

OAuth2.0

i

About the Tutorial

OAuth2.0 is an open authorization protocol, which allows accessing the resources of the

resource owner by enabling the client applications on HTTP services such as Facebook,

GitHub, etc. It allows sharing of resources stored on one site to another site without using

their credentials. It uses username and password tokens instead.

Audience

This tutorial is designed for software programmers who would like to understand the

concepts of OAuth. This tutorial will give you enough understanding on OAuth from where

you can take yourself to higher levels of expertise.

Prerequisites

Before proceeding with this tutorial, you should have a basic understanding of

authorization and authentication of a basic client server application model.

Copyright & Disclaimer

 Copyright 2020 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

OAuth2.0

ii

Table of Contents

About the Tutorial ... i

Audience .. i

Prerequisites .. i

Copyright & Disclaimer .. i

Table of Contents .. ii

1. OAUTH 2.0 – OVERVIEW ... 1

2. OAUTH 2.0 – ARCHITECTURE .. 3

Terminology .. 4

Web Server ... 6

User Agent .. 7

Native Application .. 7

3. OAUTH 2.0 – CLIENT CREDENTIALS ... 9

Obtaining End-User Authorization .. 10

Authorization Response .. 11

Error Response and Codes .. 12

4. OAUTH 2.0 ─ OBTAINING AN ACCESS TOKEN .. 14

Authorization Code ... 15

Resource Owner Password Credentials ... 16

Assertion ... 17

Refresh Token ... 19

Access Token Response ... 21

Access Token Error Response and Codes ... 21

Access Token Response ... 21

5. OAUTH 2.0 ─ ACCESSING A PROTECTED RESOURCE .. 24

OAuth2.0

iii

Authenticated Requests .. 25

WWW-Authenticate Response Header Field ... 25

6. OAUTH 2.0 ─ EXTENSIBILITY .. 27

7. OAUTH 2.0 ─ IANA CONSIDERATIONS ... 28

OAuth Access Token Types Registry .. 28

OAuth Parameters Registry ... 28

OAuth Authorization Endpoint Response Type Registry .. 30

OAuth Extensions Error Registry ... 31

OAuth2.0

1

What is OAuth 2.0?

OAuth is an open authorization protocol, which allows accessing the resources of the

resource owner by enabling the client applications on HTTP services such as Facebook,

GitHub, etc. It allows sharing of resources stored on one site to another site without using

their credentials. It uses username and password tokens instead.

OAuth 2.0 is developed by the IETF OAuth Working Group, published in October 2012.

Why Use OAuth 2.0?

 You can use OAuth 2.0 to read data of a user from another application.

 It supplies the authorization workflow for web, desktop applications, and mobile

devices.

 It is a server side web app that uses authorization code and does not interact with
user credentials.

Features of OAuth 2.0

 OAuth 2.0 is a simple protocol that allows to access resources of the user without

sharing passwords.

 It provides user agent flows for running clients application using a scripting

language, such as JavaScript. Typically, a browser is a user agent.

 It accesses the data using tokens instead of using their credentials and stores data
in online file system of the user such as Google Docs or Dropbox account.

Advantages of OAuth 2.0

 OAuth 2.0 is a very flexible protocol that relies on Transport Layer Security (TLS)

to save user access token.

 OAuth 2.0 relies on TLS which is used to ensure cryptography industry protocols

and are being used to keep the data safe.

 It allows limited access to the user's data and allows accessing when authorization

tokens expire.

 It has ability to share data for users without having to release personal information.

 It is easier to implement and provides stronger authentication.

1. OAuth 2.0 – Overview

OAuth2.0

2

Disadvantages of OAuth 2.0

 If you are adding more extension at the ends in the specification, it will produce a

wide range of non-interoperable implementations, which means you have to write

separate pieces of code for Facebook, Google, etc.

 If your favorite sites are connected to the central hub and the central account is

hacked, then it will lead to serious effects across several sites instead of just one.

For information about OAuth 2.0 diagram and some various concepts, refer this link.

https://www.tutorialspoint.com/oauth2.0/oauth2_concepts.htm

OAuth2.0

3

In this chapter, we will discuss the architectural style of OAuth 2.0.

Step 1: First, the user accesses resources using the client application such as Google,

Facebook, Twitter, etc.

Step 2: Next, the client application will be provided with the client id and client password

during registering the redirect URI (Uniform Resource Identifier).

Step 3: The user logs in using the authenticating application. The client ID and client

password is unique to the client application on the authorization server.

Step 4: The authenticating server redirects the user to a redirect Uniform Resource

Identifier (URI) using authorization code.

Step 5: The user accesses the page located at redirect URI in the client application.

