
i

Protractor

ii

About the Tutorial

Protractor is a familiar open source end-to-end testing framework for Angular and

AngularJS applications. It was built by a team in Google on the top of WebDriver. We can

see it as a replacement for the existing AngularJS E2E testing framework called “Angular

Scenario Runner”.

Audience

This tutorial will be useful for graduates, post graduates, and research students who either

have an interest in this subject or have this subject as a part of their curriculum.

The tutorial suits the learning needs of both the beginners and experts in this subject.

Prerequisites

The reader must have basic knowledge about JavaScript and AngularJS. He/she should

also be aware about basic terminologies used in testing.

Else, we would suggest that the reader picks a tutorial on these concepts first before

starting the journey with Protractor.

Copyright & Disclaimer

@Copyright 2019 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

Protractor

Table of Contents

About the Tutorial ... ii

Audience.. ii

Prerequisites .. ii

Copyright & Disclaimer .. ii

Table of Contents...

1. PROTRACTOR – INTRODUCTION ... 1

What is Protractor? ... 1

Origin ... 2

Why Protractor? .. 2

Working of Protractor .. 3

Advantages .. 4

Limitations ... 4

2. PROTRACTOR – CONCEPTS OF JAVASCRIPT TESTING .. 5

JavaScript Testing and Automation .. 5

Concepts of Automated Testing ... 5

Types of Testing for JavaScript ... 5

Testing Tools & Frameworks .. 6

Karma .. 6

Jasmine .. 7

Mocha ... 8

QUnit ... 8

Selenium .. 9

3. PROTRACTOR – GETTING STARTED .. 10

Prerequisites .. 10

Installing Protractor ... 11

Protractor

i

Installing WebDriver for Chrome ... 11

Confirming Installation & Configuration .. 11

Issues in installation & configuration ... 12

4. PROTRACTOR – PROTRACTOR AND SELENIUM SERVER .. 13

Protractor with Selenium ... 13

Selenium WebDriver Processes.. 14

Setting up Selenium Server .. 15

Installing and starting Selenium server manually ... 16

Starting Selenium server from a Test Script ... 16

Working with Remote Selenium Server ... 16

Directly connecting to Browser Driver without using Selenium Server .. 17

Setting up the Browser .. 17

Which Framework? .. 20

5. PROTRACTOR – WRITING THE FIRST TEST .. 23

Files required by Protractor ... 23

Code Explanation ... 24

Configuration File .. 24

Code Explanation ... 25

Source File Declaration Parameter ... 26

Executing the code... 26

Report Generation ... 27

6. PROTRACTOR – CORE APIS ... 30

Importance of Protractor APIs ... 30

Various Protractor APIs.. 30

Browser API ... 31

7. PROTRACTOR – CORE APIS (CONTD…) .. 35

Protractor

ii

Elements API.. 35

Chaining functions of ElementArrayFinder and their descriptions .. 35

Chaining functions of ElementFinder and their descriptions... 42

Locators(by) API ... 46

8. PROTRACTOR – OBJECTS .. 51

What are Page Objects? ... 51

Challenges with automated UI testing ... 51

Ways to Handle Challenges .. 52

Using Page Objects to Organize Tests .. 53

9. PROTRACTOR – DEBUGGING .. 55

Introduction ... 55

Types of Failure ... 55

Why debugging is important in Protractor? ... 56

Pausing and Debugging the Test .. 56

10. PROTRACTOR – STYLE GUIDE FOR PROTRACTOR .. 60

Introduction ... 60

Generic Rules ... 60

Project Structure .. 61

Locator Strategies .. 62

Page Objects .. 64

Protractor

1

This chapter gives you an introduction to Protractor, where you will learn about the origin

of this testing framework and why you have to choose this, working and limitations of this

tool.

What is Protractor?

Protractor is an open source end-to-end testing framework for Angular and AngularJS

applications. It was built by Google on the top of WebDriver. It also serves as a

replacement for the existing AngularJS E2E testing framework called “Angular Scenario

Runner”.

It also works as a solution integrator that combines powerful technologies such as NodeJS,

Selenium, Jasmine, WebDriver, Cucumber, Mocha etc. Along with testing of AngularJS

application, it also writes automated regression tests for normal web applications. It allows

us to test our application just like a real user because it runs the test using an actual

browser.

The following diagram will give a brief overview of Protractor:

1. Protractor – Introduction

Node JS Jasmine

WebDriver JS

Protractor

Selenium

Browser

Angular App

Protractor

2

Observe that in the above diagram, we have:

 Protractor: As discussed earlier, it is a wrapper over WebDriver JS especially

designed for angular apps.

 Jasmine: It is basically a behavior-driven development framework for testing the

JavaScript code. We can write the tests easily with Jasmine.

 WebDriver JS: It is a Node JS bindings implementation for selenium

2.0/WebDriver.

 Selenium: It simply automates the browser.

Origin

As said earlier, Protractor is a replacement for the existing AngularJS E2E testing

framework called “Angular Scenario Runner”. Basically, the origin of Protractor starts with

the end of Scenario Runner. A question that arises here is why do we need to build

Protractor? To understand this, we first need to check about its predecessor - Scenario

Runner.

Protractor’s Inception

Julie Ralph, the prime contributor to the development of Protractor, had the following

experience with Angular Scenario Runner on other project within Google. This further

became the motivation to build Protractor, specially to fill the gaps:

“We tried using Scenario Runner and we found that it really just couldn’t do the things

that we needed to test. We needed to test things like logging in. Your login page is not an

Angular page, and the Scenario Runner couldn’t deal with that. And it couldn’t deal with

things like popups and multiple windows, navigating the browser history, stuff like that.”

The biggest advantage to the Protractor was the maturity of Selenium project and it wraps

up its methods so that it can be easily used for Angular projects. The design of Protractor

is built in such a way that it tests all layers such that web UI, backend services, persistence

layer and so on of an application.

Why Protractor?

As we know that almost all the applications are using JavaScript for development. The task

of testers becomes difficult when JavaScript increases in size and becomes complex for

applications due to the increasing number of the applications itself. Most of the times it

becomes very difficult to capture the web elements in AngularJS applications, uses

extended HTML syntax to express web application components, by using JUnit or Selenium

WebDriver.

The question here is that why Selenium Web Driver is not able to find AngularJS web

elements? The reason is because AngularJS applications are having some extended HTML

attributes like ng-repeater, ng-controller and ng-model etc. which are not included in

Selenium locators.

Here, the importance of Protractor comes into existence because Protractor on the top of

Selenium can handle and control those extended HTML elements in AngularJS web

applications. That is why we can say that most of the frameworks focus on conducting unit

Protractor

3

tests for AngularJS applications, Protractor used to do testing of the actual functionality of

an application.

Working of Protractor

Protractor, the testing framework, works in conjunction with Selenium to provide an

automated test infrastructure for simulating a user’s interaction with an AngularJS

application that is running in browser or mobile device.

The working of Protractor can be understood with the help of following steps:

Step1: In the first step, we need to write the tests. It can be done with the help of Jasmine

or Mocha or Cucumber.

Step2: Now, we need to run the test which can be done with the help of Protractor. It is

also called test runner.

Step3: In this step, Selenium server will help to manage the browsers.

Step4: At last, the browser APIs are invoked with the help of Selenium WebDriver.

Test Scripts(Conf.js +

Spec.js)

Test Runner

Protract

or

Managing Browsers

Seleniu

m

Server

Browsers

 Chrome, IE,

Mozilla,

Opera Safari

Protractor

4

Advantages

This open source end-to-end testing framework offers the following advantages:

 An open source tool, Protractor is very easy to install and setup.

 Works well with Jasmine framework to create the test.

 Supports test driven development (TDD).

 Contains automatic waits which means we do not need to explicitly add waits and

sleeps to our test.

 Offers all the advantages of Selenium WebDriver.

 Supports parallel testing through multiple browsers.

 Provides the benefit of auto-synchronization.

 Has excellent testing speed.

Limitations

This open source end-to-end testing framework possesses the following limitations:

 Does not uncover any verticals in browser automation because it is a wrapper for

WebDriver JS.

 Knowledge of JavaScript is essential for the user, because it is available only for

JavaScript.

 Only provides front-end testing because it is a UI driven testing tool.

Protractor

5

Since the knowledge of JavaScript is essential for working with Protractor, in this chapter,

let us understand the concepts of JavaScript testing in detail.

JavaScript Testing and Automation

JavaScript is the most popular dynamically typed and interpreted scripting language, but

the most challenging task is to test the code. It is because, unlike other compiled

languages like JAVA, and C++, there are no compilation steps in JavaScript that can help

the tester to figure out errors. Besides, browser-based testing is very time consuming;

hence there is a necessity for tools that support automated testing for JavaScript.

