
Puppeteer

 i

Puppeteer

 i

About the Tutorial

Puppeteer is used for automation and streamlining of the frontend development and

testing respectively. This tutorial shall give us a thorough insight on Puppeteer and its

different terminologies. The tutorial contains practical examples on all main topics.

 Audience

This tutorial is designed for professionals working in software testing who want to hone

their skills on a robust automation testing tool like Puppeteer. It can be used to test

applications developed in Angular and Angularjs.

Prerequisites

Prior going through this tutorial, you should have a fair knowledge on JavaScript and

object oriented programming concepts. Besides, a good understanding of basics in

testing is important to proceed with the tutorial.

Copyright & Disclaimer

 Copyright 2021 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point

(I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or

republish any contents or a part of contents of this e-book in any manner without written

consent of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely

as possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I)

Pvt. Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of

our website or its contents including this tutorial. If you discover any errors on our

website or in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

Puppeteer

 ii

Table of Contents

About the Tutorial .. i

Audience ... i

Prerequisites ... i

Copyright & Disclaimer ... i

Table of Contents .. ii

1. Puppeteer – Introduction .. 1

Puppeteer Architecture ... 2

2. Puppeteer — Element Handling .. 3

Puppeteer Methods to Locate Elements ... 3

Types of Locators ... 4

3. Puppeteer — Usage of Google .. 5

4. Puppeteer — Installation of NodeJS .. 6

5. Puppeteer — VS Code Configuration... 10

6. Puppeteer — Installation .. 12

7. Puppeteer — Basic Test on Puppeteer .. 15

8. Puppeteer — Non Headless Execution .. 17

9. Puppeteer — Comparison between Puppeteer and Selenium... 20

10. Puppeteer — Comparison between Puppeteer and Protractor ... 22

11. Puppeteer — Comparison between Puppeteer and Cypress ... 24

12. Puppeteer — Browser Operations .. 26

13. Puppeteer — Handling Tabs .. 28

14. Puppeteer — Basic Commands ... 31

15. Puppeteer with Firefox ... 34

16. Puppeteer with Chrome .. 37

17. Puppeteer — Handling Confirm Alerts .. 39

18. Puppeteer — Handling Drop-downs.. 42

Puppeteer

 iii

Methods to Handle Dropdown .. 42

19. Puppeteer — Locators .. 45

Methods to locate elements ... 45

Types of Locators ... 46

20. Puppeteer — Xpath Functions .. 51

21. Puppeteer — Xpath Attributes .. 55

22. Puppeteer — Xpath Grouping ... 59

23. Puppeteer — Absolute Xpath.. 63

24. Puppeteer — Relative Xpath ... 67

25. Puppeteer — Xpath Axes .. 70

26. Puppeteer — Type Selector... 73

27. Puppeteer — Name Selector and Class Name Selector ... 76

Name Selector ... 76

Class Name Selector .. 78

28. Puppeteer — Id Selector ... 81

29. Puppeteer — Attribute Selector .. 84

30. Puppeteer — Handling Links/Button... 87

31. Puppeteer — Handling Edit Boxes and Checkboxes .. 90

Handling Edit Boxes ... 90

Handling Checkboxes... 92

32. Puppeteer — Handling Frames ... 96

33. Puppeteer — Keyboard Simulation ... 99

Keyboard Methods .. 99

34. Puppeteer — Getting Element Text... 102

35. Puppeteer — Getting Element Attribute ... 105

Methods for Element Attribute ... 105

36. Puppeteer — Device Emulation .. 109

37. Puppeteer — Disable JavaScript .. 114

Puppeteer

 iv

38. Puppeteer — Synchronization... 116

Synchronization methods .. 116

39. Puppeteer — Capture Screenshot ... 121

Puppeteer

 1

Puppeteer is used for automation and streamlining of the frontend development and

testing respectively. It was introduced by Google. Puppeteer is based on the Node.js

library and is open-source.

Puppeteer contains APIs to interact and manage Chrome browser in headless mode or

Chromium (following the protocols in DevTools). However, it can also be used for non-

headless execution on browsers like Chrome/Chromium/Edge/Firefox.

Puppeteer can be used for the automating majority of UI testing, keyboards, mouse

movements, and so on. It can be used to test applications developed in Angular and

Angularjs. The actions like web page crawling and scraping can be performed with

Puppeteer.

Puppeteer is not considered as an automation tool like Selenium, Cypress, Protractor,

and so on. It is mostly used to manage the internal features of the Chromium browser.

