their unambiguous antonyms. Let us see how. 

from replacerantonym import word_antonym_replacer 

rep_antonym = word_antonym_replacer () 

rep_antonym.replace(‘uglify’) 

 

Output 
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['beautify''] 

 

 

sentence = ["Let us", 'not', 'uglify', 'our', 'country'] 

rep_antonym.replace _negations(sentence) 

Output 

["Let us", 'beautify', 'our', 'country'] 

Complete implementation example 

from nltk.corpus import wordnet 

 

class word_antonym_replacer(object): 

def replace(self, word, pos=None): 

   

 antonyms = set() 

   

 for syn in wordnet.synsets(word, pos=pos): 

   for lemma in syn.lemmas(): 

   for antonym in lemma.antonyms(): 

    antonyms.add(antonym.name()) 

  

 if len(antonyms) == 1: 

  return antonyms.pop() 

 else: 

  return None 

  

def replace_negations(self, sent): 

   

 i, l = 0, len(sent) 

 words = [] 

  

 while i < l: 

  word = sent[i] 

   

  if word == 'not' and i+1 < l: 
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   ant = self.replace(sent[i+1]) 

    

   if ant: 

    words.append(ant) 

    i += 2 

    continue 

   

  words.append(word) 

  i += 1 

   

 return words 

Now once you saved the above program and run it, you can import the class and use it as 

follows: 

from replacerantonym import word_antonym_replacer 

rep_antonym = word_antonym_replacer () 

rep_antonym.replace(‘uglify’) 

 

sentence = ["Let us", 'not', 'uglify', 'our', 'country'] 

rep_antonym.replace _negations(sentence) 

Output 

["Let us", 'beautify', 'our', 'country'] 
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What is a corpus? 

A corpus is large collection, in structured format, of machine-readable texts that have 

been produced in a natural communicative setting. The word Corpora is the plural of 

Corpus. Corpus can be derived in many ways as follows: 

 From the text that was originally electronic  

 From the transcripts of spoken language  

 From optical character recognition and so on 

Corpus representativeness, Corpus Balance, Sampling, Corpus Size are the elements that 

plays an important role while designing corpus. Some of the most popular corpus for NLP 

tasks are TreeBank, PropBank, VarbNet and WordNet. 

How to build custom corpus? 

While downloading NLTK, we also installed NLTK data package. So, we already have NLTK 

data package installed on our computer. If we talk about Windows, we’ll assume that this 

data package is installed at C:\nltk_data and if we talk about Linux, Unix and Mac OS X, 

we ‘ll assume that this data package is installed at /usr/share/nltk_data.     

In the following Python recipe, we are going to create custom corpora which must be within 

one of the paths defined by NLTK. It is so because it can be found by NLTK. In order to 

avoid conflict with the official NLTK data package, let us create a custom nltk_data 

directory in our home directory. 

import os, os.path 

path = os.path.expanduser('~/nltk_data') 

if not os.path.exists(path): 

 os.mkdir(path) 

os.path.exists(path) 

 

 

 

 

 

 

9. NLTK — Corpus Readers and Custom Corpora 
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Output 

True 

Now, Let us check whether we have nltk_data directory in our home directory or not: 

import nltk.data 

path in nltk.data.path 

Output 

True 

As we have got the output True, means we have nltk_data directory in our home 

directory. 

Now we will make a wordlist file, named wordfile.txt and put it in a folder, named corpus 

in nltk_data directory (~/nltk_data/corpus/wordfile.txt) and will load it by using 

nltk.data.load: 

import nltk.data 

 

nltk.data.load(‘corpus/wordfile.txt’, format = ‘raw’) 

Output 

b’tutorialspoint\n’ 

Corpus readers 

NLTK provides various CorpusReader classes. We are going to cover them in the following 

python recipes. 

Creating wordlist corpus 

NLTK has WordListCorpusReader class that provides access to the file containing a list 

of words. For the following Python recipe, we need to create a wordlist file which can be 

CSV or normal text file. For example, we have created a file named ‘list’ that contains the 

following data: 

tutorialspoint 

Online 

Free 

Tutorials 

Now Let us instantiate a WordListCorpusReader class producing the list of words from 

our created file ‘list’. 

from nltk.corpus.reader import WordListCorpusReader 
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reader_corpus = WordListCorpusReader('.', ['list']) 

 

reader_corpus.words() 

Output 

['tutorialspoint', 'Online', 'Free', 'Tutorials'] 

Creating POS tagged word corpus 

NLTK has TaggedCorpusReader class with the help of which we can create a POS tagged 

word corpus. Actually, POS tagging is the process of identifying the part-of-speech tag for 

a word.  

One of the simplest formats for a tagged corpus is of the form ‘word/tag’like following 

excerpt from the brown corpus: 

The/at-tl expense/nn and/cc time/nn involved/vbn are/ber 

astronomical/jj ./.  

In the above excerpt, each word has a tag which denotes its POS. For example, vb refers 

to a verb. 

Now Let us instantiate a TaggedCorpusReader class producing POS tagged words form 

the file ‘list.pos’, which has the above excerpt. 

from nltk.corpus.reader import TaggedCorpusReader 

 

reader_corpus = TaggedCorpusReader('.', r'.*\.pos') 

 

reader_corpus.tagged_words() 

Output 

[('The', 'AT-TL'), ('expense', 'NN'), ('and', 'CC'), ...] 

Creating Chunked phrase corpus 

NLTK has ChnkedCorpusReader class with the help of which we can create a Chunked 

phrase corpus. Actually, a chunk is a short phrase in a sentence.  

For example, we have the following excerpt from the tagged treebank corpus: 

[Earlier/JJR staff-reduction/NN moves/NNS] have/VBP trimmed/VBN about/ 

 

IN [300/CD jobs/NNS] ,/, [the/DT spokesman/NN] said/VBD ./. 
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In the above excerpt, every chunk is a noun phrase but the words that are not in brackets 

are part of the sentence tree and not part of any noun phrase subtree. 

Now Let us instantiate a ChunkedCorpusReader class producing chunked phrase from 

the file ‘list.chunk’, which has the above excerpt. 

from nltk.corpus.reader import ChunkedCorpusReader 

 

reader_corpus = TaggedCorpusReader('.', r'.*\.chunk') 

 

reader_corpus.chunked_words() 

Output 

[Tree('NP', [('Earlier', 'JJR'), ('staff-reduction', 'NN'), ('moves', 'NNS')]), 

('have', 'VBP'), ...] 

Creating Categorized text corpus 

NLTK has CategorizedPlaintextCorpusReader class with the help of which we can 

create a categorized text corpus. It is very useful in case when we have a large corpus of 

text and want to categorize that into separate sections.  

For example, the brown corpus has several different categories. Let us find out them with 

the help of following Python code: 

from nltk.corpus import brown^M 

brown.categories() 

Output 

['adventure', 'belles_lettres', 'editorial', 'fiction', 'government', 

'hobbies', 'humor', 'learned', 'lore', 'mystery', 'news', 'religion', 

'reviews', 'romance', 'science_fiction'] 

One of the easiest ways to categorize a corpus is to have one file for every category. For 

example, let us see the two excerpts from the movie_reviews corpus: 

movie_pos.txt 

the thin red line is flawed but it provokes. 

movie_neg.txt 

a big-budget and glossy production cannot make up for a lack of spontaneity that 

permeates their tv show. 

So, from above two files, we have two categories namely pos and neg.  

Now let us instantiate a CategorizedPlaintextCorpusReader class. 
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from nltk.corpus.reader import CategorizedPlaintextCorpusReader 

 

reader_corpus = CategorizedPlaintextCorpusReader('.', r'movie_.*\.txt', 

cat_pattern=r'movie_(\w+)\.txt') 

 

reader_corpus.categories() 

reader_corpus.fileids(categories=[‘neg’]) 

reader_corpus.fileids(categories=[‘pos’]) 

Output 

['neg', 'pos'] 

['movie_neg.txt'] 

['movie_pos.txt'] 
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What is POS tagging? 

Tagging, a kind of classification, is the automatic assignment of the description of the 

tokens. We call the descriptor s ‘tag’, which represents one of the parts of speech (nouns, 

verb, adverbs, adjectives, pronouns, conjunction and their sub-categories), semantic 

information and so on. 

On the other hand, if we talk about Part-of-Speech (POS) tagging, it may be defined as 

the process of converting a sentence in the form of a list of words, into a list of tuples. 

Here, the tuples are in the form of (word, tag). We can also call POS tagging a process of 

assigning one of the parts of speech to the given word.  