Concepts of Automated Testing

It is always a good practice to write the test because it makes the code better; the issue

with manual testing is that it is a bit time consuming and error prone. The process of

manual testing is quite boring for programmer too as they need to repeat the process,

writing test specs, change the code and refresh the browser several times. Besides,

manual testing also slows down the development process.

Due to the above reasons, it is always useful to have some tools that can automate these

tests and help programmers to get rid of these repetitive and boring steps. What should a

developer do to make the testing process automated?

Basically, a developer can implement the tool set in the CLI (Command Line Interpreter)

or in the development IDE (Integrated development environment). Then, these tests will

run continuously in a separate process even without the input from the developer.

Automated testing of JavaScript is also not new and lots of tools like Karma, Protractor,

CasperJS etc. have been developed.

Types of Testing for JavaScript

There can be different tests for different purposes. For example, some tests are written to

check the behavior of functions in a program, while some other are written to test the flow

of a module or feature. Thus, we have the following two types of testing:

Unit Testing

The testing is done on the smallest testable part of the program called unit. The unit is

basically tested in isolation without any kind of dependency of that unit on the other parts.

In case of JavaScript, the individual method or function having a specific behavior can be

a unit of code and these units of code must be tested in an isolated way.

One of the advantages of unit testing is that the testing of units can be done in any order

because the units are independent of each other. Another advantage of unit testing which

really counts is that it can run the test at any time as follows:

2. Protractor – Concepts of JavaScript Testing

Protractor

6

 From the very beginning of the development process.

 After completing the development of any module/feature.

 After modifying any module/feature.

 After adding any new feature in the existing application.

For automated unit testing of JavaScript applications, we can choose from many testing

tools and frameworks such as Mocha, Jasmine and QUnit.

End-to-End Testing

It may be defined as the testing methodology used to test whether the flow of the

application from start to finish (from one end to another end) is working fine as per design.

End-to-end testing is also called function/flow testing. Unlike unit testing, end-to-end

testing tests how individual components work together as an application. This is the main

difference between unit testing and end-to-end testing.

For example, suppose if we have a registration module where the user needs to provide

some valid information to complete the registration then the E2E testing for that particular

module will follow following steps to complete the testing:

 First, it will load/compile the form or module.

 Now, it will get the DOM (Document object model) of the form’s elements.

 Next, trigger the click event of the submit button for checking if it is working or

not.

 Now, for validation purpose collect the value from the input fields.

 Next, the input fields should be validated.

 For testing purpose, call a fake API to store the data.

Every step gives its own results which will be compared with the expected result set.

Now, the question that arises is, while this kind of E2E or functional testing can be

performed manually also, why we need automation for this? The main reason is that

automation will make this test process easy. Some of the available tools that can be easily

integrate with any application, for this purpose are Selenium, PhantomJS and Protractor.

Testing Tools & Frameworks

We have various testing tools and frameworks for Angular testing. The following are some

of the well-known tools and frameworks:

Karma

Karma, created by Vojta Jina, is a test runner. Originally this project was called Testacular.

It is not a test framework, which means that it gives us the ability to easily and

automatically run JavaScript unit tests on real browsers. Karma was built for AngularJS

because before Karma there was no automated testing tool for web-based JavaScript

developers. On the other hand, with the automation provided by Karma, developers can

Protractor

7

run a simple single command and determine whether an entire test suite has passed or

failed.

Pros of using Karma

The following are some pros of using Karma in comparison to the manual process:

 Automates tests in multiple browsers as well as devices.

 Monitors files for errors and fixes them.

 Provides online support and documentation.

 Eases the integration with a continuous integration server.

Cons of Using Karma

The followings are some cons of using Karma:

The main disadvantage of using Karma is that it requires an additional tool to configure

and maintain.

If you are using Karma test runner with Jasmine, then less documentation is available for

finding information about setting up your CSS in the case of having multiple ids for one

element.

Jasmine

Jasmine, a behavior-driven development framework for testing JavaScript code, is

developed at Pivotal Labs. Before the active development of Jasmine framework, a similar

unit testing framework named JsUnit was also developed by Pivotal Labs, which has an

inbuilt test runner. The browsers tests can be run through Jasmine tests by including

SpecRunner.html file or by using it as a command line test runner also. It can be used

with or without Karma also.

Pros of Using Jasmine

The followings are some pros of using Jasmine:

 A framework independent of browser, platform and language.

 Supports test driven development (TDD) along with behavioral driven

development.

 Has default integration with Karma.

 Easy to understand syntax.

 Provides test spies, fakes and pass-through functionalities which assist with testing

as additional functions.

Protractor

8

Cons of Using Jasmine

The following is a con of using Jasmine:

 The tests must be return by the user as they change because there is no file-

watching feature available in Jasmine while running test.

Mocha

Mocha, written for Node.js applications, is a testing framework but it also supports browser

testing. It is quite like Jasmine but the major difference between them is that Mocha needs

some plugin and library because it cannot run standalone as a test framework. On the

other hand, Jasmine is standalone. However, Mocha is more flexible to use than Jasmine.

Pros of using Mocha

The following are some pros of using Mocha:

 Mocha is very easy to install and configure.

 User-friendly and simple documentation.

 Contains plugins with several node projects.

Cons of using Mocha

The following are some cons of using Mocha:

 It needs separate modules for assertions, spies etc.

 It also requires additional configuration for using with Karma.

QUnit

QUint, originally developed by John Resig in 2008 as part of jQuery, is a powerful yet easy-

to-use JavaScript unit test suite. It can be used to test any generic JavaScript code.

Although it focuses on testing JavaScript in the browser, yet it is very convenient to use

by the developer.

Pros of using QUnit

The following are some pros of using QUnit:

Easy to install and configure.

User-friendly and simple documentation.

Cons of using QUnit

The following is a con of using QUnit:

It was mainly developed for jQuery and hence not so good for use with other frameworks.

Protractor

9

Selenium

Selenium, originally developed by Jason Huggins in 2004 as an internal tool at

ThoughtWorks, is an open source testing automation tool. Selenium defines itself as

“Selenium automates browsers. That’s it!”. Automation of browsers means that the

developers can interact with the browsers very easily.

Pros of using Selenium

The following are some pros of using Selenium:

 Contains large feature set.

 Supports distributed testing.

 Has SaaS support through services such as Sauce Labs.

 Easy to use with simple documentations and rich resources available.

Cons of using Selenium

The followings are some cons of using Selenium:

 A main disadvantage of using Selenium is that it must be run as a separate process.

 Configuration is a bit cumbersome as the developer needs to follow several steps.

Protractor

10

In the previous chapters, we have learnt the basics of Protractor. In this chapter, let us

learn how to install and configure it.

Prerequisites

We need to satisfy the following prerequisites before installing Protractor on your

computer:

Node.js

Protractor is a Node.js module, hence the very important prerequisite is that we must have

Node.js installed on our computer. We are going to install Protractor package using npm

(a JavaScript package manager), that comes with Node.js.

For installing Node.js please follow the official link: https://nodejs.org/en/download/.

After installing Node.js, you can check the version of Node.js and npm by writing the

command node --version and npm --version in the command prompt as shown below:

Chrome

Google Chrome, a web browser built by Google, will be used to run end-to-end tests in

Protractor without the need for a Selenium server. You can download chrome by clicking

on the link: https://www.google.com/chrome/.

Selenium WebDriver for Chrome

This tool is provided with the Protractor npm module and allows us to interact with web

applications.

3. Protractor – Getting Started

https://www.npmjs.com/
https://nodejs.org/en/download/
https://www.google.com/chrome/

Protractor

11

Installing Protractor

After installing Node.js on our computer, we can install Protractor with the help of following

command:

npm install -g protractor

Once protractor is successfully installed, we can check its version by writing protractor -

-version command in the command prompt as shown below:

Installing WebDriver for Chrome

After installing Protractor, we need to install Selenium WebDriver for Chrome. It can be

installed with the help of following command:

webdriver-manager update

The above command will create a Selenium directory which contains the required Chrome

driver used in the project.

Confirming Installation & Configuration

We can confirm the installation and configuration of Protractor by doing a slightly changing

the conf.js provided in the example after installing Protractor. You can find this conf.js

file in the root directory node_modules/Protractor/example.

For this, first create a new file named testingconfig.js in the same directory i.e.

node_modules/Protractor/example.

Now, in the conf.js file, under the source file declaration parameter, write

testingconfig.js.

Next, save and close all the files and open command prompt. Run the conf.js file as

shown in the screenshot given below.