We can open DevTools in the Chrome browser, by pressing F12 or

Command+Option+C(in MacOS).

Puppeteer is like a development tool as it is capable of performing a majority of tasks

performed by a developer like handling requests and responses, locating elements,

network traffic and performance, and so on.

If we follow the npm trends for Puppeteer download for the last few years, we shall

observe an upward trend towards the use of Puppeteer (available from the below link):

https://www.npmtrends.com/puppeteer

1. Puppeteer – Introduction

https://www.npmtrends.com/puppeteer

Puppeteer

 2

Puppeteer Architecture

Puppeteer utilises the Node library that gives a top-class API for managing Chromium or

Chrome browsers. This is done by following the protocols of DevTools.

Puppeteer has the below hierarchy:

 Browser(with/without headless mode): The browser performs the actions to

be executed on the browser engine.

 Chromium Development Project or CDP: The Chromium is the real place

where all the operations are executed. The browsers - Microsoft Edge and Chrome

utilise Chromium as browser engine.

 Puppeteer: This is actually a package based on the node module.

 Automation test code: This is also known as the Nodejs level. Here, the actual

automation code is developed by the end-user using JavaScript.

Puppeteer

 3

We can handle elements on page with Puppeteer. Once we navigate to a webpage, we

have to interact with the webelements available on the page like clicking a link/button,

entering text within an edit box, and so on to complete our automation test case.

For this, our first job is to identify the element. To get the property of an element

uniquely we need to inspect it (right-click on the element then select the option Inspect).

The ElementHandle objects are created by the methods - page.$, page.$$ and page.$x.

These objects refer to an element or tag in a page.

Puppeteer Methods to Locate Elements

These methods are listed below:

page.$(locator value)

This method yields a Promise with the ElementHandle. The ElementHandle is an object of

the identified element. If there are multiple elements having the same locator value,

then only the first matching element from the top left corner of the page shall be

returned.

page.$$(locator value)

This method yields a Promise with an array of ElementHandle. If there are multiple

elements having the same locator value, then all matching elements shall be returned in

the form of an array.

page.$x(xpath value)

This method yields a Promise with an array of ElementHandle. If there are multiple

elements having the same xpath value, then all matching elements shall be returned in

the form of an array. In case, there is one matching element, then the array returned

shall have a single element.

The ElementHandle methods like elementHandle.$, elementHandle.$$ and

elementHandle.$x can be applied to an element. In that case, an element shall be

searched within the DOM of the present ElementHandle and not in the entire DOM.

In the below image, let us take the example of an element having the li tag (having a

parent element ul) and class attribute value as heading. To identify it using the

ElementHandle method on the page, the expression should be as follows:

const n = await page.$(".heading")

To identify it using the ElementHandle method on an element, the expression should be

as follows:

const m = await page.$("ul")

const p = await m.$(".heading")

2. Puppeteer — Element Handling

Puppeteer

 4

Now, refer the image given below of an element having the li tag

Types of Locators

The types of locators in Puppeteer are listed below:

 ID

 Class

 Type

 Xpath

 Attribute

 Type

To work with the above locators we should have the basic understanding of HTML code.

Let us take an example of an edit box having the below mentioned properties:

Here, input is the tagname. A tag in HTML may or may not have attributes. The type,

class, name, id and so on are the attributes of the element.

For example, in the expression class = "gsc-input", text to the left of = is the attribute

name (class) and to the right of = is the attribute value (gsc-input).

An attribute may or may not have a value assigned. Also, if a value is assigned, then it

should be enclosed in double or single quotes. The value of an attribute is set by a

developer as per his choice.

Puppeteer

 5

Puppeteer usages are listed below:

 Puppeteer can be used for scrapping contents from a webpage. The scrapping

means pulling out data from a particular website.

 Puppeteer can be used to capture screenshots. It can be used to export web

pages in the form of a PDF.

 Puppeteer does not require an external driver or library. It can be run on the

actual browser in a headless mode.

 It can be used as a good alternative to other browser automation tools like

Selenium or Cypress. Sometimes, puppeteer features are even better than both

of them.

 It is super-fast in execution and can be used to execute tests in headless and

headed modes.

 Puppeteer has a very agile community support having more than 60,000 starts in

GitHub. Refer the link given herewith: https://github.com/puppeteer/puppeteer

 Puppeteer supports headless execution and hence it can be used in platforms like

Unix, Linux, Cloud, AWS, and so on.