Step 6: The client application will be provided with the authentication code, client id and

client password, and send them to the authorization server.

Step 7: The authenticating application returns an access token to the client application.

2. OAuth 2.0 – Architecture

OAuth2.0

4

Step 8: Once the client application gets an access token, the user starts accessing the

resources of the resource owner using the client application.

OAuth 2.0 has various concepts, which are briefly explained in the following table.

Sr.

No.
Concept & Description

1

Terminology

OAuth provides some additional terms to understand the concepts of

authorization.

2

Web Server

Web server delivers the web pages and uses HTTP to serve the files that forms

the web pages to the users.

3

User-Agent

The user agent application is used by client applications in the user's device,

which acts as the scripting language instance.

4

Native Application

Native application can be used as an instance of desktop or mobile phone

application, which uses the resource owner password credentials.

Terminology

Following is the explanation of OAuth 2.0 terms:

Authentication

Authentication is a process of identifying an individual, usually based on a username and

password. It is about knowing that the user is the owner of the account on the web and

desktop computers.

Federated Authentication

Many applications have their own username and passwords. Some applications depend on

other services for verification of the user's identity. A federated identity management

system provides a single access to multiple systems. This is known as federated

authentication.

Authorization

Authorization is the process of giving someone the permission to do something. It needs

the valid user's identification to check whether that user is authorized or not.

Delegated Authorization

Delegated authorization is the process of giving one’s credentials to other user to perform

some actions on behalf of that user.

https://www.tutorialspoint.com/oauth2.0/terminology.htm
https://www.tutorialspoint.com/oauth2.0/web_server.htm
https://www.tutorialspoint.com/oauth2.0/user_agent.htm
https://www.tutorialspoint.com/oauth2.0/native_application.htm

OAuth2.0

5

Roles

OAuth defines the following roles:

 Resource Owner

 Client Application

 Resource Server

 Authentication Server

The roles are illustrated in the following figure:

 Resource Owner: Resource owner is defined as an entity having the ability to

grant access to their own data hosted on the resource server. When the resource

owner is a person, it is called the end-user.

 Client Application: Client is an application making protected resource requests to

perform actions on behalf of the resource owner.

 Resource Server: Resource server is API server that can be used to access the

user's information. It has the capability of accepting and responding to protected

resource requests with the help of access tokens.

 Authentication Server: The authentication server gets permission from the

resource owner and distributes the access tokens to clients, to access protected

resource hosted by the resource server.

OAuth2.0

6

Web Server

The web server is a computer system that delivers the web pages to the users by using

HTTP. The client ID and password is stored on the web application server, whenever the

application wants to access the resource server. The client ID and password which is stored

on the web application server is intended to be kept secret.

The following figure depicts the Confidential Client Web Application Server:

 In the above figure, the resource owner allows the confidential client to access the

data that is hosted on the resource server, where client ID and password are kept

confidential on the server.

 The client ID and password is unique to the client application on the authorization

server.

 The resource server is a server, which hosts the resources such as Facebook,

Twitter, Google, etc. These resources are stored on the resource server and are

accessed by the client application and the resource owner owns these resources.

 The resources of the resource owner are then accessed by the authorization server

using confidential client web application.

OAuth2.0

7

User Agent

The user agent application is used by the client applications in the user's device, which

acts as the scripting language instance such as JavaScript running in a browser. You can

store the user agent application on a web server.

The following diagram shows the architecture of the client user agent application.

Step 1: First, the user accesses the resources of the resource owner by using

authenticating application such as Google, Facebook, Twitter, etc.

Step 2: Next, the user application provides the client Id and client password to log on to

the authorization server.

Step 3: Then, the user agent application provides an instance of a JavaScript application

running in a browser and links to the web server.

Step 4: The authorization server allows access to the resources from the resource server

using the client credentials.

Step 5: The resource server contains the resources, which are owned by the resource

owner.

Native Application

Native application can be used as instance of desktop or mobile phone application, which

uses the resource owner credentials. It is a public client installed that executes on the

resource's owner device.

The authentication credentials used by the application are included in the application code.

Hence, do not use the native application that runs in the external user agents.

OAuth2.0

8

The following diagram shows the architecture of the client native application:

Step 1: First, the user accesses the resources of the resource owner by using

authenticating application such as Google, Facebook, Twitter, etc.

Step 2: Next, the native application uses client Id and client password to log on to the

authorization server. The native application is an instance of desktop or mobile phone

application, which is installed on the user computer and stores the client password on the

computer or device.

Step 3: The authorization server allows accessing the resources from the resource server

using the client credentials.

Step 4: The resource server contains the resources, which are owned by the resource

owner.