Protractor

12

The configuration and installation of Protractor is successful if you got the output as shown

below:

The above output shows that there is no specification because we provided the empty file

at source file declaration parameter in conf.js file. But from the above output, we can

see that both protractor and WebDriver are running successfully.

Issues in installation & configuration

While installing and configuring Protractor and WebDriver, we might come across the

following common issues:

Selenium not installed correctly

It is the most common issue while installing WebDriver. This issue arises if you do not

update the WebDriver. Note that we must update WebDriver, otherwise we would not be

able to reference it to Protractor installation.

Not able to find tests

Another common issue is that after running Protractor, it shows that unable to find tests.

For this,we must have to ensure that the relative paths, filenames or extensions are

correct. We also need to write conf.js file very carefully because it starts with

configuration file itself.

Protractor

13

As discussed earlier, Protractor is an open source, end-to-end testing framework for

Angular and AngularJS applications. It is Node.js program. On the other hand, Selenium

is a browser automation framework that includes the Selenium Server, the WebDriver APIs

and the WebDriver browser drivers.

Protractor with Selenium

If we talk about the conjunction of Protractor and Selenium, Protractor can work with

Selenium server to provide an automated test infrastructure. The infrastructure can

simulate user’s interaction with an angular application that is running in a browser or on

mobile device. The conjunction of Protractor and Selenium can be divided into three

partitions namely test, server and Browser, as shown in the following diagram:

4. Protractor – Protractor and Selenium Server

Node.JS

Protractor

WebDriverJS
Selenium Server

WebDriver

Browser Driver

AngularJS App

Test Server Browser

Protractor

14

Selenium WebDriver Processes

As we have seen in the above diagram, a test using Selenium WebDriver involves the

following three processes:

 The test scripts

 The server

 The browser

In this section, let us discuss the communication between these three processes.

Communication between Test Scripts & Server

The communication between the first two processes - the test scripts and the server

depends upon the working of Selenium Server. In other words, we can say that the way

Selenium server is running will give the shape to the communication process between test

scripts and server.

Selenium server can run locally on our machine as standalone Selenium Server (selenium-

server-standalone.jar) or it can run remotely via a service (Sauce Labs). In case of

standalone Selenium server, there would be an http communication between Node.js

and selenium server.

Communication between the server and the browser

As we know that the server is responsible for forwarding commands to the browser after

interpreting the same from the test scripts. That is why server and the browser also require

a communication medium and here the communication is done with the help of JSON

WebDriver Wire Protocol. The browser extended with Browser Driver that is used to

interpret the commands.

Protractor

15

The above concept about Selenium WebDriver processes and their communication can be

understood with the help of following diagram:

While working with Protractor, the very first process, that is test script is run using Node.js

but before performing any action on the browser it will send an extra command to make

it sure that the application being tested is stabilized.

Setting up Selenium Server

Selenium Server acts like a proxy server in between our test script and the browser driver.

It basically forwards the command from our test script to the WebDriver and returns the

responses from the WebDriver to our test script. There are following options for setting up

the Selenium server which are included in conf.js file of test script:

Standalone Selenium Server

If we want to run the server on our local machine, we need to install standalone selenium

server. The prerequisite to install standalone selenium server is JDK (Java Development

Communication depends upon

the way Selenium server is

running. For example, if server

is running standalone then

there would be a http

connection with Node.js.

Test Scripts

Includes test processes and uses a library that

exposes WebDriver API Bindings in a language

like Java, Python, Ruby etc.

The Server

The Selenium Sever which can run either locally

or remotely via a service.

The Browser

The implementation depends upon the browser

which is further extended with Browser Driver.

For example, for Chrome it is the Chrome Driver

binary.

Communication here is done

with the help of WebDriver

Wire Protocol which is a JSON

protocol.

Protractor

16

Kit). We must have JDK installed on our local machine. We can check it by running the

following command from command line:

java -version

 Now, we have the option to install and start Selenium Server manually or from test script.

Installing and starting Selenium server manually

For installing and starting Selenium server manually, we need to use WebDriver-Manager

command line tool that comes with Protractor. The steps for installing and starting

Selenium server are as follows:

Step1: The first step is to install the Selenium server and ChromeDriver. It can be done

with the help of running following command:

webdriver-manager update

Step2: Next, we need to start the server. It can be done with the help of running following

command:

webdriver-manager start

Step3: At last we need to set seleniumAddress in config file to the address of the running

server. The default address would be http://localhost:4444/wd/hub.

Starting Selenium server from a Test Script

For starting Selenium server from a Test Script, we need to set the following options in

our config file:

 Location of jar file: We need to set the location of jar file for standalone Selenium

server in config file by setting seleniumServerJar.

 Specifying the port: We also need to specify the port to use to start the

standalone Selenium Server. It can be specified in config file by setting

seleniumPort. The default port is 4444.

 Array of command line options: We also need to set the array of command line

options to pass to the server. It can be specified in config file by setting

seleniumArgs. If you need full list of array of commands, then start the server

with the -help flag.

Working with Remote Selenium Server

Another option for running our test is to use Selenium server remotely. The prerequisite

for using server remotely is that we must have an account with a service that hosts the

server.

Protractor

17

While working with Protractor we have the built-in support for the following services

hosting the server:

TestObject

For using TestObject as the remote Selenium Server, we need to set the testobjectUser,

the user name of our TestObject account and testobjectKey, the API key of our

TestObject account.

BrowserStack

For using BrowserStack as the remote Selenium Server, we need to set the

browserstackUser, the user name of our BrowserStack account and browserstackKey,

the API key of our BrowserStack account.

Sauce Labs

For using Sauce Labs as the remote Selenium Server, we need to set the sauceUser, the

user name of our Sauce Labs account and SauceKey, the API key of our Sauce Labs

account.

Kobiton

For using Kobiton as the remote Selenium Server we need to set the kobitonUser, the

user name of our Kobiton account and kobitonKey, the API key of our Kobiton account.

Directly connecting to Browser Driver without using Selenium Server

One more option for running our test is to connect to the Browser Driver directly without

using Selenium server. Protractor can test directly, without the use of Selenium Server,

against Chrome and Firefox by setting directConnect: true in config file.

Setting up the Browser

Before configuring and setting up the browser, we need to know which browsers are

supported by Protractor. The following is the list of browsers supported by Protractor:

 ChromeDriver

 FirefoxDriver

 SafariDriver

 IEDriver

 Appium-iOS/Safari

 Appium-Android/Chrome

 Selendroid

 PhantomJS

For setting and configuring the browser, we need to move to config file of Protractor

because the browser setup is done within the capabilities object of config file.

Protractor

18

Setting up Chrome

For setting up the Chrome Browser, we need to set the capabilities object as follows:

capabilities: {

 'browserName': 'chrome'

}

We can also add Chrome-Specific options which are nested in the chromeOptions and its

full list can be seen at

https://sites.google.com/a/chromium.org/chromedriver/capabilities.

For example, if you want to add FPS-counter in the upper right, then it can be done as

follows in the config file:

capabilities: {

 'browserName': 'chrome',

 'chromeOptions': {

 'args': ['show-fps-counter=true']

 }

},

Setting up Firefox

For setting up the Firefox browser, we need to set the capabilities object as follows:

capabilities: {

 'browserName': 'firefox'

}

We can also add Firefox-Specific options which are nested in the moz:firefoxOptions

object and its full list can be seen at https://github.com/mozilla/geckodriver#firefox-

capabilities.

For example, if you want to run your test on Firefox in safe mode then it can be done as

follows in the config file:

capabilities: {

 'browserName': 'firefox',

 'moz:firefoxOptions': {

 'args': ['—safe-mode']

 }

},

https://sites.google.com/a/chromium.org/chromedriver/capabilities
https://github.com/mozilla/geckodriver#firefox-capabilities
https://github.com/mozilla/geckodriver#firefox-capabilities

Protractor

19

Setting up other browser

For setting up any other browser than Chrome or Firefox, we need to install a separate

binary from https://docs.seleniumhq.org/download/.

Setting up PhantonJS

Actually, PhantomJS is no longer supported because of its crashing issues. Instead of that

it is recommended to use headless Chrome or headless Firefox. They can be set up as

follows:

For setting up headless Chrome, we need to start Chrome with the –headless flag as

follows:

 capabilities: {

 'browserName': 'chrome',

 'chromeOptions': {

 'args': [“--headless”, “--disable-gpu”, “--window-size=800,600”]

 }

},

For setting up headless Firefox, we need to start Firefox with the –headless flag as

follows:

 capabilities: {

 'browserName': 'firefox',

 'moz:firefoxOptions': {

 'args': [“--headless”]

 }

},

Setting up multiple browsers for testing

We can also test against multiple browsers. For this we need to use multiCapabilities

configuration option as follows:

multiCapabilities: [{

 'browserName': 'chrome'

},{

 'browserName': 'firefox'

}]

https://docs.seleniumhq.org/download/

Protractor

20

Which Framework?