Following table represents the most frequent POS notification used in Penn Treebank 

corpus: 

Sr. No. Tag  Description 

1. NNP  Proper noun, singular 

2. NNPS  Proper noun, plural 

3. PDT  Pre determiner 

4. POS  Possessive ending 

5. PRP  Personal pronoun 

6. PRP$  Possessive pronoun 

7. RB  Adverb 

8. RBR  Adverb, comparative 

9. RBS  Adverb, superlative 

10. RP  Particle 

11. SYM  Symbol (mathematical or scientific) 

12. TO  to 

13. UH  Interjection 

14. VB  Verb, base form 

15. VBD Verb, past tense 

16. VBG  Verb, gerund/present participle 

17. VBN  Verb, past 

18. WP  Wh-pronoun 

10. NLTK ― Basics of Part-of-Speech (POS) 
Tagging 
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19. WP$  Possessive wh-pronoun 

20. WRB  Wh-adverb 

21. #  Pound sign 

22. $  Dollar sign 

23. .  Sentence-final punctuation 

24. ,  Comma 

25. :  Colon, semi-colon 

26. (  Left bracket character 

27. )  Right bracket character 

28. "  Straight double quote 

29. '  Left open single quote 

30. "  Left open double quote 

31. '  Right close single quote 

32. "  Right open double quote   

Let us understand it with a Python experiment: 

import nltk 

 

from nltk import word_tokenize 

 

sentence = "I am going to school" 

 

print (nltk.pos_tag(word_tokenize(sentence))) 

Output 

[('I', 'PRP'), ('am', 'VBP'), ('going', 'VBG'), ('to', 'TO'), ('school', 'NN')] 

Why POS tagging? 

POS tagging is an important part of NLP because it works as the prerequisite for further 

NLP analysis as follows: 

 Chunking 

 Syntax Parsing 

 Information extraction 

 Machine Translation 

 Sentiment Analysis 
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 Grammar analysis & word-sense disambiguation 

TaggerI ― Base class 

All the taggers reside in NLTK’s nltk.tag package. The base class of these taggers is 

TaggerI, means all the taggers inherit from this class.  

Methods: TaggerI class have the following two methods which must be implemented by 

all its subclasses: 

 tag() method: As the name implies, this method takes a list of words as input and 

returns a list of tagged words as output. 

 evaluate() method: With the help of this method, we can evaluate the accuracy 

of the tagger. 

 

The Baseline of POS Tagging 

The baseline or the basic step of POS tagging is Default Tagging, which can be performed 

using the DefaultTagger class of NLTK. Default tagging simply assigns the same POS tag 

to every token. Default tagging also provides a baseline to measure accuracy 

improvements.   

DefaultTagger class 

Default tagging is performed by using DefaultTagging class, which takes the single 

argument, i.e., the tag we want to apply.   

How does it work? 

As told earlier, all the taggers are inherited from TaggerI class. The DefaultTagger is 

inherited from SequentialBackoffTagger which is a subclass of TaggerI class. Let us 

understand it with the following diagram:  
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As being the part of SeuentialBackoffTagger, the DefaultTagger must implement 

choose_tag() method which takes the following three arguments: 

 Token’s list 

 Current token’s index 

 Previous token’s list, i.e., the history 

Example 

import nltk 

 

from nltk.tag import DefaultTagger 

 

exptagger = DefaultTagger('NN') 

 

exptagger.tag(['Tutorials','Point']) 
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Output 

[('Tutorials', 'NN'), ('Point', 'NN')] 

In this example, we chose a noun tag because it is the most common types of words. 

Moreover, DefaultTagger is also most useful when we choose the most common POS 

tag. 

Accuracy evaluation 

The DefaultTagger is also the baseline for evaluating accuracy of taggers. That is the 

reason we can use it along with evaluate() method for measuring accuracy. The 

evaluate() method takes a list of tagged tokens as a gold standard to evaluate the tagger.  

Following is an example in which we used our default tagger, named exptagger, created 

above, to evaluate the accuracy of a subset of treebank corpus tagged sentences: 

import nltk 

 

from nltk.tag import DefaultTagger 

 

exptagger = DefaultTagger('NN') 

 

from nltk.corpus import treebank 

 

testsentences = treebank.tagged_sents() [1000:] 

 

exptagger.evaluate (testsentences) 

 

Output 

0.13198749536374715 

The output above shows that by choosing NN for every tag, we can achieve around 13% 

accuracy testing on 1000 entries of the treebank corpus. 

Tagging a list of sentences 

Rather than tagging a single sentence, the NLTK’s TaggerI class also provides us a 

tag_sents() method with the help of which we can tag a list of sentences. Following is 

the example in which we tagged two simple sentences: 

import nltk 

 

from nltk.tag import DefaultTagger 
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exptagger = DefaultTagger('NN') 

 

exptagger.tag_sents([['Hi', ','], ['How', 'are', 'you', '?']]) 

Output 

[[('Hi', 'NN'), (',', 'NN')], [('How', 'NN'), ('are', 'NN'), ('you', 'NN'), 

('?', 'NN')]] 

In the above example, we used our earlier created default tagger named exptagger.  

Un-tagging a sentence 

We can also un-tag a sentence. NLTK provides nltk.tag.untag() method for this purpose. 

It will take a tagged sentence as input and provides a list of words without tags. Let us 

see an example: 

import nltk 

 

from nltk.tag import untag 

 

untag([('Tutorials', 'NN'), ('Point', 'NN')]) 

Output 

['Tutorials', 'Point'] 
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What is Unigram Tagger? 

As the name implies, unigram tagger is a tagger that only uses a single word as its context 

for determining the POS(Part-of-Speech) tag. In simple words, Unigram Tagger is a 

context-based tagger whose context is a single word, i.e., Unigram. 

How does it work? 

NLTK provides a module named UnigramTagger for this purpose. But before getting deep 

dive into its working, let us understand the hierarchy with the help of following diagram: 

 

From the above diagram, it is understood that UnigramTagger is inherited from 

NgramTagger which is a subclass of ContextTagger, which inherits from 

SequentialBackoffTagger. 

The working of UnigramTagger is explained with the help of following steps: 

11. NLTK ― Unigram Tagger 
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 As we have seen, UnigramTagger inherits from ContextTagger, it implements a 

context() method. This context() method takes the same three arguments as 

choose_tag() method.  

 

 The result of context() method will be the word token which is further used to create 

the model. Once the model is created, the word token is also used to look up the 

best tag.  

 

 In this way, UnigramTagger will build a context model from the list of tagged 

sentences. 

Training a Unigram Tagger 

NLTK’s UnigramTagger can be trained by providing a list of tagged sentences at the time 

of initialization. In the example below, we are going to use the tagged sentences of the 

treebank corpus. We will be using first 2500 sentences from that corpus. 

Example 

First import the UniframTagger module from nltk: 

from nltk.tag import UnigramTagger 

Next, import the corpus you want to use. Here we are using treebank corpus: 

from nltk.corpus import treebank 

Now, take the sentences for training purpose. We are taking first 2500 sentences for 

training purpose and will tag them: 

 train_sentences = treebank.tagged_sents()[:2500] 

Next, apply UnigramTagger on the sentences used for training purpose: 

Uni_tagger = UnigramTagger(train_sentences) 

Take some sentences, either equal to or less taken for training purpose i.e. 2500, for 

testing purpose. Here we are taking first 1500 for testing purpose: 

test_sentences = treebank.tagged_sents()[1500:] 

 

Uni_tagger.evaluate(test_sents) 

Output 

0.8942306156033808 

 

Here, we got around 89 percent accuracy for a tagger that uses single word lookup to 

determine the POS tag. 
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Complete implementation example 

from nltk.tag import UnigramTagger 

 

from nltk.corpus import treebank 

 

train_sentences = treebank.tagged_sents()[:2500] 

 

Uni_tagger = UnigramTagger(train_sentences) 

 

test_sentences = treebank.tagged_sents()[1500:] 

 

Uni_tagger.evaluate(test_sentences) 

Output 

0.8942306156033808 

Overriding the context model 

From the above diagram showing hierarchy for UnigramTagger, we know all the taggers 

that inherit from ContextTagger, instead of training their own, can take a pre-built 

model. This pre-built model is simply a Python dictionary mapping of a context key to a 

tag. And for UnigramTagger, context keys are individual words while for other 

NgramTagger subclasses, it will be tuples. 