OAuth2.0

9

The client credentials can be used as an authorization grant when the client is the resource

owner, or when the authorization scope is limited to protected resources under the control

of the client.

 The client requests an access token only with the help of client credentials.

 The client credentials authorization flow is used to acquire access token to authorize

API requests.

 Using client credentials authorization, access token which is acquired, only grants
permission for your client application to search and get catalog documents.

The following figure depicts the Client Credentials Flow.

The flow illustrated in the above figure consists of the following steps:

 Step 1: The client authenticates with the authorization server and makes a request

for access token from the token endpoint.

 Step 2: The authorization server authenticates the client and provides access token

if it's valid and authorized.

The following table lists the concepts of Client Credentials.

Sr.

No.
Concept & Description

1

Obtaining End-User Authorization

The authorization end point is typically URI on the authorization server in which

the resource owner logs in and permits to access the data to the client

application.

2

Authorization Response

The authorization response can be used to get the access token for accessing the

owner resources in the system using the authorization code.

3

Error Response and Codes

The authorization server responds with a HTTP 400 or 401 (bad request) status

codes, if an error occurs during authorization.

3. OAuth 2.0 – Client Credentials

https://www.tutorialspoint.com/oauth2.0/obtaining_end_user_authorization.htm
https://www.tutorialspoint.com/oauth2.0/authorization_response.htm
https://www.tutorialspoint.com/oauth2.0/error_response_codes.htm

OAuth2.0

10

Obtaining End-User Authorization

The authorization end points are the URL's which makes an authentication request on the

authorization server, in which the resource owner logs in and permits to access the data

to the client application. For instance, address of JSP page, PHP page, etc.

The authorization end user can be described as shown in the following diagram.

The authorization endpoint can be defined in three ways:

 Authorization Endpoint

 Redirect Endpoint

 Token Endpoint

Authorization Endpoint

 Authorization endpoint can be used to interact with the resource owner who permits

the authorization to access the resource of the resource owner.

 First, the user accesses the resources of the resource owner by using the client

application. The client application will be provided with the client id and client

password during registering the redirect URI (Uniform Resource Identifier).

OAuth2.0

11

 Next, the user can login via client application on the authorization server. which

contains Authorization Endpoint.

 Authorization endpoint redirects the user with URI (Uniform Resource Identifier)

and authentication code to the user.

Redirect Endpoint

 The user accesses the page located at redirect URI (Uniform Resource Identifier)

in the client application.

 The client application provides client id, client password and authentication code to

the authorization server.

Token Endpoint

 At this point, the client application interchanges the client id, client password and

authorization code to obtain an access token.

 The client application sends these credentials to the user along with the token.

Once the user receives the token, it can be sent to the access resources such as

Facebook, Google, etc. to access the resources in the system, related to the logged

in users.

Authorization Response

The authorization response can be used to get the access token for accessing the owner

resources in the system using the authorization code. The access token is given by the

authorization server when it accepts the client ID, client password and authorization code

sent by the client application.

The authorization code will be issued by the authorization server, which allows accessing

the request by using the following parameters:

 Code: It is a required parameter that specifies the authorization code produced by

the authorization server. The lifetime of the authorization code is maximum 10

minutes and the authorization code cannot be used more than once. The

authorization server rejects the request and cancels all tokens that are issued

previously based on the authorization code, if the client application uses the

authorization code more than once.

 State: It is a required parameter, if the authorization code is available in the

authorization request.

The authorization server provides authorization code and grants access to the client

application by using the following format:

"application/x-www-form-urlencoded"

It is the default MIME (Multipurpose Internet Mail Extensions) type of your request, which

must be encoded in a such way that control names and values are escaped, space

characters are replaced by the '+' sign, name/value pairs are separated from each other

by '&', etc.

OAuth2.0

12

Error Response and Codes

The authorization server responds with HTTP 400 or 401 status codes. Here, two cases

take place, if an error occurs during the authorization. In the first case, the client is not

identified or recognized. In the second case, something else fails in spite of the client being

identified exactly. In such a case, an error response is sent back to the client as follows:

 error_description: It is an optional human readable error description in a

language specified by Content-Language header, which is meant for the developer

and not the end user.

 error_uri: It is an optional link to a human-readable web page along with

information about an error that can be helpful for problem solving.

 error: It is a set of predefined error codes.

Following is the description of error codes and equivalent HTTP status codes.

400 Errors

The following table shows 400 errors with description.

Sr. No. Error & Description

1
unsupported_over_http

OAuth 2.0 only supports the calls over https.

2
version_rejected

If an unsupported version of OAuth is supplied.