Two BDD (Behavior driven development) test frameworks, Jasmine and Mocha are

supported by Protractor. Both frameworks are based on JavaScript and Node.js. The

syntax, report and scaffolding, required for writing and managing the tests, are provided

by these frameworks.

Next, we see how we can install various frameworks:

Jasmine framework

It is the default test framework for Protractor. When you install Protractor, you will get

Jasmine 2.x version with it. We do not need to get it installed separately.

Mocha framework

Mocha is another JavaScript test framework basically running on Node.js. For using Mocha

as our test framework, we need to use the BDD (Behavior driven development) interface

and Chai assertions with Chai As Promised. The installation can be done with the help

of following commands:

npm install -g mocha

npm install chai

npm install chai-as-promised

As you can see, -g option is used while installing mocha, it is because we have installed

Protractor globally using the -g option. After installing it, we need to require and set up

Chai inside our test files. It can be done as follows:

var chai = require('chai');

var chaiAsPromised = require('chai-as-promised');

chai.use(chaiAsPromised);

var expect = chai.expect;

After this, we can use Chai As Promised as such:

expect(myElement.getText()).to.eventually.equal('some text');

Now, we need to set the framework property to mocha of config file by adding framework:

‘mocha’. The options like ‘reporter’ and ‘slow’ for mocha can be added in config file as

follows:

mochaOpts: {

 reporter: "spec",

 slow: 3000

}

Protractor

21

Cucumber Framework

For using Cucumber as our test framework, we need to integrate it with Protractor with

framework option custom. The installation can be done with the help of following

commands:

npm install -g cucumber

npm install --save-dev protractor-cucumber-framework

As you can see, -g option is used while installing Cucumber, it is because we have installed

Protractor globally i.e. with -g option. Next, we need to set the framework property to

custom of config file by adding framework: ‘custom’ and frameworkPath:

‘Protractor-cucumber-framework’ to the config file named cucumberConf.js.

The sample code shown below is a basic cucumberConf.js file which can be used to run

cucumber feature files with Protractor:

exports.config = {

 seleniumAddress: 'http://localhost:4444/wd/hub',

 baseUrl: 'https://angularjs.org/',

 capabilities: {

 browserName:'Firefox'

 },

 framework: 'custom',

 frameworkPath: require.resolve('protractor-cucumber-framework'),

 specs: [

 './cucumber/*.feature'

],

 // cucumber command line options

 cucumberOpts: {

 require: ['./cucumber/*.js'],

 tags: [],

 strict: true,

 format: ["pretty"],

 'dry-run': false,

Protractor

22

 compiler: []

 },

 onPrepare: function () {

 browser.manage().window().maximize();

 }

};

Protractor

23

In this chapter, let us understand how to write the first test in Protractor.

Files required by Protractor

Protractor needs the following two files to run:

Spec or test file

It is one of the important files to run Protractor. In this file, we will write our actual test

code. The test code is written by using the syntax of our testing framework.

For example, if we are using Jasmine framework, then the test code will be written by

using the syntax of Jasmine. This file will contain all the functional flows and assertions

of the test.

In simple words, we can say that this file contains the logic and locators to interact with

the application.

Example

The following is a simple script, TestSpecification.js, having the test case to navigate

to an URL and check for the page title:

//TestSpecification.js

describe('Protractor Demo', function() {

 it('to check the page title', function() {

 browser.ignoreSynchronization = true;

 browser.get('https://www.tutorialspoint.com/tutorialslibrary.htm');

 browser.driver.getTitle().then(function(pageTitle) {

 expect(pageTitle).toEqual('Free Online Tutorials and Courses');

 });

 });

});

5. Protractor – Writing the First Test

Protractor

24

Code Explanation

The code of above specification file can be explained as follows:

Browser

It is the global variable created by Protractor to handle all the browser level commands.

It is basically a wrapper around an instance of WebDriver. browser.get() is a simple

Selenium method that will tell Protractor to load a particular page.

 describe and it: Both are the syntaxes of Jasmine test framework. The ’Describe’

is used to contain the end to end flow of our test case whereas ‘it’ contains some

of the test scenarios. We can have multiple ‘it’ blocks in our test case program.

 Expect: It is an assertion where we are comparing the web page title with some

predefined data.

 ignoreSynchronization: It is a tag of browser which is used when we will try to

test non-angular websites. Protractor expects to work with angular websites only

but if we want to work with non-angular websites, then this tag must be set to

“true”.

Configuration File

As the name suggests, this file provides explanations for all the Protractor configuration

options. It basically tells Protractor the following:

 Where to find the test or specs files

 Which browser to pick

 Which testing framework to use

 Where to talk with the Selenium Server

Example

The following is the simple script, config.js, having the test

// config.js

exports.config = {

 directConnect: true,

 // Capabilities to be passed to the webdriver instance.

 capabilities: {

 'browserName': 'chrome'

 },

 // Framework to use. Jasmine is recommended.

Protractor

25

 framework: 'jasmine',

 // Spec patterns are relative to the current working directory when

 // protractor is called.

 specs: ['TestSpecification.js'],

Code Explanation

The code of above configuration file having three basic parameters, can be explained as

follows:

Capabilities Parameter

This parameter is used to specify the name of the browser. It can be seen in the following

code block of conf.js file:

exports.config = {

 directConnect: true,

 // Capabilities to be passed to the webdriver instance.

 capabilities: {

 'browserName': 'chrome'

 },

As seen above, the name of the browser given here is ‘chrome’ which is by default browser

for Protractor. We can also change the name of the browser.

Framework Parameter

This parameter is used to specify the name of the testing framework. It can be seen in the

following code block of config.js file:

exports.config = {

 directConnect: true,

 // Framework to use. Jasmine is recommended.

 framework: 'jasmine',

Here we are using ‘jasmine’ test framework.

Protractor

26

Source File Declaration Parameter

This parameter is used to specify the name of the source file declaration. It can be seen

in the following code block of conf.js file:

exports.config = {

 directConnect: true,

 // Spec patterns are relative to the current working directory when

protractor is called.

 specs: ['TsetSpecification.js'],

As seen above, the name of the source file declaration given here is

‘TestSpecification.js’. It is because, for this example we have created the specification

file with name TestSpecification.js.

Executing the code

As we have got basic understanding about the necessary files and their coding for running

Protractor, let us try to run the example. We can follow the following steps to execute this

example:

Step1: First, open command prompt.

Step2: Next, we need go to the directory where we have saved our files namely config.js

and TestSpecification.js.

Step3: Now, execute the config.js file by running the command Protrcator config.js.

The screen shot shown below will explain the above steps for executing the example:

 It is seen in the screen shot that the test has been passed.

Protractor

27

Now, suppose if we are testing non-angular websites and not putting the

ignoreSynchronization tag to true then after executing the code we will get the error”

Angular could not be found on the page”.

It can be seen in the following screen shot:

Report Generation

Till now, we have discussed about the necessary files and their coding for running test

cases. Protractor is also able to generate the report for test cases. For this purpose, it

supports Jasmine. JunitXMLReporter can be used to generate test execution reports

automatically.

But before that, we need to install Jasmine reporter with the help of following command:

npm install -g jasmine-reporters

As you can see, -g option is used while installing Jasmine Reporters, it is because we have

installed Protractor globally, with -g option.

After successfully installing jasmine-reporters, we need to add the following code into our

previously used config.js file:

onPrepare: function(){ //configure junit xml report

 var jasmineReporters = require('jasmine-reporters');

 jasmine.getEnv().addReporter(new jasmineReporters.JUnitXmlReporter({

 consolidateAll: true,

Protractor

28

 filePrefix: 'guitest-xmloutput',

 savePath: 'test/reports'

 }));

Now, our new config.js file would be as follows:

// An example configuration file.

exports.config = {

 directConnect: true,

 // Capabilities to be passed to the webdriver instance.

 capabilities: {

 'browserName': 'chrome'

 },

 // Framework to use. Jasmine is recommended.

 framework: 'jasmine',

 // Spec patterns are relative to the current working directory when

 // protractor is called.

 specs: ['TestSpecification.js'],

 //framework: "jasmine2", //must set it if you use JUnitXmlReporter

 onPrepare: function(){ //configure junit xml report

 var jasmineReporters = require('jasmine-reporters');

 jasmine.getEnv().addReporter(new jasmineReporters.JUnitXmlReporter({

 consolidateAll: true,

 filePrefix: 'guitest-xmloutput',

 savePath: 'reports'

 }));

},

};

Protractor

29

After running the above config file in the same way, we have run previously, it will generate

an XML file containing the report under the root directory in reports folder. If the test got

successful, the report will look like below:

But, if the test failed, the report will look as shown below:

Protractor

30

This chapter lets you understand various core APIs that are key to the functioning of

protractor.