We can override this context model by passing another simple model to the 

UnigramTagger class instead of passing training set. Let us understand it with the help 

of an easy example below: 

Example 

from nltk.tag import UnigramTagger 

 

from nltk.corpus import treebank 

 

Override_tagger = UnigramTagger(model = {‘Vinken’ : ‘NN’}) 

 

Override_tagger.tag(treebank.sents()[0]) 
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Output 

[('Pierre', None), 

 ('Vinken', 'NN'), 

 (',', None), 

 ('61', None), 

 ('years', None), 

 ('old', None), 

 (',', None), 

 ('will', None), 

 ('join', None), 

 ('the', None), 

 ('board', None), 

 ('as', None), 

 ('a', None), 

 ('nonexecutive', None), 

 ('director', None), 

 ('Nov.', None), 

 ('29', None), 

 ('.', None)] 

As our model contains ‘Vinken’ as the only context key, you can observe from the output 

above that only this word got tag and every other word has None as a tag. 

Setting a minimum frequency threshold 

For deciding which tag is most likely for a given context, the ContextTagger class uses 

frequency of occurrence. It will do it by default even if the context word and tag occur only 

once, but we can set a minimum frequency threshold by passing a cutoff value to the 

UnigramTagger class. In the example below, we are passing the cutoff value in previous 

recipe in which we trained a UnigramTagger:   

from nltk.tag import UnigramTagger 

 

from nltk.corpus import treebank 

 

train_sentences = treebank.tagged_sents()[:2500] 

 

Uni_tagger = UnigramTagger(train_sentences, cutoff = 4) 

 

test_sentences = treebank.tagged_sents()[1500:] 
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Uni_tagger.evaluate(test_sentences) 

Output  

0.7357651629613641 
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Combining Taggers 

Combining taggers or chaining taggers with each other is one of the important features of 

NLTK. The main concept behind combining taggers is that, in case if one tagger doesn’t 

know how to tag a word, it would be passed to the chained tagger. To achieve this purpose, 

SequentialBackoffTagger provides us the Backoff tagging feature. 

Backoff Tagging 

As told earlier, backoff tagging is one of the important features of 

SequentialBackoffTagger, which allows us to combine taggers in a way that if one 

tagger doesn’t know how to tag a word, the word would be passed to the next tagger and 

so on until there are no backoff taggers left to check. 

How does it work? 

Actually, every subclass of SequentialBackoffTagger can take a ‘backoff’ keyword 

argument. The value of this keyword argument is another instance of a 

SequentialBackoffTagger. Now whenever this SequentialBackoffTagger class is 

initialized, an internal list of backoff taggers (with itself as the first element) will be 

created. Moreover, if a backoff tagger is given, the internal list of this backoff taggers 

would be appended.     

In the example below, we are taking DefaulTagger as the backoff tagger in the above 

Python recipe with which we have trained the UnigramTagger. 

Example 

In this example, we are using DefaulTagger as the backoff tagger. Whenever the 

UnigramTagger is unable to tag a word, backoff tagger, i.e. DefaultTagger, in our case, 

will tag it with ‘NN’. 

from nltk.tag import UnigramTagger 

 

from nltk.tag import DefaultTagger 

 

from nltk.corpus import treebank 

 

train_sentences = treebank.tagged_sents()[:2500] 

 

back_tagger = DefaultTagger('NN') 

 

Uni_tagger = UnigramTagger(train_sentences, backoff = back_tagger) 

12. NLTK — Combining Taggers 
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test_sentences = treebank.tagged_sents()[1500:] 

 

Uni_tagger.evaluate(test_sentences) 

Output 

0.9061975746536931 

From the above output, you can observe that by adding a backoff tagger the accuracy is 

increased by around 2%. 

Saving taggers with pickle 

As we have seen that training a tagger is very cumbersome and also takes time. To save                    

time, we can pickle a trained tagger for using it later. In the example below, we are going 

to do this to our already trained tagger named ‘Uni_tagger’. 

Example 

import pickle 

 

f = open('Uni_tagger.pickle','wb') 

 

pickle.dump(Uni_tagger, f) 

 

f.close() 

 

f = open('Uni_tagger.pickle','rb') 

 

Uni_tagger = pickle.load(f) 

NgramTagger Class 

From the hierarchy diagram discussed in previous unit, UnigramTagger is inherited from 

NgramTagger class but we have two more subclasses of NgarmTagger class: 

BigramTagger subclass 

Actually an ngram is a subsequence of n items, hence, as name implies, BigramTagger 

subclass looks at the two items. First item is the previous tagged word and the second 

item is current tagged word.  

TrigramTagger subclass 
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On the same note of BigramTagger, TrigramTagger subclass looks at the three items 

i.e. two previous tagged words and one current tagged word.  

Practically if we apply BigramTagger and TrigramTagger subclasses individually as we 

did with UnigramTagger subclass, they both perform very poorly. Let us see in the 

examples below: 

Using BigramTagger Subclass 

from nltk.tag import BigramTagger 

 

from nltk.corpus import treebank 

 

train_sentences = treebank.tagged_sents()[:2500] 

 

Bi_tagger = BigramTagger(train_sentences) 

 

test_sentences = treebank.tagged_sents()[1500:] 

 

Bi_tagger.evaluate(test_sentences) 

Output 

0.44669191071913594 

Using TrigramTagger Subclass 

from nltk.tag import TrigramTagger 

 

from nltk.corpus import treebank 

 

train_sentences = treebank.tagged_sents()[:2500] 

 

Tri_tagger = TrigramTagger(train_sentences) 

 

test_sentences = treebank.tagged_sents()[1500:] 

 

Tri_tagger.evaluate(test_sentences) 
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Output 

0.41949863394526193 

You can compare the performance of UnigramTagger, we used previously (gave around 

89% accuracy) with BigramTagger (gave around 44% accuracy) and TrigramTagger (gave 

around 41% accuracy). The reason is that Bigram and Trigram taggers cannot learn 

context from the first word(s) in a sentence. On the other hand, UnigramTagger class 

doesn’t care about the previous context and guesses the most common tag for each word, 

hence able to have high baseline accuracy.   

Combining ngram taggers 

As from the above examples, it is obvious that Bigram and Trigram taggers can contribute 

when we combine them with backoff tagging. In the example below, we are combining 

Unigram, Bigram and Trigram taggers with backoff tagging. The concept is same as the 

previous recipe while combining the UnigramTagger with backoff tagger. The only 

difference is that we are using the function named backoff_tagger() from tagger_util.py, 

given below, for backoff operation.  

def backoff_tagger(train_sentences, tagger_classes, backoff=None): 

 for cls in tagger_classes: 

  backoff = cls(train_sentences, backoff=backoff) 

  

 return backoff 

Example 

from tagger_util import backoff_tagger 

 

from nltk.tag import UnigramTagger 

 

from nltk.tag import BigramTagger 

 

from nltk.tag import TrigramTagger 

 

from nltk.tag import DefaultTagger 

 

from nltk.corpus import treebank 

 

train_sentences = treebank.tagged_sents()[:2500] 

 

back_tagger = DefaultTagger('NN') 
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Combine_tagger = backoff_tagger(train_sentences, [UnigramTagger, BigramTagger, 

TrigramTagger], backoff=back_tagger) 

 

test_sentences = treebank.tagged_sents()[1500:] 

 

Combine_tagger.evaluate(test_sentences) 

Output 

0.9234530029238365 

From the above output, we can see it increases the accuracy by around 3%. 
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Affix Tagger 

One another important class of ContextTagger subclass is AffixTagger. In AffixTagger 

class, the context is either prefix or suffix of a word. That is the reason AffixTagger class 

can learn tags based on fixed-length substrings of the beginning or ending of a word. 

How does it work? 

Its working depends upon the argument named affix_length which specifies the length of 

the prefix or suffix. The default value is 3. But how it distinguishes whether AffixTagger 

class learned word’s prefix or suffix?  

 affix_length=positive: If the value of affix_lenght is positive then it means that 

the AffixTagger class will learn word’s prefixes. 

 

 affix_length=negative: If the value of affix_lenght is negative then it means that 

the AffixTagger class will learn word’s suffixes. 

To make it clearer, in the example below, we will be using AffixTagger class on tagged 

treebank sentences. 