3
parameter_absent

If a required parameter is missing from the request.

4
parameter_rejected

When a given parameter is too long.

5
invalid_client

When an invalid client ID is given.

6
invalid_request

When an invalid request parameter is given.

7
unsupported_response_type

When a response type provided does not match that particular request.

8
unsupported_grant_type

When a grant type is provided that does not match a particular request.

9
invalid_param

When an invalid request parameter is provided.

10
unauthorized_client

When the client is not given the permission to perform some action.

OAuth2.0

13

11
access_denied

When the resource owner refuses the request for authorization.

12
server_error

This error displays an unexpected error.

401 Errors

The following table shows 401 errors with description.

Sr. No. Error & Description

1
token_expired

When the provided token expires.

2
invalid_token

When the provided token is invalid.

3
invalid_callback

When the provided URI with the request does not match the consumer key.

4
invalid_client_secret

When the provided client server is invalid.

5
invalid_grant

When the provided token has either expired or is invalid.

OAuth2.0

14

An access token is a string that identifies a user, an application, or a page. The token

includes information such as when the token will expire and which app created that token.

 First, it is necessary to acquire OAuth 2.0 client credentials from API console.

 Then, the access token is requested from the authorization server by the client.

 It gets an access token from the response and sends the token to the API that you

wish to access.

You must send the user to the authorization endpoint at the beginning. Following is an

example of a dummy request.

 https://public-

api.example.com/oauth2/authorize?client_id=your_client_id&redirect_uri=your_url

&response_type=code

Following are the parameters and their descriptions.

 client_id: It should be set to the client id of your application.

 redirect_uri: It should be set to the URL. After the request is authorized, the user

will be redirected back.

 response_type: It can either be a code or a token. The code must be used for

server side applications, whereas the token must be used for client side

applications. In server side applications, you can make sure that the secrets are

saved safely.

Following table lists the concepts of Client Credentials.

Sr.

No.
Concept & Description

1

Authorization Code

The authorization code allows accessing the authorization request and grants

access to the client application to fetch the owner resources.

2

Resource Owner Password Credentials

The resource owner password credentials include only one request and one

response, and is useful where the resource owner has a good relationship with

the client.

3

Assertion

Assertion is a package of information that makes the sharing of identity and

security information across various security domains possible.

4 Refresh Token

4. OAuth 2.0 ─ Obtaining an Access Token

https://www.tutorialspoint.com/oauth2.0/authorization_code.htm
https://www.tutorialspoint.com/oauth2.0/resource_owner_password_credentials.htm
https://www.tutorialspoint.com/oauth2.0/assertion.htm
https://www.tutorialspoint.com/oauth2.0/refresh_token.htm

OAuth2.0

15

The refresh tokens are used to acquire a new access tokens, which carries the

information necessary to get a new access token.

5
Access Token Response

Access token is a type of token that is assigned by the authorization server.

6

Access Token Error Response and Codes

If the token access request, which is issued by the authorization server is invalid

or unauthorized, then the authorization server returns an error response.

Authorization Code

The authorization code will be issued by the authorization server which allows accessing

the authorization request and grants access to the client application to fetch the owner

resources.

 The resource owner can be redirected to the client application with the

authorization code by directing the owner to the authorization server using the

client application.

 The important role of the authorization code is to authenticate the client and access

the token directly without passing it to the owner's user agent.

The following diagram shows the process of authorization code.

https://www.tutorialspoint.com/oauth2.0/access_token_response.htm
https://www.tutorialspoint.com/oauth2.0/access_token_error_response_codes.htm

OAuth2.0

16

Step 1: First, the user accesses the resources of the resource owner by using the client

application.

Step 2: Next, the client application will be provided with the client id and client password

during registering the redirect URI (Uniform Resource Identifier).

Step 3: Then, the user logs in via the client application on the authorization server such

as Google, Facebook, Twitter, etc.

Step 4: The authenticating server redirects the user to a redirect Uniform Resource

Identifier (URI) using the authorization code which the owner of the client application

registers the redirect URI.

Step 5: After registration, the user accesses the redirect URI from the client application.

Step 6: The client application will be provided with the authentication code, client id and

client password, and sends them to the authorization server.

Step 7: The client ID and client password is unique to the client application on the

authorization server. The authorization server sends an access token to the client

application.

Step 8: The user will be allowed to login to the application.

Step 9: The user logs in and accesses the client application using these credentials via

the authorization server.

Step 10: It then sends an access token to the resource server.

Step 11: Resource server is the server hosting resources such as Facebook, Google,

Twitter, etc. which verifies the access token.

Step 12: Next, the client application accesses the resources stored on the resource server.