Importance of Protractor APIs

Protractor provides us a wide range of APIs which are very important in order to perform

the following actions for getting the current state of the website:

 Getting the DOM elements of the web page we are going to test.

 Interacting with the DOM elements.

 Assigning actions to them.

 Sharing information to them.

To perform the above tasks, it is very important to understand Protractor APIs.

Various Protractor APIs

As we know that Protractor is a wrapper around Selenium-WebDriver which is the

WebDriver bindings for Node.js. Protractor has the following APIs:

Browser

It is a wrapper around an instance of WebDriver which is used to handle browser level

commands such as navigation, page-wide information etc. For example, the browser.get

method loads a page.

Element

It is used to search and interact with DOM element on the page we are testing. For this

purpose, it requires one parameter for locating the element.

Locators (by)

It is a collection of element locator strategies. The elements, for example, can be found

by CSS selector, by ID or by any other attribute they are bound to with ng-model.

Next, we are going to discuss in detail about these APIs and their functions.

6. Protractor – Core APIs

Protractor

31

Browser API

As discussed above, it is a wrapper around an instance of WebDriver for handling browser

level commands. It performs various functions as follows:

Functions and Their Descriptions

The functions of ProtractorBrowser API are as follows:

browser.angularAppRoot

This function of Browser API sets the CSS selector for an element on which we are going

to find Angular. Usually, this function is in ‘body’, but in case if our ng-app, it is on a sub-

section of the page; it may be a sub-element also.

browser.waitForAngularEnabled

This function of Browser API can be set to true or false. As the name suggests, if this

function is set for false then Protractor will not wait for Angular $http and $timeout tasks

to complete before interacting with the browser. We can also read the current state without

changing it by calling waitForAngularEnabled() without passing a value.

browser.getProcessedConfig

With the help of this browser APIs function we can get the processed configuration object,

including specification & capabilities, that is currently being run.

browser.forkNewDriverInstance

As the name suggests this function will fork another instance of browser to be used in

interactive tests. It can be run with control flow enabled and disabled. Example is given

below for both the cases:

Example1

Running browser.forkNewDriverInstance() with control flow enabled:

var fork = browser.forkNewDriverInstance();

fork.get(‘page1’);

Example2

Running browser.forkNewDriverInstance() with control flow disabled:

var fork = await browser.forkNewDriverInstance().ready;

await forked.get(‘page1’);

browser.restart

As the name suggests, it will restart the browser by closing browser instance and creating

new one. It can also run with control flow enabled and disabled. Example is given below

for both the cases:

Protractor

32

Example1: Running browser.restart() with control flow enabled:

browser.get(‘page1’);

browser.restart();

browser.get(‘page2’);

Example2: Running browser.forkNewDriverInstance() with control flow disabled:

await browser.get(‘page1’);

await browser.restart();

await browser.get(‘page2’);

browser.restartSync

It is similar to browser.restart() function. The only difference is that it returns the new

browser instance directly rather than returning a promise resolving to the new browser

instance. It can only run when the control flow is enabled.

Example: Running browser.restartSync() with control flow enabled:

browser.get(‘page1’);

browser.restartSync();

browser.get(‘page2’);

browser.useAllAngular2AppRoots

As the name suggests, it is compatible with Angular2 only. It will search through all the

angular apps available on the page while finding elements or waiting for stability.

browser.waitForAngular

This browser API function instructs the WebDriver to wait until Angular has finished

rendering and has no outstanding $http or $timeout calls before continuing.

browser.findElement

As the name suggests, this browser API function waits for Angular to finish rendering

before searching for element.

browser.isElementPresent

As the name suggests, this browser API function will test for the for the element to be

present on the page or not.

Protractor

33

browser.addMockModule

It will add a module to load before Angular every time Protractor.get method is called.

Example

browser.addMockModule('modName', function() {

 angular.module('modName', []).value('foo', 'bar');

});

browser.clearMockModules

unlike browser.addMockModule, it will clear the list of registered mock modules.

browser.removeMockModule

As the name suggests, it will remove a register mock modules. Example:
browser.removeMockModule(‘modName’);

browser.getRegisteredMockModules

Opposite to browser.clearMockModule, it will get the list of registered mock modules.

browser.get

We can use browser.get() to navigate the browser to a particular web address and load

the mock modules for that page before the Angular load.

Example

browser.get(url);

browser.get('http://localhost:3000'); // This will navigate to the

localhost:3000 and will load mock module if needed

browser.refresh

As the name suggests, this will reload the current page and loads mock modules before

Angular.

browser.navigate

As the name suggests, it is used to mix navigation methods back into the navigation object

so that they are invoked as before. Example: driver.navigate().refresh().

browser.setLocation

It is use to browse to another page using in-page navigation.

Example

browser.get('url/ABC');

browser.setLocation('DEF');

expect(browser.getCurrentUrl())

 .toBe('url/DEF');

Protractor

34

It will navigate from ABC to DEF page.

browser.debugger

As the name suggests, this must be used with protractor debug. This function basically

adds a task to the control flow to pause the test and inject helper functions into the browser

so that debugging can be done in browser console.

browser.pause

It is used for debugging WebDriver tests. We can use browser.pause() in our test to

enter the protractor debugger from that point in the control flow.

Example

element(by.id('foo')).click();

browser.pause();

// Execution will stop before the next click action.

element(by.id('bar')).click();

browser.controlFlowEnabled

It is used to determine whether the control flow is enabled or not.

Protractor

35

In this chapter, let us learn some more core APIs of Protractor.

Elements API

Element is one of the global functions exposed by protractor. This function takes a locator

and returns the following:

 ElementFinder, that finds a single element based on the locator.

 ElementArrayFinder, that finds an array of elements based on the locator.

Both the above support chaining methods as discussed below.

Chaining functions of ElementArrayFinder and their descriptions

The Followings are the functions of ElementArrayFinder:

element.all(locator).clone

As the name suggests, this function will create a shallow copy of the array of the elements

i.e. ElementArrayFinder.

element.all(locator).all(locator)

This function basically returns a new ElementArrayFinder which could be empty or

contain the children elements. It can be used for selecting multiple elements as an array

as follows:

Example

element.all(locator).all(locator)

elementArr.all(by.css(‘.childselector’));// it will return another

ElementFindArray as child element based on child locator.

element.all(locator).filter(filterFn)

As the name suggests, after applying filter function to each element within

ElementArrayFinder, it returns a new ElementArrayFinder with all elements that pass the

filter function. It is basically having two arguments, first is ElementFinder and second is

index. It can also be used in page objects.

7. Protractor – Core APIs (Contd…)

Protractor

36

Example

View

<ul class="items">

 <li class="one">First

 <li class="two">Second

 <li class="three">Third

Code

element.all(by.css('.items li')).filter(function(elem, index) {

 return elem.getText().then(function(text) {

 return text === 'Third';

 });

}).first().click();

element.all(locator).get(index)

With the help of this, we can get an element within the ElementArrayFinder by index. Note

that the index starts at 0 and negative indices are wrapped.

Example

View

<ul class="items">

 First

 Second

 Third

Code

let list = element.all(by.css('.items li'));

expect(list.get(0).getText()).toBe('First');

expect(list.get(1).getText()).toBe('Second');

Protractor

37

element.all(locator).first()

 As the name suggests, this will get the first element for ElementArrayFinder. It will not

retrieve the underlying element.

Example

View

<ul class="items">

 First

 Second

 Third

Code

let first = element.all(by.css('.items li')).first();

expect(first.getText()).toBe('First');

element.all(locator).last()

As name suggest, this will get the last element for ElementArrayFinder. It will not retrieve

the underlying element.

Example

View

<ul class="items">

 First

 Second

 Third

Code

let first = element.all(by.css('.items li')).last();

expect(last.getText()).toBe('Third');

Protractor

38

element.all(locator).all(selector)

 It is used to find an array of elements within a parent when calls to $$ may be chained.

Example

View

<div class="parent">

 <li class="one">First

 <li class="two">Second

 <li class="three">Third

</div>

Code

let items = element(by.css('.parent')).$$('li');

element.all(locator).count()

As the name suggests, this will count the number of elements represented by

ElementArrayFinder. It will not retrieve the underlying element.

Example

View

<ul class="items">

 First

 Second

 Third

Code

let list = element.all(by.css('.items li'));

expect(list.count()).toBe(3);

element.all(locator).isPresent()

It will match the elements with the finder. It can return true or false. True, if there are

any elements present that match the finder and False otherwise.