Example 1 

In this example, AffixTagger will learn word’s prefix because we are not specifying any 

value for affix_length argument. The argument will take default value 3:  

from nltk.tag import AffixTagger 

 

from nltk.corpus import treebank 

 

train_sentences = treebank.tagged_sents()[:2500] 

 

Prefix_tagger = AffixTagger(train_sentences) 

 

test_sentences = treebank.tagged_sents()[1500:] 

 

Prefix_tagger.evaluate(test_sentences) 

 
 
 
 
 
 

13. NLTK ― More NLTK Taggers 
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Output 

0.2800492099250667 

Let us see in the example below what will be the accuracy when we provide value 4 to 

affix_length argument: 

from nltk.tag import AffixTagger 

 

from nltk.corpus import treebank 

 

train_sentences = treebank.tagged_sents()[:2500] 

 

Prefix_tagger = AffixTagger(train_sentences, affix_length=4 ) 

 

test_sentences = treebank.tagged_sents()[1500:] 

 

Prefix_tagger.evaluate(test_sentences) 

Output 

0.18154947354966527 

Example 2 

In this example, AffixTagger will learn word’s suffix because we will specify negative value 

for affix_length argument.   

from nltk.tag import AffixTagger 

 

from nltk.corpus import treebank 

 

train_sentences = treebank.tagged_sents()[:2500] 

 

Suffix_tagger = AffixTagger(train_sentences, affix_length=-3) 

 

test_sentences = treebank.tagged_sents()[1500:] 

 

Suffix_tagger.evaluate(test_sentences) 
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Output  

0.2800492099250667 

Brill Tagger 

Brill Tagger is a transformation-based tagger. NLTK provides BrillTagger class which is 

the first tagger that is not a subclass of SequentialBackoffTagger. Opposite to it, a 

series of rules to correct the results of an initial tagger is used by BrillTagger. 

How does it work? 

To train a BrillTagger class using BrillTaggerTrainer we define the following function: 

def train_brill_tagger(initial_tagger, train_sentences, **kwargs): 

 templates = [ 

  brill.Template(brill.Pos([-1])), 

  brill.Template(brill.Pos([1])), 

  brill.Template(brill.Pos([-2])), 

  brill.Template(brill.Pos([2])), 

  brill.Template(brill.Pos([-2, -1])), 

  brill.Template(brill.Pos([1, 2])), 

  brill.Template(brill.Pos([-3, -2, -1])), 

  brill.Template(brill.Pos([1, 2, 3])), 

  brill.Template(brill.Pos([-1]), brill.Pos([1])), 

  brill.Template(brill.Word([-1])), 

  brill.Template(brill.Word([1])), 

  brill.Template(brill.Word([-2])), 

  brill.Template(brill.Word([2])), 

  brill.Template(brill.Word([-2, -1])), 

  brill.Template(brill.Word([1, 2])), 

  brill.Template(brill.Word([-3, -2, -1])), 

  brill.Template(brill.Word([1, 2, 3])), 

  brill.Template(brill.Word([-1]), brill.Word([1])), 

 ] 

  

 trainer = brill_trainer.BrillTaggerTrainer(initial_tagger, templates, 

deterministic=True) 

 return trainer.train(train_sentences, **kwargs) 
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As we can see, this function requires initial_tagger and train_sentences. It takes an 

initial_tagger argument and a list of templates, which implements the BrillTemplate 

interface. The BrillTemplate interface is found in the nltk.tbl.template module. One of 

such implementation is brill.Template class.  

The main role of transformation-based tagger is to generate transformation rules that 

correct the initial tagger’s output to be more in-line with the training sentences. Let us see 

the workflow below: 

 

Example 

For this example, we will be using combine_tagger which we created while combing 

taggers (in the previous recipe) from a backoff chain of NgramTagger classes, as 

initial_tagger. First, let us evaluate the result using Combine.tagger and then use that 

as initial_tagger to train brill tagger. 

from tagger_util import backoff_tagger 

 

from nltk.tag import UnigramTagger 

 

from nltk.tag import BigramTagger 

 

from nltk.tag import TrigramTagger 

 

from nltk.tag import DefaultTagger 

 

from nltk.corpus import treebank 

 

train_sentences = treebank.tagged_sents()[:2500] 
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back_tagger = DefaultTagger('NN') 

 

Combine_tagger = backoff_tagger(train_sentences, [UnigramTagger, BigramTagger, 

TrigramTagger], backoff=back_tagger) 

 

test_sentences = treebank.tagged_sents()[1500:] 

 

Combine_tagger.evaluate(test_sentences) 

Output 

0.9234530029238365 

Now, let us see the evaluation result when Combine_tagger is used as initial_tagger 

to train brill tagger: 

from tagger_util import train_brill_tagger 

brill_tagger = train_brill_tagger(combine_tagger, train_sentences) 

brill_tagger.evaluate(test_sentences) 

Output 

0.9246832510505041 

We can notice that BrillTagger class has slight increased accuracy over the 

Combine_tagger. 

Complete implementation example 

from tagger_util import backoff_tagger 

 

from nltk.tag import UnigramTagger 

 

from nltk.tag import BigramTagger 

 

from nltk.tag import TrigramTagger 

 

from nltk.tag import DefaultTagger 

 

from nltk.corpus import treebank 

 

train_sentences = treebank.tagged_sents()[:2500] 
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back_tagger = DefaultTagger('NN') 

 

Combine_tagger = backoff_tagger(train_sentences, [UnigramTagger, BigramTagger, 

TrigramTagger], backoff=back_tagger) 

 

test_sentences = treebank.tagged_sents()[1500:] 

 

Combine_tagger.evaluate(test_sentences) 

 

from tagger_util import train_brill_tagger 

brill_tagger = train_brill_tagger(combine_tagger, train_sentences) 

brill_tagger.evaluate(test_sentences) 

Output 

0.9234530029238365 

 

0.9246832510505041 

TnT Tagger 

TnT Tagger, stands for Trigrams’nTags, is a statistical tagger which is based on second 

order Markov models.   

How does it work? 

We can understand the working of TnT tagger with the help of following steps: 

 First based on training data, TnT tegger maintains several internal FreqDist and 

ConditionalFreqDist instances.   

 

 After that unigrams, bigrams and trigrams will be counted by these frequency 

distributions. 

 

 Now, during tagging, by using frequencies, it will calculate the probabilities of 

possible tags for each word. 

That’s why instead of constructing a backoff chain of NgramTagger, it uses all the ngram 

models together to choose the best tag for each word. Let us evaluate the accuracy with 

TnT tagger in the following example: 

from nltk.tag import tnt 

from nltk.corpus import treebank 

 

train_sentences = treebank.tagged_sents()[:2500] 
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tnt_tagger = tnt.TnT() 

tnt_tagger.train(train_sentences) 

test_sentences = treebank.tagged_sents()[1500:] 

tnt_tagger.evaluate(test_sentences) 

Output  

0.9165508316157791 

We have a slight less accuracy than we got with Brill Tagger.  

Please note that we need to call train() before evaluate() otherwise we will get 0% 

accuracy.  
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Parsing and its relevance in NLP 

The word ‘Parsing’ whose origin is from Latin word ‘pars’ (which means ‘part’), is used 

to draw exact meaning or dictionary meaning from the text. It is also called Syntactic 

analysis or syntax analysis. Comparing the rules of formal grammar, syntax analysis 

checks the text for meaningfulness. The sentence like “Give me hot ice-cream”, for 

example, would be rejected by parser or syntactic analyzer. 

In this sense, we can define parsing or syntactic analysis or syntax analysis as follows: 

It may be defined as the process of analyzing the strings of symbols in natural language 

conforming to the rules of formal grammar.   

 

We can understand the relevance of parsing in NLP with the help of following points: 

 Parser is used to report any syntax error. 

 It helps to recover from commonly occurring error so that the processing of the 

remainder of program can be continued. 

 Parse tree is created with the help of a parser. 

 Parser is used to create symbol table, which plays an important role in NLP. 

 Parser is also used to produce intermediate representations (IR). 

Deep Vs Shallow Parsing 

Deep Parsing Shallow Parsing 

14. NLTK ― Parsing 
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In deep parsing, the search strategy will 

give a complete syntactic structure to a 

sentence. 

It is the task of parsing a limited part of 

the syntactic information from the given 

task. 

It is suitable for complex NLP applications.  It can be used for less complex NLP 

applications. 

Dialogue systems and summarization are 

the examples of NLP applications where 

deep parsing is used. 

Information extraction and text mining are 

the examples of NLP applications where 

deep parsing is used. 

It is also called full parsing. It is also called chunking. 

Various types of parsers 

As discussed, a parser is basically a procedural interpretation of grammar. It finds an 

optimal tree for the given sentence after searching through the space of a variety of trees. 

Let us see some of the available parsers below: 

Recursive descent parser 

Recursive descent parsing is one of the most straightforward forms of parsing. Following 

are some important points about recursive descent parser: 

 It follows a top down process. 

 It attempts to verify that the syntax of the input stream is correct or not. 

 It reads the input sentence from left to right. 

 One necessary operation for recursive descent parser is to read characters from 

the input stream and matching them with the terminals from the grammar. 

Shift-reduce parser 

Following are some important points about shift-reduce parser: 

 It follows a simple bottom-up process. 