The resource server returns the resources to the client application.

Step 13: Next, the client application provides the resources to the user.

Resource Owner Password Credentials

The resource owner password credentials include only one request and one response. This

grant type is useful where the resource owner has a good relationship with the client,

when there are no authorization grant types available.

The resource owner password credentials can be used to grant authorization to access the

token. This type of grant type removes the storing of resource owner credentials for future

use by exchanging credentials with the access token or the refreshing token.

The resource owner password credentials grant request contains the following parameters:

 grant_type: It is a required parameter used to set the password.

 username: It is a required parameter that specifies the resource owner username.

 password: It is a required parameter that specifies the resource owner password.

 scope: It is an optional parameter that specifies the scope of the request and

authorization.

OAuth2.0

17

The resource owner password credentials grant response contains the following JSON

structure.

{

 "access_token" : ". . .",

 "token_type" : ". . .",

 "expires_in" : ". . . ",

 "refresh_token" : ". . .",

}

 access_token: It is a required parameter in which the authorization server

accesses the token.

 token_type: It is a required parameter which is assigned by the authorization

server and specifies the type of token.

 expires_in: It is a recommended parameter that specifies the duration of access

token expiry.

 refresh_token: It provides a refresh token if the access token expires, to get the

new access token using the authorization grant.

Assertion

Assertion is a package of information that makes sharing of identity and security

information easier across various security domains.

It holds the data about the subject, circumstances under which assertion is considered

valid, such as where and when it can be used.

Entity that creates or protects the assertion is called as the Issuer.

Entity that consumes the assertion depending on its information is called as the Relying

Party.

Assertions are of two general types. They are:

 Bearer Assertions: Any entity can use assertion to obtain access to the associated

resources, wherein an entity can be in-charge of bearer assertion.

 Holder-of-key Assertions: In this case, the entity must demonstrate the

possession of additional cryptographic material, if it wants to access associated

resources.

OAuth2.0

18

The following figure depicts the third party created assertion.

Step 1: This is the first case where the client first requests assertion from third party

entity, which is usually known as the "token service" or "security token service". Token

service is capable of issuing, renewing, validating, and transforming security tokens to the

client.

Step 2: The token service fulfils the client's request by granting assertion.

Step 3: A trust relationship exists between the token service and the relying party. The

client then issues assertion to the relying party.

Step 4: The relying party validates assertion and notifies the client about the status.

OAuth2.0

19

The following figure depicts the self-issued assertion.

Step 1: This is the second case in which the client itself creates assertion locally. It doesn't

have to request for assertion from the third party entity.

Step 2: The client then issues the created assertion to the relying party.

Step 3: The relying party validates assertion and notifies the client about the status.

Using Assertions as Authorization Grants

Using the following HTTP request parameters, the client includes the assertion and related

information when using the assertions as authorization grants.

 grant_type: The format of the assertion that is defined by the authorization

server.

 assertion: A particular serialization of the assertion defined by the profile

documents.

 scope: The authorization of the token is previously granted through some out-of-

band mechanism while exchanging the assertions for access tokens. In that case,

the scope that is requested must be equal to or less than the original scope granted

to the authorized accessor.

Refresh Token

Refresh tokens are the credentials that can be used to acquire new access tokens.

 The lifetime of a refresh token is much longer compared to the lifetime of an access

token.

 Refresh tokens can also expire but are quiet long-lived.

 When current access tokens expire or become invalid, the authorization server
provides refresh tokens to the client to obtain new access token.

OAuth2.0

20

The following figure illustrates the process of refreshing an expired Access Token.

Step 1: First, the client authenticates with the authorization server by giving the

authorization grant.

Step 2: Next, the authorization server authenticates the client, validates the authorization

grant and issues the access token and refresh token to the client, if valid.

Step 3: Then, the client requests the resource server for protected resource by giving the

access token.

Step 4: The resource server validates the access token and provides the protected

resource.

Step 5: The client makes the protected resource request to the resource server by

granting the access token, where the resource server validates it and serves the request,

if valid. This step keeps on repeating until the access token expires.

Step 6: If the access token expires, the client authenticates with the authorization server

and requests for new access token by providing refresh token. If the access token is

invalid, the resource server sends back the invalid token error response to the client.

Step 7: The client authenticates with the authorization server by granting the refresh

token.

Step 8: The authorization server then validates the refresh token by authenticating the

client and issues a new access token, if it is valid.

OAuth2.0

21

Access Token Response

Access token is a type of token that is assigned by the authorization server. The

authorization server issues the access token if the access token request is valid and

authorized. If the token access request is invalid or unauthorized, then the authorization

server returns an error response.