Protractor

39

Example

expect($('.item').isPresent()).toBeTruthy();

element.all(locator).locator

 As the name suggests, it will return the most relevant locator.

Example

$('#ID1').locator();// returns by.css('#ID1')

$('#ID1').$('#ID2').locator();// returns by.css('#ID2')

$$('#ID1').filter(filterFn).get(0).click().locator();// returns by.css('#ID1')

element.all(locator).then(thenFunction)

It will retrieve the elements represented by the ElementArrayFinder.

Example

View

<ul class="items">

 First

 Second

 Third

Code

element.all(by.css('.items li')).then(function(arr) {

 expect(arr.length).toEqual(3);

});

element.all(locator).each(eachFunction)

As the name suggests, it will call the input function on each ElementFinder represented by

the ElementArrayFinder.

Example

View

<ul class="items">

 First

 Second

 Third

Protractor

40

Code

element.all(by.css('.items li')).each(function(element, index) {

 // It will print First 0, Second 1 and Third 2.

 element.getText().then(function (text) {

 console.log(index, text);

 });

});

element.all(locator).map(mapFunction)

As name suggest, it will apply a map function on each element within the

ElementArrayFinder. It is having two arguments. First would be the ElementFinder and

second would be the index.

Example

View

<ul class="items">

 First

 Second

 Third

Code

let items = element.all(by.css('.items li')).map(function(elm, index) {

 return {

 index: index,

 text: elm.getText(),

 class: elm.getAttribute('class')

 };

});

expect(items).toEqual([

 {index: 0, text: 'First', class: 'one'},

 {index: 1, text: 'Second', class: 'two'},

 {index: 2, text: 'Third', class: 'three'}

]);

Protractor

41

element.all(locator).reduce(reduceFn)

 As the name suggests, it will apply a reduce function against an accumulator and every

element found using the locator. This function will reduce every element into a single

value.

Example

View

<ul class="items">

 First

 Second

 Third

Code

let value = element.all(by.css('.items li')).reduce(function(acc, elem) {

 return elem.getText().then(function(text) {

 return acc + text + ' ';

 });

}, '');

expect(value).toEqual('First Second Third ');

element.all(locator).evaluate

As the name suggests, it will evaluate the input whether it is in the scope of the current

underlying elements or not.

Example

View

{{letiableInScope}}

Code

let value = element.all(by.css('.foo')).evaluate('letiableInScope');

element.all(locator).allowAnimations

As name suggest, it will determine whether the animation is allowed on the current

underlying elements or not.

Example

element(by.css('body')).allowAnimations(false);

Protractor

42

Chaining functions of ElementFinder and their descriptions

The following are the functions of ElementFinder:

element(locator).clone

As the name suggests, this function will create a shallow copy of the ElementFinder.

element(locator).getWebElement()

It will return the WebElement represented by this ElementFinder and a WebDriver error

will be thrown if the element does not exist.

Example

View

<div class="parent">

 some text

</div>

Code

// All the four following expressions are equivalent.

$('.parent').getWebElement();

element(by.css('.parent')).getWebElement();

browser.driver.findElement(by.css('.parent'));

browser.findElement(by.css('.parent'));

element(locator).all(locator)

It will find an array of elements within a parent.

Example

View

<div class="parent">

 <li class="one">First

 <li class="two">Second

 <li class="three">Third

</div>

Protractor

43

Code

let items = element(by.css('.parent')).all(by.tagName('li'));

element(locator).element(locator)

It will find elements within a parent.

Example

View

<div class="parent">

 <div class="child">

 Child text

 <div>{{person.phone}}</div>

 </div>

</div>

Code

// Calls Chain 2 element.

let child = element(by.css('.parent')).

 element(by.css('.child'));

expect(child.getText()).toBe('Child text\n981-000-568');

// Calls Chain 3 element.

let triple = element(by.css('.parent')).

 element(by.css('.child')).

 element(by.binding('person.phone'));

expect(triple.getText()).toBe('981-000-568');

element(locator).all(selector)

It will find an array of elements within a parent when calls to $$ may be chained.

Example

View

<div class="parent">

 <li class="one">First

 <li class="two">Second

 <li class="three">Third

Protractor

44

</div>

Code

let items = element(by.css('.parent')).$$('li'));

element(locator).$(locator)

 It will find elements within a parent when calls to $ may be chained.

Example

View

<div class="parent">

 <div class="child">

 Child text

 <div>{{person.phone}}</div>

 </div>

</div>

Code

// Calls Chain 2 element.

let child = element(by.css('.parent')).

 $('.child'));

expect(child.getText()).toBe('Child text\n981-000-568');

// Calls Chain 3 element.

let triple = element(by.css('.parent')).

 $('.child')).

 element(by.binding('person.phone'));

expect(triple.getText()).toBe('981-000-568');

element(locator).isPresent()

It will determine whether the element is presented on page or not.

Example

View

{{person.name}}

Protractor

45

Code

expect(element(by.binding('person.name')).isPresent()).toBe(true);// will check

for the existence of element

expect(element(by.binding('notPresent')).isPresent()).toBe(false); // will

check for the non-existence of element

element(locator).isElementPresent()

It is same as element(locator).isPresent(). The only difference is that it will check whether

the element identified by sublocator is present rather than the current element finder.

element.all(locator).evaluate

As the name suggests, it will evaluate the input whether it is on the scope of the current

underlying elements or not.

Example

View

{{letiableInScope}}

Code

let value = element(by.id('.foo')).evaluate('letiableInScope');

element(locator).allowAnimations

As the name suggests, it will determine whether the animation is allowed on the current

underlying elements or not.

Example

element(by.css('body')).allowAnimations(false);

element(locator).equals

As the name suggests, it will compare an element for equality.

Protractor

46

Locators(by) API

It is basically a collection of element locator strategies that provides ways of finding

elements in Angular applications by binding, model etc.

Functions and their descriptions

 The functions of ProtractorLocators API are as follows:

by.addLocator(locatorName,fuctionOrScript)

It will add a locator to this instance of ProtrcatorBy which further can be used with

element(by.locatorName(args)).

Example

View

<button ng-click="doAddition()">Go!</button>

Code

// Adding the custom locator.

by.addLocator('buttonTextSimple',

 function(buttonText, opt_parentElement, opt_rootSelector) {

 var using = opt_parentElement || document,

 buttons = using.querySelectorAll('button');

 return Array.prototype.filter.call(buttons, function(button) {

 return button.textContent === buttonText;

 });

});

element(by.buttonTextSimple('Go!')).click();// Using the custom locator.

by.binding

As the name suggests, it will find an element by text binding. A partial match will be done

so that any elements bound to the variables containing the input string will be returned.

Example

View

{{person.name}}

Protractor

47

Code

var span1 = element(by.binding('person.name'));

expect(span1.getText()).toBe('Foo');

var span2 = element(by.binding('person.email'));

expect(span2.getText()).toBe('foo@bar.com');

by.exactbinding

As the name suggests, it will find an element by exact binding.

Example

View

{{ person.name }}

{{person_phone|uppercase}}

Code

expect(element(by.exactBinding('person.name')).isPresent()).toBe(true);

expect(element(by.exactBinding('person-email')).isPresent()).toBe(true);

expect(element(by.exactBinding('person')).isPresent()).toBe(false);

expect(element(by.exactBinding('person_phone')).isPresent()).toBe(true);

expect(element(by.exactBinding('person_phone|uppercase')).isPresent()).toBe(tru

e);

expect(element(by.exactBinding('phone')).isPresent()).toBe(false);

by.model(modelName)

As the name suggests, it will find an element by ng-model expression.

Example

View

<input type="text" ng-model="person.name">

Code

var input = element(by.model('person.name'));

input.sendKeys('123');

expect(input.getAttribute('value')).toBe('Foo123');

Protractor

48

by.buttonText

As the name suggests, it will find a button by text.

Example

View

<button>Save</button>

Code

element(by.buttonText('Save'));

by.partialButtonText

As the name suggests, it will find a button by partial text.

Example

View

<button>Save my file</button>

Code

element(by.partialButtonText('Save'));

by.repeater

As the name suggests, it will find an element inside an ng-repeat.

Example

View

<div ng-repeat="cat in pets">

 {{cat.name}}

 {{cat.age}}

</div>

<div class="book-img" ng-repeat-start="book in library">

 {{$index}}

</div>

<div class="book-info" ng-repeat-end>

 <h4>{{book.name}}</h4>

 <p>{{book.blurb}}</p>

</div>

Protractor

49

Code

var secondCat = element(by.repeater('cat in pets').row(1)); // It will return

the DIV for the second cat.

var firstCatName = element(by.repeater('cat in pets').

 row(0).column('cat.name')); // It will return the SPAN for the first cat's

name.

by.exactRepeater

As the name suggests, it will find an element by exact repeater.