 

 It tries to find a sequence of words and phrases that correspond to the right-hand 

side of a grammar production and replaces them with the left-hand side of the 

production. 

 

 The above attempt to find a sequence of word continues until the whole sentence 

is reduced. 

 

 In other simple words, shift-reduce parser starts with the input symbol and tries to 

construct the parser tree up to the start symbol. 

Chart parser 

Following are some important points about chart parser: 

 It is mainly useful or suitable for ambiguous grammars, including grammars of 

natural languages. 
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 It applies dynamic programing to the parsing problems. 

 

 Because of dynamic programing, partial hypothesized results are stored in a 

structure called a ‘chart’. 

 

 The ‘chart’ can also be re-used. 

Regexp parser 

Regexp parsing is one of the mostly used parsing technique. Following are some important 

points about Regexp parser: 

 As the name implies, it uses a regular expression defined in the form of grammar 

on top of a POS-tagged string.  

 

 It basically uses these regular expressions to parse the input sentences and 

generate a parse tree out of this. 

Following is a working example of Regexp Parser: 

import nltk 

sentence = [("a", "DT"),("clever", 

"JJ"),("fox","NN"),("was","VBP"),("jumping","VBP"),("over","IN"),("the","DT"),(

"wall","NN")] 

grammar = "NP:{<DT>?<JJ>*<NN>}" 

Reg_parser=nltk.RegexpParser(grammar) 

Reg_parser.parse(sentence) 

Output=Reg_parser.parse(sentence) 

Output.draw() 

Output 
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Dependency Parsing 

Dependency Parsing (DP), a modern parsing mechanism, whose main concept is that each 

linguistic unit i.e. words relates to each other by a direct link. These direct links are actually 

‘dependencies’ in linguistic. For example, the following diagram shows dependency 

grammar for the sentence “John can hit the ball”. 

   

NLTK Package 

We have following the two ways to do dependency parsing with NLTK: 

Probabilistic, projective dependency parser 

This is the first way we can do dependency parsing with NLTK. But this parser has the 

restriction of training with a limited set of training data. 

Stanford parser 

This is another way we can do dependency parsing with NLTK. Stanford parser is a state-

of-the-art dependency parser. NLTK has a wrapper around it. To use it we need to 

download following two things: 

The Stanford CoreNLP parser. 

Language model for desired language. For example, English language model.  

Example 

Once you downloaded the model, we can use it through NLTK as follows: 

from nltk.parse.stanford import StanfordDependencyParser 

path_jar = 'path_to/stanford-parser-full-2014-08-27/stanford-parser.jar' 

 

https://nlp.stanford.edu/software/lex-parser.shtml#Download
https://stanfordnlp.github.io/CoreNLP/
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path_models_jar = 'path_to/stanford-parser-full-2014-08-27/stanford-parser-

3.4.1-models.jar' 

dep_parser = StanfordDependencyParser(path_to_jar=path_jar,  

path_to_models_jar=path_models_jar) 

result = dep_parser.raw_parse('I shot an elephant in my sleep') 

depndency = result.next() 

list(dependency.triples()) 

Output 

[((u'shot', u'VBD'), u'nsubj', (u'I', u'PRP')), 

 ((u'shot', u'VBD'), u'dobj', (u'elephant', u'NN')), 

 ((u'elephant', u'NN'), u'det', (u'an', u'DT')), 

 ((u'shot', u'VBD'), u'prep', (u'in', u'IN')), 

 ((u'in', u'IN'), u'pobj', (u'sleep', u'NN')), 

 ((u'sleep', u'NN'), u'poss', (u'my', u'PRP$'))] 
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What is Chunking? 

Chunking, one of the important processes in natural language processing, is used to 

identify parts of speech (POS) and short phrases. In other simple words, with chunking, 

we can get the structure of the sentence. It is also called partial parsing.  

Chunk patterns and chinks 

Chunk patterns are the patterns of part-of-speech (POS) tags that define what kind of 

words made up a chunk. We can define chunk patterns with the help of modified regular 

expressions. 

Moreover, we can also define patterns for what kind of words should not be in a chunk and 

these unchunked words are known as chinks.  

Implementation example 

In the example below, along with the result of parsing the sentence “the book has many 

chapters”, there is a grammar for noun phrases that combines both a chunk and a chink 

pattern: 

import nltk 

sentence = [("the", "DT"),("book", 

"NN"),("has","VBZ"),("many","JJ"),("chapters","NNS")] 

chunker=nltk.RegexpParser(r'''  

NP:{<DT><NN.*><.*>*<NN.*>}  

}<VB.*>{  

''') 

chunker.parse(sentence) 

Output=chunker.parse(sentence) 

Output.draw() 

Output 

15. NLTK ― Chunking & Information Extraction 
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As seen above, the pattern for specifying a chunk is to use curly braces as follows: 

{<DT><NN>} 

And to specify a chink, we can flip the braces such as follows: 

}<VB>{. 

Now, for a particular phrase type, these rules can be combined into a grammar.  

Information Extraction 

We have gone through taggers as well as parsers that can be used to build information 

extraction engine. Let us see a basic information extraction pipeline: 
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 Information extraction has many applications including: 

 Business intelligence 

 Resume harvesting 

 Media analysis 

 Sentiment detection  

 Patent search 

 Email scanning 
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Named-entity recognition (NER) 

Named-entity recognition (NER) is actually a way of extracting some of most common 

entities like names, organizations, location, etc. Let us see an example that took all the 

preprocessing steps such as sentence tokenization, POS tagging, chunking, NER, and 

follows the pipeline provided in the figure above. 

Example 

Import nltk 

file=open (# provide here the absolute path for the file of text for which we 

want NER) 

data_text=file.read() 

sentences = nltk.sent_tokenize(data_text) 

tokenized_sentences = [nltk.word_tokenize(sentence) for sentence in 

sentences] 

tagged_sentences = [nltk.pos_tag(sentence) for sentence in tokenized_ 

sentences] 

for sent in tagged_sentences: 

print nltk.ne_chunk(sent) 

Some of the modified Named-entity recognition (NER) can also be used to extract entities 

such as product names, bio-medical entities, brand name and much more. 

Relation extraction 

Relation extraction, another commonly used information extraction operation, is the 

process of extracting the different relationships between various entities. There can be 

different relationships like inheritance, synonyms, analogous, etc., whose definition 

depends on the information need. For example, suppose if we want to look for write of a 

book then the authorship would be a relation between the author name and book name. 

Example 

In the following example, we use the same IE pipeline, as shown in the above diagram, 

that we used till Named-entity relation (NER) and extend it with a relation pattern based 

on the NER tags. 

import nltk 

import re 

IN = re.compile(r'.*\bin\b(?!\b.+ing)') 

for doc in nltk.corpus.ieer.parsed_docs('NYT_19980315'): 

 for rel in nltk.sem.extract_rels('ORG', 'LOC', doc, corpus='ieer', pattern 

= IN): 

print(nltk.sem.rtuple(rel))  
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Output 

[ORG: 'WHYY'] 'in' [LOC: 'Philadelphia'] 

[ORG: 'McGlashan &AMP; Sarrail'] 'firm in' [LOC: 'San Mateo'] 

[ORG: 'Freedom Forum'] 'in' [LOC: 'Arlington'] 

[ORG: 'Brookings Institution'] ', the research group in' [LOC: 'Washington'] 

[ORG: 'Idealab'] ', a self-described business incubator based in' [LOC: 'Los 

Angeles'] 

[ORG: 'Open Text'] ', based in' [LOC: 'Waterloo'] 

[ORG: 'WGBH'] 'in' [LOC: 'Boston'] 

[ORG: 'Bastille Opera'] 'in' [LOC: 'Paris'] 

[ORG: 'Omnicom'] 'in' [LOC: 'New York'] 

[ORG: 'DDB Needham'] 'in' [LOC: 'New York'] 

[ORG: 'Kaplan Thaler Group'] 'in' [LOC: 'New York'] 

[ORG: 'BBDO South'] 'in' [LOC: 'Atlanta'] 

[ORG: 'Georgia-Pacific'] 'in' [LOC: 'Atlanta'] 

In the above code, we have used an inbuilt corpus named ieer. In this corpus, the 

sentences are tagged till Named-entity relation (NER). Here we only need to specify the 

relation pattern that we want and the kind of NER we want the relation to define. In our 

example, we defined relationship between an organization and a location. We extracted 

all the combinations of these patterns. 
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Why transforming Chunks? 