The access token is given by the authorization server when it accepts the client ID, client

password and authorization code sent by the client application. Once the user receives the

token, it can be sent to the access resources such as Facebook, Google, etc. to access the

resources in the system, related to the logged in users.

The access token response contains the following JSON structure.

{

 "access_token" : ". . .",

 "token_type" : ". . .",

 "expires_in" : ". . . ",

 "refresh_token" : ". . .",

}

 access_token: It is a required parameter in which the authorization server

accesses the token.

 token_type: It is a required parameter which is assigned by the authorization

server and specifies the type of token.

 expires_in: It is a recommended parameter that specifies the duration of access

token expiry.

 refresh_token: It provides a refresh token, if the access token expires, to get the

new access token using the authorization grant.

Access Token Error Response and Codes

Access token is a type of token that is assigned by the authorization server. The

authorization server issues the access token, if the access token request is valid and

authorized. If the token access request is invalid or unauthorized, then the authorization

server returns an error response.

For information on access token response, click this link

Access Token Response

Access token is a type of token that is assigned by the authorization server. The

authorization server issues the access token, if the access token request is valid and

authorized. If the token access request is invalid or unauthorized, then the authorization

server returns an error response.

https://www.tutorialspoint.com/oauth2.0/access_token_response.htm

OAuth2.0

22

The access token is given by the authorization server when it accepts the client ID, client

password and authorization code sent by the client application. Once the user receives the

token, it can be sent to the access resources such as Facebook, Google, etc. to access the

resources in the system, related to the logged in users.

The access token response contains the following JSON structure.

{

 "access_token" : ". . .",

 "token_type" : ". . .",

 "expires_in" : ". . . ",

 "refresh_token" : ". . .",

}

 access_token: It is a required parameter in which the authorization server

accesses the token.

 token_type: It is a required parameter which is assigned by the authorization

server and specifies the type of token.

 expires_in: It is a recommended parameter that specifies the duration of access

token expiry.

 refresh_token: It provides a refresh token if the access token expires, to get the

new access token using the authorization grant.

Error Response

The application can handle error response by sending them to redirect_uri.

For instance:

GET

http://www.site.com/?error=access_denied&error_description=the+user+canceled+au

thentication

The above URI contains the following parameters:

 error: It specifies the error code if there is an invalid request, invalid client, invalid

grant, or unauthorized client.

 error_description: It defines the detail description of the error.

OAuth2.0

23

Following are the various error codes, which can occur when there are errors at the

authorization endpoint.

Sr.

No.
Error & Description

Error

Code

1

invalid_request

This error occurs when there is a missing parameter that includes

multiple credentials, unsupported parameter value.

400

2

unauthorized_client

The unauthorized client is not allowed to access the authorization

grant type.

401

3

access_denied

It specifies the user will have no access permission to files or

subfolders.

401

4

unsupported_response_type

It specifies the response type is not supported by the authorization

server.

415

5

server_error

This error code is mainly used when 500 internal server cannot be

returned to the client by using HTTP redirect.

500

6

temporarily_unavailable

It specifies that the server is unable to handle the request during

overloading of server or during server maintenance.

503

OAuth2.0

24

The client provides an access token to the resource server to access protected resources.

The resource server must validate and verify that the access token is valid and has not

expired.

There are two standard ways of sending credentials:

 Bearer Token: The access token can only be placed in POST request body or GET

URL parameter as a fallback option in the authorization HTTP header.

They are included in the authorization header as follows:

 Authorization: Bearer [token-value]

For example:

 GET/resource/1 HTTP /1.1

 Host: example.com

 Authorization: Bearer abc...

 MAC: A cryptographic Message Authentication Code (MAC) is computed using

the elements of the request and is sent to the authorization header. Upon receiving

the request, the MAC is then compared and computed by the resource owner.

The following table shows the concepts of accessing protected resource.

Sr.

No.
Concept & Description

1

Authenticated Requests

It is used to get the authorization code token for accessing the owner resources

in the system.

2

WWW-Authenticate Response Header Field

The resource server includes the "WWW-Authenticate" response header field, if

the protected resource request contains an invalid access token.

5. OAuth 2.0 ─ Accessing a Protected Resource

https://www.tutorialspoint.com/oauth2.0/authenticated_requests.htm
https://www.tutorialspoint.com/oauth2.0/www_authenticate_response_header_field.htm

OAuth2.0

25

Authenticated Requests

The authenticated request can be used to get the authorization code token for accessing

the owner resources in the system. The request made to the authorization endpoint results

in the user authentication and provides clear credentials when sending a request to the

authorization endpoint.