 It can be used to crawl a SPA (Single Page Application) and produce pre-rendered

content. The crawling means saving a local static object of a webpage and

utilising it offline in the absence of the real webpage obtained from the internet.

 It can be used for the automating majority of UI testing, keyboards, mouse

movements, form submissions etc.

 Puppeteer can be used to construct a recent, automated test environment. It can

run tests on the latest version Chrome by utilising the most recent features of

JavaScript and browser.

 Puppeteer can be used to obtain the timeline trace of a web application to

determine its performance. Moreover, it can be used to check the Chrome

Extensions and to obtain the coverage of HTML and CSS utilized by a webpage.

3. Puppeteer — Usage of Google

https://github.com/puppeteer/puppeteer

Puppeteer

 6

Puppeteer code implementation is done using JavaScript. For this, NodeJS has to be

installed since it is a JavaScript engine. Only after its installation, we can execute

Puppeteer tests.

The steps to configure NodeJS are listed below:

Step 1: Launch the application having the below link:

https://nodejs.org/en/download/

Step 2: As per the local operating system (Windows, Mac or Linux) we are using, click

on the link to download the Installer.

Step 3: Once the installer is downloaded, click on it. We shall be navigated to the

Node.js Installer welcome screen. Click on Continue.

4. Puppeteer — Installation of NodeJS

https://nodejs.org/en/download/

Puppeteer

 7

Step 4: Agree to the terms of agreement of Nodejs.

Puppeteer

 8

Step 5: Click on Install.

Step 6: Once the success message of Nodejs installation is displayed, click on Close.

Puppeteer

 9

Step 7: To check if Nodejs is installed successfully, open the terminal and run the

command: node.

The version of the Nodejs installed in the machine should get displayed.

Puppeteer

 10

The steps to install the Visual Studio (VS) Code are listed below:

Step 1: Navigate to the below link:

https://code.visualstudio.com/

Step 2: Depending on the local operating system we have for example - macOS, Linux

or Windows, we need to choose the link for download.

Step 3: A zip file gets downloaded after clicking the Download button. After downloading

this file has completed, click on it and the Visual Studio Code application should become

available for use.

Step 4: Double-click it and the Visual Studio Code application should launch along with

the welcome page.

5. Puppeteer — VS Code Configuration

https://code.visualstudio.com/

Puppeteer

 11

Puppeteer

 12

The steps for installation of Puppeteer are listed below:

Step 1: Install NodeJS.

The details on how to install NodeJs is discussed in detail in the Chapter of Installation of

NodeJS.

Step 2: Create an empty folder, say puppeteer in a location.

Step 3: Launch the Visual Studio Code application and click on the Open folder link and

import the folder we have created in Step2.

The details on how to install VS Code is discussed in detail in the Chapter of VS Code

Configuration.

Step 4: Open the terminal and move from the current directory to the directory of the

empty folder that we have created in Step 2. Then run the following command:

npm

Step 5: For Puppeteer installation, run the below mentioned command:

npm install puppeteer

6. Puppeteer — Installation

Puppeteer

 13

Or,

npm i puppeteer

Step 6: For installation of Puppeteer core, run the below mentioned command:

npm i puppeteer-core

Step 7: After the installation of Puppeteer and Puppeteer core, we shall find the

node_modules folder and package.json file generated within the empty folder we created

in Step 2.

Puppeteer

 14

Step 8: While working on a test, we have to add the below Puppeteer library in the

code.

const pt = require('puppeteer')

Puppeteer

 15

To start with a basic test on Puppeteer, we have to follow the below mentioned steps:

Step 1: Create a new file within the directory where the node_modules folder is created

(location where the Puppeteer and Puppeteer core have been installed).

The details on Puppeteer installation is discussed in the Chapter of Puppeteer

Installation.

Right-click on the folder where the node_modules folder is created, then click on the

New file button.

Step 2: Enter a filename, say testcase1.js.

Step 3: Add the below code in this file:

//adding Puppeteer library

const pt = require('puppeteer');

pt.launch().then(async browser => {

7. Puppeteer — Basic Test on Puppeteer

Puppeteer

 16

 //browser new page

 const p = await browser.newPage();

 //set viewpoint of browser page

 await p.setViewport({ width: 1000, height: 500 })

 //launch URL

 await p.goto('https://www.tutorialspoint.com/index.htm')

 //capture screenshot

 await p.screenshot({

 path: 'tutorialspoint.png'

 });

 //browser close

 await browser.close()

})

Step 4: Execute the code with the following command:

node <filename>

So in our example, we shall run the following command:

node testcase1.js

After the command has been successfully executed, a new file called the

tutorialspoint.png gets created within the page directory. It contains the captured

screenshot of the page launched in the browser in a headless mode.