Till now we have got chunks or phrases from sentences but what are we supposed to do 

with them. One of the important tasks is to transform them. But why? It is to do the 

following:  

 grammatical correction and  

 rearranging phrases  

Filtering insignificant/useless words 

Suppose if you want to judge the meaning of a phrase then there are many commonly 

used words such as, ‘the’, ‘a’, are insignificant or useless. For example, see the following 

phrase: 

‘The movie was good’.  

Here the most significant words are ‘movie’ and ‘good’. Other words, ‘the’ and ‘was’ both 

are useless or insignificant. It is because without them also we can get the same meaning 

of the phrase. ‘Good movie’. 

In the following python recipe, we will learn how to remove useless/insignificant words 

and keep the significant words with the help of POS tags. 

Example 

First, by looking through treebank corpus for stopwords we need to decide which part-

of-speech tags are significant and which are not. Let us see the following table of 

insignificant words and tags: 

Word Tag 

a DT 

All PDT 

An DT 

And CC 

Or CC 

That WDT 

The DT 

 

16. NLTK ― Transforming Chunks 
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From the above table, we can see other than CC, all the other tags end with DT which 

means we can filter out insignificant words by looking at the tag’s suffix. 

For this example, we are going to use a function named filter() which takes a single chunk 

and returns a new chunk without any insignificant tagged words. This function filters out 

any tags that end with DT or CC. 

import nltk 

def filter(chunk, tag_suffixes=['DT', 'CC']): 

 significant = [] 

 for word, tag in chunk: 

  ok = True 

  for suffix in tag_suffixes: 

   if tag.endswith(suffix): 

    ok = False 

    break 

  if ok: 

   significant.append((word, tag)) 

 return (significant) 

 

Now, let us use this function filter() in our Python recipe to delete insignificant words: 

from chunk_parse import filter 

filter([('the', 'DT'),('good', 'JJ'),('movie', 'NN')]) 

Output 

[('good', 'JJ'), ('movie', 'NN')] 

Verb Correction 

Many times, in real-world language we see incorrect verb forms. For example, ‘is you fine?’ 

is not correct. The verb form is not correct in this sentence. The sentence should be ‘are 

you fine?’ NLTK provides us the way to correct such mistakes by creating verb correction 

mappings. These correction mappings are used depending on whether there is a plural or 

singular noun in the chunk. 

Example 

To implement Python recipe, we first need to need define verb correction mappings.  Let 

us create two mapping as follows: 

Plural to Singular mappings 

plural= { 
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('is', 'VBZ'): ('are', 'VBP'), 

('was', 'VBD'): ('were', 'VBD') 

} 

Singular to Plural mappings 

singular = { 

('are', 'VBP'): ('is', 'VBZ'), 

('were', 'VBD'): ('was', 'VBD') 

} 

As seen above, each mapping has a tagged verb which maps to another tagged verb. The 

initial mappings in our example cover the basic of mappings is to are, was to were, and 

vice versa. 

Next, we will define a function named verbs(), in which you can pass a chink with incorrect 

verb form and ‘ll get a corrected chunk back. To get it done, verb() function uses a helper 

function named index_chunk() which will search the chunk for the position of the first 

tagged word.  

Let us see these functions: 

def index_chunk(chunk, pred, start=0, step=1): 

 l = len(chunk) 

 end = l if step > 0 else -1 

 for i in range(start, end, step): 

  if pred(chunk[i]): 

   return i 

 return None 

def tag_startswith(prefix): 

 def f(wt): 

  return wt[1].startswith(prefix) 

 return f 

 

def verbs(chunk): 

 vbidx = index_chunk(chunk, tag_startswith('VB')) 

 if vbidx is None: 

  return chunk 

 verb, vbtag = chunk[vbidx] 

 nnpred = tag_startswith('NN') 

 nnidx = index_chunk(chunk, nnpred, start=vbidx+1) 

 if nnidx is None: 
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  nnidx = index_chunk(chunk, nnpred, start=vbidx-1, step=-1) 

 if nnidx is None: 

  return chunk 

 noun, nntag = chunk[nnidx] 

 if nntag.endswith('S'): 

  chunk[vbidx] = plural.get((verb, vbtag), (verb, vbtag)) 

 else: 

  chunk[vbidx] = singular.get((verb, vbtag), (verb, 

vbtag)) 

 return chunk 

Save these functions in a Python file in your local directory where Python or Anaconda is 

installed and run it. I have saved it as verbcorrect.py.  

Now, let us call verbs() function on a POS tagged is you fine chunk: 

from verbcorrect import verbs 

verbs([('is', 'VBZ'), ('you', 'PRP$'), ('fine', 'VBG')]) 

Output 

[('are', 'VBP'), ('you', 'PRP$'), ('fine','VBG')] 

Eliminating passive voice from phrases 

Another useful task is to eliminate passive voice from phrases. This can be done with the 

help of swapping the words around a verb. For example, ‘the tutorial was great’ can be 

transformed into ‘the great tutorial’.  

Example 

To achieve this we are defining a function named eliminate_passive() that will swap the 

right-hand side of the chunk with the left-hand side by using the verb as the pivot point. 

In order to find the verb to pivot around, it will also use the index_chunk() function 

defined above. 

def eliminate_passive(chunk): 

 def vbpred(wt): 

  word, tag = wt 

  return tag != 'VBG' and tag.startswith('VB') and len(tag) > 2 

 vbidx = index_chunk(chunk, vbpred) 

 if vbidx is None: 

  return chunk 

 return chunk[vbidx+1:] + chunk[:vbidx] 
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Now, let us call eliminate_passive() function on a POS tagged the tutorial was great 

chunk: 

from passiveverb import eliminate_passive 

eliminate_passive([('the', 'DT'), ('tutorial', 'NN'), ('was', 'VBD'),('great', 

'JJ')]) 

Output 

[('great', 'JJ'), ('the', 'DT'), ('tutorial', 'NN')] 

Swapping noun cardinals 

As we know, a cardinal word such as 5, is tagged as CD in a chunk. These cardinal words 

often occur before or after a noun but for normalization purpose it is useful to put them 

before the noun always. For example, the date January 5 can be written as 5 January. 

Let us understand it with the following example.  

Example 

To achieve this we are defining a function named swapping_cardinals() that will swap 

any cardinal that occurs immediately after a noun with the noun. With this the cardinal 

will occur immediately before the noun. In order to do equality comparison with the given 

tag, it uses a helper function which we named as tag_eql().  

def tag_eql(tag): 

 def f(wt): 

  return wt[1] == tag 

 return f  

Now we can define swapping_cardinals(): 

def swapping_cardinals (chunk): 

 cdidx = index_chunk(chunk, tag_eql('CD')) 

 if not cdidx or not chunk[cdidx-1][1].startswith('NN'): 

 return chunk 

 noun, nntag = chunk[cdidx-1] 

 chunk[cdidx-1] = chunk[cdidx] 

 chunk[cdidx] = noun, nntag 

 return chunk 

Now, Let us call swapping_cardinals() function on a date “January 5”: 

from Cardinals import swapping_cardinals() 

swapping_cardinals([('Janaury', 'NNP'), ('5', 'CD')]) 
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Output 

[('10', 'CD'), ('January', 'NNP')] 

10 January 
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Following are the two reasons to transform the trees:  

 To modify deep parse tree and  

 To flatten deep parse trees  

Converting Tree or Subtree to Sentence 

The first recipe we are going to discuss here is to convert a Tree or subtree back to a 

sentence or chunk string. This is very simple, let us see in the following example: 

Example 

from nltk.corpus import treebank_chunk 

tree = treebank_chunk.chunked_sents()[2] 

' '.join([w for w, t in tree.leaves()]) 

Output 

'Rudolph Agnew , 55 years old and former chairman of Consolidated Gold Fields 

PLC , was named a nonexecutive director of this British industrial conglomerate 

.' 

Deep tree flattening 

Deep trees of nested phrases can’t be used for training a chunk hence we must flatten 

them before using. In the following example, we are going to use 3rd parsed sentence, 

which is deep tree of nested phrases, from the treebank corpus.  