The authenticated request contains the following parameters:

 response_type: It is a required parameter used to set the value as 'code' which

is used for requesting the authorization code. If there is no 'response_ type'

parameter in the authorization request, then the authorization server returns an

error response. The authorization request may fail due to invalid or mismatch

redirect URI or an invalid client identifier.

 client_id: It is a required parameter that identifies the client, which is assigned by

the authorization server. This is unique to the authorization server. The

authorization server may take any type of credentials by gathering its security

requirements. The client application should not use more than one authentication

method in each request.

 redirect_uri: It is an optional parameter, which includes redirection URI with the

authorization request. When the authorization request includes the redirection URI,

it matches the value of the registered redirection URIs.

 scope: It is an optional parameter that specifies the scope of the request. The

authorization grant can be used as client credentials, when the authorization scope

is restricted to control the protected resources of the client. The scope parameter

should not include the resource owner information because they may communicate

with the insecure channel or can be stored insecurely.

 state: It is an optional parameter. The state value can be used when redirecting

the user agent back to the client by using the authorization server. If the

authorization request includes state value, then it returns the exact value from the

client.

WWW-Authenticate Response Header Field

The resource server must include the HTTP "WWW-Authenticate" response header

field, if the protected resource request contains an access token that is invalid or if the

access token is malformed.

"WWW-Authenticate" header field uses the following format:

 challenge = "OAuth" RWS token-challenge

 token-challenge = realm

 [CS error]

 [CS error-uri]

 [CS scope]

 [CS 1#auth –param]

OAuth2.0

26

 error = "error" "=" <"> token <">

 error-desc = "error_description" "=" quoted-string

 error-uri = "error_uri" = <"> URI-Reference <">

 scope = quoted-value / <"> quoted-value *(1*SP quoted-value)
<">

 quoted-value = 1* quoted-char

where,

 realm: It is an attribute which specifies the scope of protection and is displayed to

the users so that they know which username and password to use. This attribute

must appear only once.

 error: It is an attribute used to provide a client the specific reason why the access

request was declined.

 error_description: It is an attribute that provides a human-readable text that can

be used to help in understanding the error that occurred.

 error_uri: It is an attribute that provides a URI to identify a human-readable web

page along with the information about the error that has occurred.

 scope: It is an attribute which specifies the required scope of the access token in

order to access the requested resource.

OAuth2.0

27

There are two ways in which the access token types can be defined:

 By registering in the access token type's registry.

 By using a unique absolute URI (Uniform Resource Identifier) as its name.

Defining New Endpoint Parameters

Parameter names must obey the param-name ABNF (Augmented Backus-Naur Form is a

metalanguage based on Backus-Naur Form consisting of its own syntax and derivation

rules) and the syntax of parameter values must be well-defined.

 param-name = 1* name-char

 name-char = "-" / "." / "_" / DIGIT / ALPHA

Defining New Authorization Grant Types

New authorization grant types can be assigned a distinct absolute URI for use, with the

help of "grant_type" parameter. The extension grant type must be registered in the OAuth

parameters registry, if it requires additional token endpoint parameters.

Defining New Authorization Endpoint Response Types

 response-type = response-name *(SP response-name)

 response-name = 1* response-char

 response-char = "_" / DIGIT / ALPHA

The response type is compared as space-delimited list of values, if it has one or more

space characters where the order of the values does not matter and only one order of

value can be registered.

Defining Additional Error Codes

The extension error codes must be registered, if the extensions they use are either a

registered access token, or a registered endpoint parameter. The error code must obey

the error ABNF (Augmented Backus-Naur Form) and when possible it should be prefixed

by a name identifying it.

 error = 1 * error_char

 error-char = %x20-21 / %x23-5B / 5D-7E

6. OAuth 2.0 ─ Extensibility

OAuth2.0

28

IANA stands for Internet Assigned Numbers Authority which provides the information

about the registration values related to the Remote Authentication Dial In User Service

(RADIUS).

IANA includes the following considerations:

OAuth Access Token Types Registry

OAuth access tokens are registered by experts with required specification. If they are

satisfied with the registration, only then they will publish the specification. The registration

request will be sent to the @ietf.org for reviewing with the subject ("Request for access

token type: example"). Experts will either reject or accept the request within 14 days of

the request.

Registration Template

The registration template contains the following specifications:

 Type Name: It is the name of the request.

 Token Endpoint Response Parameters: The additional access token response

parameter will be registered separately in OAuth parameters registry.

 HTTP Authentication Scheme: The HTTP authentication scheme can be used to

authenticate the resources by using the access token.

 Change Controller: Give the state name as "IETF" for standard track RFCs, and

for others use the name of the responsible party.