Puppeteer

 17

By default, Puppeteer executes the test in headless Chromium. This means if we are

running a test using Puppeteer, then we won't be able to view the execution in the

browser.

To enable execution in the headed mode, we have to add the parameter: headless:false

in the code.

To begin, follow Steps 1 to 2 from the Chapter of Basic Test on Puppeteer, which are as

follows:

Step 1: Create a new file within the directory where the node_modules folder is created

(location where the Puppeteer and Puppeteer core have been installed).

The details on Puppeteer installation is discussed in the Chapter of Puppeteer

Installation.

Right-click on the folder where the node_modules folder is created, then click on the

New file button.

Step 2: Enter a filename, say testcase1.js.

8. Puppeteer — Non Headless Execution

Puppeteer

 18

Step 3: Add the below code within the testcase1.js file created.

//adding Puppeteer library

const pt = require('puppeteer');

//adding headless flag to false

pt.launch({headless:false}).then(async browser => {

 //browser new page

 const p = await browser.newPage();

 //set viewpoint of browser page

 await p.setViewport({ width: 1000, height: 500 })

 //launch URL

 await p.goto('https://www.tutorialspoint.com/about/about_careers.htm');

})

Step 4: Execute the code with the command given below:

node <filename>

So in our example, we shall run the below mentioned command:

node testcase1.js

Puppeteer

 19

After the command has been successfully executed, we shall see the execution getting

triggered in a headed mode.

Puppeteer

 20

The major differences between Puppeteer and Selenium are given below:

Sr. No. Puppeteer Selenium

1. Puppeteer is developed mainly for

Chromium so the tests developed are

mainly executed in Chrome.

Selenium can be used to execute tests

on multiple browsers like Chrome,

Firefox, IE, Safari, and so on.

2. Puppeteer code can be implemented

only in JavaScript.

Selenium code can be implemented on

multiple languages like Java, Python,

JavaScript, C#, and so on.

3. Puppeteer provides APIs to manage

headless execution in Chrome by

using the DevTools protocol.

Selenium requires additional external

browser drivers that trigger tests as

per the user commands.

4. Puppeteer manages the Chrome

browser.

Selenium is primarily used to execute

tests to automate the actions

performed on the browser.

5. Puppeteer is faster in executing tests

than Selenium.

Selenium is slower in executing tests

than Puppeteer.

6. Puppeteer is a module in node

developed for Chromium engine.

Selenium is a dedicated test

automation tool.

7. Puppeteer can be used for API testing

by utilising the requests and the

responses.

API testing with Selenium is difficult.

8. Puppeteer can be used to verify the

count of CSS and JavaScript files

utilised for loading a webpage.

Selenium cannot be used to verify the

count of CSS and JavaScript files

utilised for loading a webpage.

9. Puppeteer can be used to work on the

majority of features in the DevTools in

the Chrome browser.

Selenium cannot be used to work on

the majority of features in the

DevTools in the Chrome browser.

10. Puppeteer can be used to execute

tests on various devices with the help

of the emulators.

Using an emulator with Selenium is

not easy.

9. Puppeteer — Comparison between
Puppeteer and Selenium

Puppeteer

 21

11. Puppeteer can be used to obtain the

time needed for a page to load.

Selenium cannot be used to obtain the

time needed for a page to load.

12. Puppeteer can be used to save a

screenshot in both image and PDF

formats.

Selenium can be used to save a

screenshot in both image and PDF

formats only in the Selenium 4

version.

13. Puppeteer was first introduced in the

year 2017.

Selenium was first introduced in the

year 2004.

14. In Puppeteer, we can verify an

application without image loading.

In Selenium, we can verify an

application without image loading.

Puppeteer

 22

The major differences between Puppeteer and Protractor are given below:

Sr. No. Puppeteer Protractor

1. Puppeteer is a module in node

developed for Chromium engine.

Protractor is a dedicated test

automation tool.

2. Puppeteer is faster in executing tests

than Protractor.

Protractor is slower in executing tests

than Puppeteer.

3. Puppeteer is developed mainly for

Chromium so the tests developed are

mainly executed in Chrome.

Protractor can be used to execute

tests on multiple browsers like

Chrome, Firefox, IE, Safari, and so

on.