Example 

To achieve this, we are defining a function named deeptree_flat() that will take a single 

Tree and will return a new Tree that keeps only the lowest level trees. In order to do most 

of the work, it uses a helper function which we named as childtree_flat().  

  from nltk.tree import Tree 

def childtree_flat(trees): 

 children = [] 

 for t in trees: 

  if t.height() < 3: 

   children.extend(t.pos()) 

  elif t.height() == 3: 

17. NLTK ― Transforming Trees 
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   children.append(Tree(t.label(), t.pos())) 

  else: 

   children.extend(flatten_childtrees([c for c in t])) 

 return children 

 

def deeptree_flat(tree): 

 return Tree(tree.label(), flatten_childtrees([c for c in tree])) 

Now, let us call deeptree_flat() function on 3rd parsed sentence, which is deep tree of 

nested phrases, from the treebank corpus. We saved these functions in a file named 

deeptree.py. 

from deeptree import deeptree_flat 

from nltk.corpus import treebank 

deeptree_flat(treebank.parsed_sents()[2]) 

Output 

Tree('S', [Tree('NP', [('Rudolph', 'NNP'), ('Agnew', 'NNP')]), (',', ','), 

Tree('NP', [('55', 'CD'), ('years', 'NNS')]), ('old', 'JJ'), ('and', 'CC'), 

Tree('NP', [('former', 'JJ'), ('chairman', 'NN')]), ('of', 'IN'), Tree('NP', 

[('Consolidated', 'NNP'), ('Gold', 'NNP'), ('Fields', 'NNP'), ('PLC', 'NNP')]), 

(',', ','), ('was', 'VBD'), ('named', 'VBN'), Tree('NP-SBJ', [('*-1', '-NONE-

')]), Tree('NP', [('a', 'DT'), ('nonexecutive', 'JJ'), ('director', 'NN')]), 

('of', 'IN'), Tree('NP', [('this', 'DT'), ('British', 'JJ'), ('industrial', 

'JJ'), ('conglomerate', 'NN')]), ('.', '.')]) 

Building Shallow tree 

In the previous section, we flatten a deep tree of nested phrases by only keeping the 

lowest level subtrees. In this section, we are going to keep only the highest-level subtrees 

i.e. to build the shallow tree. In the following example we are going to use 3rd parsed 

sentence, which is deep tree of nested phrases, from the treebank corpus.  

Example 

To achieve this, we are defining a function named tree_shallow() that will eliminate all 

the nested subtrees by keeping only the top subtree labels.  

  from nltk.tree import Tree 

def tree_shallow(tree): 

 children = [] 

 for t in tree: 

  if t.height() < 3: 

   children.extend(t.pos()) 

  else: 
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   children.append(Tree(t.label(), t.pos())) 

 return Tree(tree.label(), children) 

Now, let us call tree_shallow() function on 3rd parsed sentence, which is deep tree of 

nested phrases, from the treebank corpus. We saved these functions in a file named 

shallowtree.py. 

from shallowtree import shallow_tree 

from nltk.corpus import treebank 

tree_shallow(treebank.parsed_sents()[2]) 

Output 

Tree('S', [Tree('NP-SBJ-1', [('Rudolph', 'NNP'), ('Agnew', 'NNP'), (',', ','), 

('55', 'CD'), ('years', 'NNS'), ('old', 'JJ'), ('and', 'CC'), ('former', 'JJ'), 

('chairman', 'NN'), ('of', 'IN'), ('Consolidated', 'NNP'), ('Gold', 'NNP'), 

('Fields', 'NNP'), ('PLC', 'NNP'), (',', ',')]), Tree('VP', [('was', 'VBD'), 

('named', 'VBN'), ('*-1', '-NONE-'), ('a', 'DT'), ('nonexecutive', 'JJ'), 

('director', 'NN'), ('of', 'IN'), ('this', 'DT'), ('British', 'JJ'), 

('industrial', 'JJ'), ('conglomerate', 'NN')]), ('.', '.')]) 

We can see the difference with the help of getting the height of the trees: 

from nltk.corpus import treebank 

tree_shallow(treebank.parsed_sents()[2]).height() 

Output 

3 

 

from nltk.corpus import treebank 

treebank.parsed_sents()[2].height() 

Output 

9 
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Tree labels conversion 

In parse trees there are variety of Tree label types that are not present in chunk trees. 

But while using parse tree to train a chunker, we would like to reduce this variety by 

converting some of Tree labels to more common label types. For example, we have two 

alternative NP subtrees namely NP-SBL and NP-TMP. We can convert both of them into 

NP. Let us see how to do it in the following example. 

Example 

To achieve this we are defining a function named tree_convert() that takes following two 

arguments: 

 Tree to convert 

 A label conversion mapping 

This function will return a new Tree with all matching labels replaced based on the values 

in the mapping. 

from nltk.tree import Tree 

def tree_convert(tree, mapping): 

 children = [] 

 for t in tree: 

  if isinstance(t, Tree): 

   children.append(convert_tree_labels(t, mapping)) 

  else: 

   children.append(t) 

 label = mapping.get(tree.label(), tree.label()) 

 return Tree(label, children) 

Now, let us call tree_convert() function on 3rd parsed sentence, which is deep tree of 

nested phrases, from the treebank corpus. We saved these functions in a file named 

converttree.py. 

from converttree import tree_convert 

from nltk.corpus import treebank 

mapping = {'NP-SBJ': 'NP', 'NP-TMP': 'NP'} 

convert_tree_labels(treebank.parsed_sents()[2], mapping) 

Output 

Tree('S', [Tree('NP-SBJ-1', [Tree('NP', [Tree('NNP', ['Rudolph']), Tree('NNP', 

['Agnew'])]), Tree(',', [',']), Tree('UCP', [Tree('ADJP', [Tree('NP', 

[Tree('CD', ['55']), Tree('NNS', ['years'])]), Tree('JJ', ['old'])]), 

Tree('CC', ['and']), Tree('NP', [Tree('NP', [Tree('JJ', ['former']), Tree('NN', 

['chairman'])]), Tree('PP', [Tree('IN', ['of']), Tree('NP', [Tree('NNP', 

['Consolidated']), Tree('NNP', ['Gold']), Tree('NNP', ['Fields']), Tree('NNP', 

['PLC'])])])])]), Tree(',', [','])]), Tree('VP', [Tree('VBD', ['was']), 
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Tree('VP', [Tree('VBN', ['named']), Tree('S', [Tree('NP', [Tree('-NONE-', ['*-

1'])]), Tree('NP-PRD', [Tree('NP', [Tree('DT', ['a']), Tree('JJ', 

['nonexecutive']), Tree('NN', ['director'])]), Tree('PP', [Tree('IN', ['of']), 

Tree('NP', [Tree('DT', ['this']), Tree('JJ', ['British']), Tree('JJ', 

['industrial']), Tree('NN', ['conglomerate'])])])])])])]), Tree('.', ['.'])]) 
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What is text classification? 

Text classification, as the name implies, is the way to categorize pieces of text or 

documents. But here the question arises that why we need to use text classifiers? Once 

examining the word usage in a document or piece of text, classifiers will be able to decide 

what class label should be assigned to it.  

Binary Classifier 

As name implies, binary classifier will decide between two labels. For example, positive or 

negative. In this the piece of text or document can either be one label or another, but not 

both. 

Multi-label Classifier 

Opposite to binary classifier, multi-label classifier can assign one or more labels to a piece 

of text or document. 

Labeled Vs Unlabeled Feature set 

A key-value mapping of feature names to feature values is called a feature set. Labeled 

feature sets or training data is very important for classification training so that it can later 

classify unlabeled feature set.  

Labeled Feature Set Unlabeled Feature Set 

It is a tuple that look like (feat, label).  

 

It is a feat itself. 

It is an instance with a known class label. Without associated label, we can call it an 

instance. 

Used for training a classification algorithm. Once trained, classification algorithm can 

classify an unlabeled feature set. 

Text Feature Extraction 

Text feature extraction, as the name implies, is the process of transforming a list of words 

into a feature set that is usable by a classifier. We must have to transform our text into 

‘dict’ style feature sets because Natural Language Tool Kit (NLTK) expect ‘dict’ style 

feature sets.  

Bag of Words (BoW) model 

BoW, one of the simplest models in NLP, is used to extract the features from piece of text 

or document so that it can be used in modeling such that in ML algorithms. It basically 

18. NLTK ― Text Classification  
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constructs a word presence feature set from all the words of an instance. The concept 

behind this method is that it doesn’t care about how many times a word occurs or about 

the order of the words, it only cares weather the word is present in a list of words or not. 

Example 

For this example, we are going to define a function named bow(): 

def bow(words): 

 return dict([(word, True) for word in words]) 

Now, let us call bow() function on words. We saved this functions in a file named 

bagwords.py. 

from bagwords import bow 

bow(['we', 'are', 'using', 'tutorialspoint']) 

Output 

{'we': True, 'are': True, 'using': True, 'tutorialspoint': True} 

Training classifiers 

In previous sections, we learned how to extract features from the text. So now we can 

train a classifier. The first and easiest classifier is NaiveBayesClassifier class. 

Naïve Bayes Classifier 

To predict the probability that a given feature set belongs to a particular label, it uses 

Bayes theorem. The formula of Bayes theorem is as follows: 

 

Here, 

P(A|B): It is also called the posterior probability i.e. the probability of first event i.e. A to 

occur given that second event i.e. B occurred.  