 Specification Document: The specification document contains the parameter

that can be used to retrieve a copy of the document.

OAuth Parameters Registry

OAuth parameters registry contains registration of authorization endpoint request or

response, token endpoint request or response by the experts with the required

specification. The registration request will be sent to the experts and if they are satisfied

with registration, then they will publish the specification.

7. OAuth 2.0 ─ IANA Considerations

OAuth2.0

29

Registration Template

The registration template contains specifications such as Type Name, Change

Controller and Specification Document as defined in the above OAuth Access Token Types

Registry section, except the following specification:

Parameter Usage Location: It specifies the location of the parameter such as

authorization request or response, token request or response.

Initial Registry Contents

The following table shows OAuth parameters registry containing the initial contents:

Sr.

No.
Parameter Name & Usage Location

Change

Controller

Specification

Document

1
client_id

authorization request, token request
IETF RFC 6749

2
client_secret

token request
IETF RFC 6749

3
response_type

authorization_request
IETF RFC 6749

4
redirect_uri

authorization request, authorization
IETF RFC 6749

5

scope

authorization request or response, token

request or response

IETF RFC 6749

6
state

authorization request or response
IETF RFC 6749

7
code

token request, authorization response
IETF RFC 6749

8
error_description

authorization response, token response
IETF RFC 6749

9
error_uri

authorization response, token response
IETF RFC 6749

10
grant_type

token request
IETF RFC 6749

11
access_token

authorization response, token response
IETF RFC 6749

https://tools.ietf.org/html/draft-ietf-oauth-v2-25#section-11
https://tools.ietf.org/html/draft-ietf-oauth-v2-25#section-11
https://tools.ietf.org/html/draft-ietf-oauth-v2-25#section-11
https://tools.ietf.org/html/draft-ietf-oauth-v2-25#section-11
https://tools.ietf.org/html/draft-ietf-oauth-v2-25#section-11
https://tools.ietf.org/html/draft-ietf-oauth-v2-25#section-11
https://tools.ietf.org/html/draft-ietf-oauth-v2-25#section-11
https://tools.ietf.org/html/draft-ietf-oauth-v2-25#section-11
https://tools.ietf.org/html/draft-ietf-oauth-v2-25#section-11
https://tools.ietf.org/html/draft-ietf-oauth-v2-25#section-11
https://tools.ietf.org/html/draft-ietf-oauth-v2-25#section-11

OAuth2.0

30

12
token_type

authorization response, token response
IETF RFC 6749

13
expires_in

authorization response, token response
IETF RFC 6749

14
username

token request
IETF RFC 6749

15
Password

token request
IETF RFC 6749

16
refresh_token

token request, token response
IETF RFC 6749

OAuth Authorization Endpoint Response Type Registry

This can be used to define OAuth Authorization Endpoint Response Type Registry. The

response types are registered by experts with the required specification and if they are

satisfied with the registration, only then they will publish the specification. The registration

request will be sent to the @ietf.org for reviewing. The experts will either reject or accept

the request within 14 days of the request.

Registration Template

The registration template contains specifications such as Type Name, Change

Controller and Specification Document as defined in the above OAuth Access Token Types

Registry section.

Initial Registry Contents

The following table shows the authorization endpoint response type registry containing the

initial contents.

Sr. No. Parameter Name Change Controller Specification Document

1 code IETF RFC 6749

2 token IETF RFC 6749

https://tools.ietf.org/html/draft-ietf-oauth-v2-25#section-11
https://tools.ietf.org/html/draft-ietf-oauth-v2-25#section-11
https://tools.ietf.org/html/draft-ietf-oauth-v2-25#section-11
https://tools.ietf.org/html/draft-ietf-oauth-v2-25#section-11
https://tools.ietf.org/html/draft-ietf-oauth-v2-25#section-11
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749

OAuth2.0

31

OAuth Extensions Error Registry

This can be used to define OAuth Extensions Error Registry. The error codes along with

protocol extensions such as grant types, token types, etc. are registered by experts with

the required specification. If they are satisfied with the registration, then they will publish

the specification. The registration request will be sent to the @ietf.org for reviewing with

subject ("Request for error code: example"). Experts will either reject or accept the

request within 14 days of the request.

Registration Template

The registration template contains specifications such as Change

Controller and Specification Document as defined in the above OAuth Access Token Types

Registry section, except the following specifications:

 Error Name: It is the name of the request.

 Error Usage Location: It specifies the location of the error such as authorization

code grant error response, implicit grant response or token error response, etc.

which specifies where the error can be used.

 Related Protocol Extension: You can use protocol extensions such as extension

grant type, access token type, extension parameter, etc.