4. Puppeteer can be used for API testing

by utilising the requests and the

responses.

API testing with Protractor is difficult.

5. Puppeteer can be used to verify the

count of CSS and JavaScript files

utilised for loading a webpage.

Protractor cannot be used to verify

the count of CSS and JavaScript files

utilised for loading a webpage.

6. Puppeteer can be used to work on the

majority of features in the DevTools in

the Chrome browser.

Protractor cannot be used to work on

the majority of features in the

DevTools in the Chrome browser.

7. Puppeteer can be used to execute

tests on various devices with the help

of the emulators.

Using an emulator with Protractor is

not easy.

8. Puppeteer can be used to save a

screenshot in both image and PDF

formats.

 Protractor can be used to save a

screenshot in only image format.

9. Puppeteer can be used to obtain the

time needed for a page to load.

Protractor cannot be used to obtain

the time needed for a page to load.

10. In Puppeteer, we can verify an

application without image loading.

In Protractor, we can verify an

application without image loading.

10. Puppeteer — Comparison between
Puppeteer and Protractor

Puppeteer

 23

Let us observe the npm trends of Puppeteer and Protractor for the last two years. We

shall observe an upward trend towards the use of Puppeteer than Protractor (available

from the below link):

https://www.npmtrends.com/protractor-vs-puppeteer

https://www.npmtrends.com/protractor-vs-puppeteer

Puppeteer

 24

The major differences between Puppeteer and Cypress are as follows:

Sr. No. Puppeteer Cypress

1. Puppeteer is a module in node

developed for Chromium engine.

Cypress is a dedicated test automation

framework developed in JavaScript.

2. Puppeteer is mainly used for web

page scraping and crawling

SPA(Single Page Application).

Cypress is mainly used to automate

test cases for a complete application.

3. Assertions in Puppeteer are based

on the Mocha, Jasmine or Jest

frameworks.

Cypress has its individual assertions.

4. VS Code and Webstorm are mostly

used as an IDE for Puppeteer.

Cypress has its individual IDE.

5 Puppeteer is developed mainly for

Chromium so the tests developed

are mainly executed in Chrome.

Cypress can be used to execute tests

on multiple browsers like Chrome,

Firefox, Electron and so on.

6. Puppeteer has no dashboard. Cypress has its dashboard to see the

recorded tests and gives us detail on

the events that took place during

execution.

7. Puppeteer is faster in executing

tests than Cypress.

Cypress is slower in executing tests

than Puppeteer.

8. Puppeteer APIs are not easier to use

than Cypress.

Cypress APIs are easier to use than

Puppeteer.

9. Puppeteer comes free of cost. Cypress has both free and paid

versions.

10. Puppeteer has no features of

fixtures and group fixtures in tests.

Cypress has the features of fixtures

and group fixtures applied in tests.

11. Puppeteer — Comparison between
Puppeteer and Cypress

Puppeteer

 25

11. Grouping of tests for execution

cannot be done in Puppeteer.

Grouping of tests for execution can be

done in Cypress.

12. Puppeteer has no mocking

capabilities.

Cypress has the mocking capabilities.

Let us observe the npm trends of Puppeteer and Cypress for the last two years. We shall

observe an upward trend towards the use of both Puppeteer and Cypress (available from

the below link):

https://www.npmtrends.com/cypress-vs-puppeteer

Puppeteer

 26

The browser operations can be done by Puppeteer with the help of below given methods:

launch()

It is used to open new browsers and connect with an instance of Chromium. It has some

optional parameters which are as follows:

Product: This is of String type and is used to point to the browser to be launched. The

syntax is as follows:

let l = await puppeteer.launch({product : "chrome" })

headless: This is of Boolean type(default value is true) and it has to be set with false

value inorder to execute the tests in headed mode. The syntax is as follows:

let l = await puppeteer.launch({headless : false})

devtools: This is of Boolean type. If it is set to true, then DevTools shall open

automatically in each browser tab. Also, the headless parameter should be set to false, if

devtools is set to true. The syntax is as follows:

let l = await puppeteer.launch({devtools: true})

defaultViewport: This is of type object. It provides a persistent viewport for a

page(default value of viewport is 800*600). We can modify the size of the viewport by

mentioning integer values in width and height for pixels. The syntax is as follows:

let l = await puppeteer.launch({defaultViewport: { width: 500, height: 459}})

slowMo: This is of type number. This parameter is used to slow down the Puppeteer

execution for some time, provided in milliseconds. The syntax is as follows:

let l = await puppeteer.launch({slowMo: 500})

goTo()