P(B|A): It is the probability of second event i.e. B to occur after first event i.e. A occurred. 

P(A), P(B):  It is also called prior probability i.e. the probability of first event i.e. A or 

second event i.e. B to occur. 

To train Naïve Bayes classifier, we will be using the movie_reviews corpus from NLTK. 

This corpus has two categories of text, namely: pos and neg. These categories make a 

classifier trained on them a binary classifier. Every file in the corpus is composed of two, 
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one is positive movie review and other is negative movie review. In our example, we are 

going to use each file as a single instance for both training and testing the classifier.  

Example 

For training classifier, we need a list of labeled feature sets, which will be in the form 

[(featureset, label)]. Here the featureset variable is a dict and label is the known class 

label for the featureset. We are going to create a function named label_corpus() which 

will take a corpus named movie_reviews and also a function named feature_detector, 

which defaults to bag of words. It will construct and returns a mapping of the form, 

{label: [featureset]}. After that we will use this mapping to create a list of labeled training 

instances and testing instances. 

import collections 

def label_corpus(corp, feature_detector=bow): 

 label_feats = collections.defaultdict(list) 

 for label in corp.categories(): 

  for fileid in corp.fileids(categories=[label]): 

   feats = feature_detector(corp.words(fileids=[fileid])) 

   label_feats[label].append(feats) 

 return label_feats 

With the help of above function we will get a mapping {label:fetaureset}. Now we are 

going to define one more function named split() that will take a mapping returned from 

label_corpus() function and splits each list of feature sets into labeled training as well 

as testing instances. 

def split(lfeats, split=0.75): 

 train_feats = [] 

 test_feats = [] 

 for label, feats in lfeats.items(): 

  cutoff = int(len(feats) * split) 

  train_feats.extend([(feat, label) for feat in feats[:cutoff]]) 

  test_feats.extend([(feat, label) for feat in feats[cutoff:]]) 

 return train_feats, test_feats 

 Now, let us use these functions on our corpus, i.e. movie_reviews: 

from nltk.corpus import movie_reviews 

from featx import label_feats_from_corpus, split_label_feats 

movie_reviews.categories() 

Output 

['neg', 'pos'] 
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lfeats = label_feats_from_corpus(movie_reviews) 

lfeats.keys() 

Output 

dict_keys(['neg', 'pos']) 

 

train_feats, test_feats = split_label_feats(lfeats, split=0.75) 

len(train_feats) 

Output 

1500 

 

len(test_feats) 

Output 

500 

We have seen that in movie_reviews corpus, there are 1000 pos files and 1000 neg files. 

We also end up with 1500 labeled training instances and 500 labeled testing instances.  

Now let us train NaïveBayesClassifier using its train() class method: 

from nltk.classify import NaiveBayesClassifier 

NBC = NaiveBayesClassifier.train(train_feats) 

NBC.labels() 

Output 

['neg', 'pos'] 

Decision Tree Classifier 

Another important classifier is decision tree classifier. Here to train it the 

DecisionTreeClassifier class will create a tree structure. In this tree structure each node 

corresponds to a feature name and the branches correspond to the feature values. And 

down the branches we will get to the leaves of the tree i.e. the classification labels. 

To train decision tree classifier, we will use the same training and testing features i.e. 

train_feats and test_feats, variables we have created from movie_reviews corpus. 

Example 
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To train this classifier, we will call DecisionTreeClassifier.train() class method as 

follows: 

from nltk.classify import DecisionTreeClassifier 

decisiont_classifier = DecisionTreeClassifier.train(train_feats, binary=True, 

entropy_cutoff=0.8, depth_cutoff=5, support_cutoff=30) 

accuracy(decisiont_classifier, test_feats) 

Output 

0.725 

Maximum Entropy Classifier 

Another important classifier is MaxentClassifier which is also known as a conditional 

exponential classifier or logistic regression classifier. Here to train it, the 

MaxentClassifier class will convert labeled feature sets to vector using encoding.  

To train decision tree classifier, we will use the same training and testing features i.e. 

train_feats and test_feats, variables we have created from movie_reviews corpus. 

Example 

To train this classifier, we will call MaxentClassifier.train() class method as follows: 

from nltk.classify import MaxentClassifier 

maxent_classifier = MaxentClassifier.train(train_feats,algorithm='gis', 

trace=0, max_iter=10, min_lldelta=0.5) 

accuracy(maxent_classifier, test_feats) 

Output 

0.786 

Scikit-learn Classifier 

One of the best machine learning (ML) libraries is Scikit-learn. It actually contains all sorts 

of ML algorithms for various purposes, but they all have the same fit design pattern as 

follows: 

 Fitting the model to the data 

 And use that model to make predictions 

Rather than accessing scikit-learn models directly, here we are going to use NLTK’s 

SklearnClassifier class. This class is a wrapper class around a scikit-learn model to make 

it conform to NLTK’s Classifier interface. 

We will follow following steps to train a SklearnClassifier class: 

Step 1 
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First we will create training features as we did in previous recipes. 

Step 2 

Now, choose and import a Scikit-learn algorithm. 

Step 3 

Next, we need to construct a SklearnClassifier class with the chosen algorithm. 

Step 4 

Last, we will train SklearnClassifier class with our training features. 

Let us implement these steps in the below Python recipe: 

from nltk.classify.scikitlearn import SklearnClassifier 

from sklearn.naive_bayes import MultinomialNB 

sklearn_classifier = SklearnClassifier(MultinomialNB()) 

sklearn_classifier.train(train_feats) 

<SklearnClassifier(MultinomialNB(alpha=1.0,class_prior=None,fit_prior=True))> 

accuracy(sk_classifier, test_feats) 

Output 

0.885 

Measuring precision and recall 

While training various classifiers we have measured their accuracy also. But apart from 

accuracy there are number of other metrics which are used to evaluate the classifiers. Two 

of these metrics are precision and recall.  

Example 

In this example, we are going to calculate precision and recall of the NaiveBayesClassifier 

class we trained earlier. To achieve this we will create a function named metrics_PR() 

which will take two arguments, one is the trained classifier and other is the labeled test 

features. Both the arguments are same as we passed while calculating the accuracy of the 

classifiers: 

import collections 

from nltk import metrics 

def metrics_PR(classifier, testfeats): 

 refsets = collections.defaultdict(set) 

 testsets = collections.defaultdict(set) 

 for i, (feats, label) in enumerate(testfeats): 

  refsets[label].add(i) 

  observed = classifier.classify(feats) 
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  testsets[observed].add(i) 

 precisions = {} 

 recalls = {} 

 for label in classifier.labels(): 

 precisions[label] = metrics.precision(refsets[label],testsets[label]) 

 recalls[label] = metrics.recall(refsets[label], testsets[label]) 

 return precisions, recalls 

Let us call this function to find the precision and recall: 

from metrics_classification import metrics_PR 

nb_precisions, nb_recalls = metrics_PR(nb_classifier,test_feats) 

nb_precisions['pos'] 

Output 

0.6713532466435213 

 

nb_precisions['neg'] 

Output 

0.9676271186440678 

 

nb_recalls['pos'] 

Output 

0.96 

 

nb_recalls['neg'] 

Output 

0.478 

Combination of classifier and voting 

Combining classifiers is one of the best ways to improve classification performance. And 

voting is one of the best ways to combine multiple classifiers. For voting we need to have 

odd number of classifiers. In the following Python recipe we are going to combine three 
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classifiers namely NaiveBayesClassifier class, DecisionTreeClassifier class and 

MaxentClassifier class.  

To achieve this we are going to define a function named voting_classifiers() as follows: 

import itertools 

from nltk.classify import ClassifierI 

from nltk.probability import FreqDist 

class Voting_classifiers(ClassifierI): 

 def __init__(self, *classifiers): 

  self._classifiers = classifiers 

  self._labels = sorted(set(itertools.chain(*[c.labels() for c in 

classifiers]))) 

 def labels(self): 

  return self._labels 

 def classify(self, feats): 

  counts = FreqDist() 

  for classifier in self._classifiers: 

   counts[classifier.classify(feats)] += 1 

  return counts.max() 

Let us call this function to combine three classifiers and find the accuracy: 

from vote_classification import Voting_classifiers 

combined_classifier = Voting_classifiers(NBC, decisiont_classifier, 

maxent_classifier) 

combined_classifier.labels() 

Output 

['neg', 'pos'] 

 

accuracy(combined_classifier, test_feats) 

Output 

0.948 

From the above output, we can see that the combined classifiers got highest accuracy than 

the individual classifiers. 