Example

View

<li ng-repeat="person in peopleWithRedHair">

<li ng-repeat="car in cars | orderBy:year">

Code

expect(element(by.exactRepeater('person in

peopleWithRedHair')).isPresent())

 .toBe(true);

expect(element(by.exactRepeater('person in

people')).isPresent()).toBe(false);

expect(element(by.exactRepeater('car in cars')).isPresent()).toBe(true);

by.cssContainingText

As name suggest, it will find the elements, containing exact string, by CSS

Example

View

 <li class="pet">Dog

 <li class="pet">Cat

Code

var dog = element(by.cssContainingText('.pet', 'Dog')); // It will return the

li for the dog, but not for the cat.

Protractor

50

by.options(optionsDescriptor)

As the name suggests, it will find an element by ng-options expression.

Example

View

<select ng-model="color" ng-options="c for c in colors">

 <option value="0" selected="selected">red</option>

 <option value="1">green</option>

</select>

Code

var allOptions = element.all(by.options('c for c in colors'));

expect(allOptions.count()).toEqual(2);

var firstOption = allOptions.first();

expect(firstOption.getText()).toEqual('red');

by.deepCSS(selector)

As name suggest, it will find an element by CSS selector within the shadow DOM.

Example

View

<div>

 <"shadow tree">

 <"shadow tree">

 </>

 </>

</div>

Code

var spans = element.all(by.deepCss('span'));

expect(spans.count()).toEqual(3);

Protractor

51

This chapter discusses in detail about the objects in Protractor.

What are Page Objects?

Page object is a design pattern which has become popular for writing e2e tests in order to

enhance the test maintenance and reducing the code duplication. It may be defined as an

object-oriented class serving as an interface to a page of your AUT (application under

test). But, before diving deep into page objects, we must have to understand the

challenges with automated UI testing and the ways to handle them.

Challenges with automated UI testing

Followings are some common challenges with automates UI testing:

UI Changes

The very common issues while working with UI testing is the changes happens in UI. For

example, it happens most of the time that buttons or textboxes etc. usually got change

and creates issues for UI testing.

Lack of DSL(Domain Specific Language) support

Another issue with UI testing is the lack of DSL support. With this issue, it becomes very

hard to understand what is being tested.

Lots of repetition/Code duplication

The next common problem in UI testing is that there is lots of repetition or code

duplication. It can be understood with the help of following lines of code:

element(by.model(‘event.name’)).sendKeys(‘An Event’);

element(by.model(‘event.name’)).sendKeys(‘Module 3’);

element(by.model(‘event.name’));

Tough maintenance

Due to the above challenges, it becomes headache for maintenance. It is because we have

to find all the instances, replace with the new name, selector & other code. We also need

to spend lots of time to keep tests in line with refactoring.

Broken tests

Another challenge in UI testing is the happening of lots of failures in tests.

8. Protractor – Objects

Protractor

52

Ways to Handle Challenges

We have seen some common challenges of UI testing. Some of the ways to handle such

challenges are as follows:

Updating References Manually

The very first option for handling the above challenges is to update the references

manually. The problem with this option is that we must do the manual change in the code

as well as our tests. This can be done when you have one or two tests files but what if you

have hundreds of tests files in a project?

Using Page Objects

Another option for handling above challenges is to use page objects. A page object is

basically a plain JavaScript that encapsulates the properties of an Angular template. For

example, the following specification file is written without and with page objects to

understand the difference:

Without Page Objects

describe('angularjs homepage', function() {

 it('should greet the named user', function() {

 browser.get('http://www.angularjs.org');

 element(by.model('yourName')).sendKeys('Julie');

 var greeting = element(by.binding('yourName'));

 expect(greeting.getText()).toEqual('Hello Julie!');

 });

});

With Page Objects

For writing the code with Page Objects, the first thing we need to do is to create a Page

Object. Hence, a Page Object for the above example could look like this:

var AngularHomepage = function() {

 var nameInput = element(by.model('yourName'));

 var greeting = element(by.binding('yourName'));

 this.get = function() {

 browser.get('http://www.angularjs.org');

 };

 this.setName = function(name) {

 nameInput.sendKeys(name);

 };

Protractor

53

 this.getGreetingText = function() {

 return greeting.getText();

 };

};

module.exports = new AngularHomepage();

Using Page Objects to Organize Tests

We have seen the use of page objects in the above example to handle the challenges of

UI testing. Next, we are going to discuss how we can use them to organize the tests. For

this we need to modify the test script without modifying the functionality of the test script.

Example

To understand this concept we are taking the above configuration file with page objects.

We need to modify the test script as follows:

var angularHomepage = require('./AngularHomepage');

describe('angularjs homepage', function() {

 it('should greet the named user', function() {

 angularHomepage.get();

 angularHomepage.setName('Julie');

 expect(angularHomepage.getGreetingText()).toEqual('Hello Julie!');

 });

});

Here, note that the path to the page object will be relative to your specification.

On the same note, we can also separate our test suite into various test suites. The

configuration file then can be changed as follows:

exports.config = {

 // The address of a running selenium server.

 seleniumAddress: 'http://localhost:4444/wd/hub',

 // Capabilities to be passed to the webdriver instance.

 capabilities: {

 'browserName': 'chrome'

 },

 // Spec patterns are relative to the location of the spec file. They may

 // include glob patterns.

Protractor

54

 suites: {

 homepage: 'tests/e2e/homepage/**/*Spec.js',

 search: ['tests/e2e/contact_search/**/*Spec.js',

 'tests/e2e/venue_search/**/*Spec.js']

 },

 // Options to be passed to Jasmine-node.

 jasmineNodeOpts: {

 showColors: true, // Use colors in the command line report.

 }

};

Now, we can easily switch between running one or the other suite of tests. The following

command will run only the homepage section of the test:

protractor protractor.conf.js --suite homepage

Similarly, we can run specific suites of tests with the command as follows:

protractor protractor.conf.js --suite homepage,search

Protractor

55

Now that we have seen all the concepts of Protractor in the previous chapters, let us

understand the debugging concepts in detail in this chapter.

Introduction

End-to-end (e2e) tests are very difficult to debug because they depend on the whole

ecosystem of that application. We have seen that they depend upon various actions or

particularly we can say that on prior actions like login and sometimes they depend on the

permission. Another difficulty in debugging e2e tests is its dependency on WebDriver

because it acts differently with different operating systems and browsers. Finally,

debugging e2e tests also generates long error messages and makes it difficult to separate

browser related issues and test process errors.

Types of Failure

There can be various reasons for the failure of test suites and followings are some well-

known failure types:

WebDriver failure

When a command cannot be completed, an error is thrown by WebDriver. For example, a

browser cannot get the defined address, or an element is not found as expected.

WebDriver unexpected failure

 An unexpected browser and OS-related failure happens when it fails to update the web

driver manager.

 Protractor failure for Angular

 The failure of Protractor for Angular happens when Protractor didn’t find Angular in the

library as expected.

Protractor Angular2 failure

In this kind of failure, Protractor will fail when the useAllAngular2AppRoots parameter is

not found in the configuration. It happens because, without this, the test process will look

at one single root element while expecting more than one element in the process.

Protractor failure for timeout

This kind of failure happens when the test specification hit a loop or a long pool and fails

to return the data in time.

9. Protractor – Debugging

Protractor

56

Expectation failure

One of the most common test failures that shows what a normal expectation failure looks

like.

Why debugging is important in Protractor?

Suppose, if you have written test cases and they got failed then it is very important to

know how to debug those test cases because it would be very hard to find the exact place

where the error has occurred. While working with Protractor, you will get some long errors

in red color font in the command line.

Pausing and Debugging the Test

The ways to debug in Protractor are explained here:

Pause Method

Using the pause method to debug the test cases in Protractor is one of the easiest ways.

We can type the following command at the place we want to pause our test code:

browser.pause();

When the running codes hits the above command, it will pause the running program at

that point. After that we can give the following commands according to our preference:

Type C for Moving Forward

Whenever a command has exhausted, we must type C to move forward. If you will not

type C, the test will not run the full code and it will fail due to Jasmine time out error.

Type repl for entering interactive mode

The benefit of interactive mode is that we can send the WebDriver commands to our

browser. If we want to enter into the interactive mode, then type repl.

Type Ctrl-C for exiting and continuing the tests

For exiting the test from pause state and continuing the test from where it has stopped,

we need to type Ctrl-C.

Example

In this example, we are having the below specification file named example_debug.js,

protractor tries to identify an element with locator by.binding(‘mmmm’) but the

URL(http://angularjs.org) page has no element with specified locator.

describe('Suite for protractor debugger',function(){

 it('Failing spec',function(){

 browser.get("http://angularjs.org");

 element(by.model('yourName')).sendKeys('Vijay');

 //Element doesn't exist

http://angularjs.org/

Protractor

57

 var welcomeText = element(by.binding('mmmm')).getText();

 expect('Hello '+welcomeText+'!').toEqual('Hello Ram!')

 });

});

Now, for executing the above test we need to add browser.pause() code, where you want

to pause the test, in the above specification file. It will look as follows:

describe('Suite for protractor debugger',function(){

 it('Failing spec',function(){

 browser.get("http://angularjs.org");

 browser.pause();

 element(by.model('yourName')).sendKeys('Vijay');

 //Element doesn't exist

 var welcomeText = element(by.binding('mmmm')).getText();

 expect('Hello '+welcomeText+'!').toEqual('Hello Ram!')

 });

});

But before executing, we need to do some changes in the configuration file also. We are

doing the following changes in earlier used configuration file, named

example_configuration.js in previous chapter:

// An example configuration file.

exports.config = {

 directConnect: true,

 // Capabilities to be passed to the webdriver instance.

 capabilities: {

 'browserName': 'chrome'

 },

 // Framework to use. Jasmine is recommended.

 framework: 'jasmine',

 // Spec patterns are relative to the current working directory when

 // protractor is called.

 specs: ['example_debug.js'],

 allScriptsTimeout: 999999,

 jasmineNodeOpts: {

Protractor

58

 defaultTimeoutInterval: 999999

 },

 onPrepare: function () {

 browser.manage().window().maximize();

 browser.manage().timeouts().implicitlyWait(5000);

 }

};

Now, run the following command:

protractor example_configuration.js

The debugger will start after the above command.

Debugger Method

Using the pause method to debug the test cases in Protractor is a bit advanced way. We

can type the following command at the place we want to break our test code:

browser.debugger();

It uses the node debugger to debug the test code. For running the above command, we

must type the following command in a separate command prompt which has opened from

the test project location:

protractor debug protractor.conf.js

In this method, we also need to type C in the terminal for continuing the test code. But

opposite to pause method, in this method it is to be typed for only one time.

Example

In this example, we are using the same specification file named example_debug.js, used

above. The only difference is that instead of browser.pause(), we need to use

browser.debugger() where we want to break the test code. It will look as follows:

describe('Suite for protractor debugger',function(){

 it('Failing spec',function(){

 browser.get("http://angularjs.org");

 browser.debugger();

 element(by.model('yourName')).sendKeys('Vijay');

 //Element doesn't exist

 var welcomeText = element(by.binding('mmmm')).getText();

 expect('Hello '+welcomeText+'!').toEqual('Hello Ram!')

 });

});

Protractor

59

We are using the same configuration file, example_configuration.js, used in above

example.

Now, run the protractor test with following debug command line option:

protractor debug example_configuration.js

The debugger will start after the above command.

Protractor

60

In this chapter, let us learn in detail about style guide for protractor.

Introduction

The style guide was created by two software engineers named, Carmen Popoviciu, front-

end engineer at ING and Andres Dominguez, software engineer at Google. Hence, this

style guide is also called Carmen Popoviciu and Google’s style guide for protractor.

This style guide can be divided into the following five keypoints:

 Generic rules

 Project Structure

 Locator strategies

 Page Objects

 Test suites

Generic Rules

The following are some generic rules that must be taken care while using protractor for

testing:

Do not end-to-end test what has been already unit tested

This is the very first generic rule given by Carmen and Andres. They suggested that we

must not perform e2e test on the code that already been unit tested. The main reason

behind it is that the unit tests are much faster than e2e tests. Another reason is that we

must have to avoid duplicate tests (don’t perform both unit and e2e testing) for saving

our time.

Use only one configuration file

Another important point recommended is that we must have to use only one configuration

file. Do not create configuration file for each environment you are testing. You can use

grunt-protractor-coverage in order to set up different environments.

Avoid using logic to your test

We must have to avoid using IF statements or FOR loops in our test cases because if we

do so then the test may pass without testing anything or it may run very slow.

Make the test independent at file level

Protractor can run the test parallelly when sharing is enabled. These files are then executed

across different browsers as and when they become available. Carmen and Andres

recommended to make the test independent at least at file level because the order in

10. Protractor – Style Guide for Protractor

Protractor

61

which they will be run by protractor is uncertain and moreover it is quite easy to run a test

in isolation.

Project Structure

Another important key point regarding the style guide of Protractor is the structure of your

project. The following is the recommendation about project structure:

Groping e2e test in a sensible structure

Carmen and Andres recommended that we must group our e2e tests in a structure that

makes sense to the structure of your project. The reason behind this recommendation is

that the finding of files would become easy and the folder structure would be more

readable. This step will also separate e2e tests from unit tests. They recommended that

the following kind of structure should be avoided:

|-- project-folder

 |-- app

 |-- css

 |-- img

 |-- partials

 home.html

 profile.html

 contacts.html

 |-- js

 |-- controllers

 |-- directives

 |-- services

 app.js

 ...

 index.html

 |-- test

 |-- unit

 |-- e2e

 home-page.js

 home-spec.js

 profile-page.js

 profile-spec.js

 contacts-page.js

 contacts-spec.js

Protractor

62

On the other hand, they recommended the following kind of structure:

|-- project-folder

 |-- app

 |-- css

 |-- img

 |-- partials

 home.html

 profile.html

 contacts.html

 |-- js

 |-- controllers

 |-- directives

 |-- services

 app.js

 ...

 index.html

 |-- test

 |-- unit

 |-- e2e

 |-- page-objects

 home-page.js

 profile-page.js

 contacts-page.js

 home-spec.js

 profile-spec.js

 contacts-spec.js

Locator Strategies

The following are some locator strategies that must be taken care while using protractor

for testing:

Protractor

63

Never use XPATH

This is the first locator strategies that is recommended in protractor style guide. The

reasons behind the same is that XPath is requires lots of maintenance because markup is

very easily subject to change. Moreover, XPath expressions are the slowest and very hard

to debug.

Always prefer protractor-specific locators such as by.model and

by.binding

Protractor-specific locators such as by.model and by.binding are short, specific and easy

to read. With the help of them it is very easy to write our locator also.

Example

View

<ul class="red">

 {{color.name}}

 {{color.shade}}

 {{color.code}}

<div class="details">

 <div class="personal">

 <input ng-model="person.name">

 </div>

</div>

For the above code, it is recommended to avoid the following:

var nameElement = element.all(by.css('.red li')).get(0);

var personName = element(by.css('.details .personal input'));

On the other hand, the following is recommended to use:

var nameElement = element(by.binding('color.name'));

var personName = element(by.model('person.name'));

When no Protractor locators are available, then it is recommended to prefer by.id and

by.css.

Always avoid text locators for frequently changing text

We must have to avoid text-based locators such as by.linkText, by.buttonText and

by.cssContaningText because text for buttons, links and labels frequently change over

time.

Protractor

64

Page Objects

As discussed earlier, page objects encapsulate information about the elements on our

application page and due to this help us write cleaner test cases. A very useful advantage

of page objects is that they can be reused across multiple tests and in case if the template

of our application has been changed, we only need to update the page object. Followings

are some recommendations for page objects that must be taken care while using

protractor for testing:

To interact with page under test, use page objects

It is recommended to use page objects to interact with the page under test because they

can encapsulate information about the element on the page under test and they can be

reused also.

Always declare one-page object per file

We should define each page object in its own file because it keeps the code clean and

finding of things becomes easy.

At the end of page object file always uses a single module.exports

It is recommended that each page object should declare a single class so that we only

need to export one class. For example, the following use of object file should be avoided:

var UserProfilePage = function() {};

var UserSettingsPage = function() {};

module.exports = UserPropertiesPage;

module.exports = UserSettingsPage;

But on the other hand, following is recommended to use:

/** @constructor */

var UserPropertiesPage = function() {};

module.exports = UserPropertiesPage;

Declare all the required modules at the top

We should declare all the required modules at the top of the page object because it makes

module dependencies clear and easy to find.

Instantiate all page objects at the beginning of the test suite

It is recommended to instantiate all the page objects at the beginning of the test suite

because this will separate dependencies from the test code as well as makes the

dependencies available to all the specifications of the suite.

Protractor

65

Do not use expect() in page objects

We should not use expect() in page objects i.e. we should not make any assertions in our

page objects because all the assertions must be done in test cases.

Another reason is that the reader of the test should be able to understand the behavior of

the application by reading the test cases only.