It is used to navigate to a webpage. The URL of the page to be navigated is passed as a

parameter. The syntax is as follows:

await page.goto('https://www.tutorialspoint.com/index.htm')

close()

It is used to close an opened browser. The syntax is as follows:

await browser.close()

12. Puppeteer — Browser Operations

Puppeteer

 27

browserContexts()

This yields an array of all opened browser contexts.

createIncognitoBrowserContext()

It opens a new browser in incognito context.

defaultBrowserContext()

It yields a default browser context.

disconnect()

It is used to disconnect Puppeteer from the browser instance.

isConnected()

It is used to verify whether a browser is connected.

newPage()

It yields a Promise with a new page object.

pages()

It yields a Promise with an array of all open page objects.

process()

It yields a browser process if the instance is created with the launch method.

Furthermore, it yields a null value if the instance is created with the connect method.

target()

It yields the target for a browser.

targets()

It yields a Promise containing the array of all targets which are active.

Puppeteer

 28

We can handle tabs in Puppeteer using the below methods:

newPage()

We can open a new tab using this method available in the browser object. The syntax is

as follows:

const p = await browser.newPage()

close()

We can close the tab opened using this method. The syntax is as follows:

await p.close()

close()

We can close all the tabs opened using this method available in the browser object. The

syntax is as follows:

await browser.close()

To begin, follow Steps 1 to 2 from the Chapter of Basic Test on Puppeteer which are as

follows:

Step 1: Create a new file within the directory where the node_modules folder is created

(location where the Puppeteer and Puppeteer core have been installed).

The details on Puppeteer installation is discussed in the Chapter of Puppeteer

Installation.

Right-click on the folder where the node_modules folder is created, then click on the

New file button.

Step 2: Enter a filename, say testcase1.js.

13. Puppeteer — Handling Tabs

Puppeteer

 29

Step 3: Add the below code within the testcase1.js file created.

//adding Puppeteer library

const pt = require('puppeteer')

pt.launch().then(async browser => {

 //browser new page

 const p = await browser.newPage();

 //set viewpoint of browser page

 await p.setViewport({ width: 1000, height: 500 })

 //launch URL

 await p.goto('https://www.tutorialspoint.com/index.htm')

 //capture screenshot

 await p.screenshot({

 path: 'tutorialspoint.png'

 });

 //browser close

 await browser.close()

Step 4: Execute the code with the command given below:

node <filename>

So in our example, we shall run the following command:

node testcase1.js

Puppeteer

 30

After the command has been successfully executed, a new file called the

tutorialspoint.png gets created within the page directory. It contains the captured

screenshot of the page launched in the browser.

Puppeteer

 31

Some of the basic commands of Puppeteer are listed below:

title()

This command is used to obtain the title of the present page. The syntax is as follows:

await page.title()

url()

This command is used to obtain the URL of the application currently launched in the

browser. The syntax is as follows:

await page.url()

content()

This command is used to obtain the page source code The syntax is as follows:

await page.content()

To begin, follow Steps 1 to 2 from the Chapter of Basic Test on Puppeteer which are as

follows:

Step 1: Create a new file within the directory where the node_modules folder is created

(location where the Puppeteer and Puppeteer core have been installed).

The details on Puppeteer installation is discussed in the Chapter of Puppeteer

Installation.

Right-click on the folder where the node_modules folder is created, then click on the

New file button.

Step 2: Enter a filename, say testcase1.js.

14. Puppeteer — Basic Commands

Puppeteer

 32

Step 3: Add the below code within the testcase1.js file created.

//adding Puppeteer library

const pt = require('puppeteer');

pt.launch().then(async browser => {

 //browser new page

 const p = await browser.newPage();

 //set viewpoint of browser page

 await p.setViewport({ width: 1000, height: 500 })

 //launch URL

 await p.goto('https://www.tutorialspoint.com/questions/index.php')

 //obtain page title

 console.log("Page title: " + await p.title())

 //obtain URL

 console.log("Url: " + await p.url())

 //browser close

 await browser.close()

})

Step 4: Execute the code with the command given below:

node <filename>

So in our example, we shall run the following command:

node testcase1.js

Puppeteer

 33

After the command has been successfully executed, the page title - The Best Technical

Questions and Answers gets printed in the console. Also, the URL -

https://www.tutorialspoint.com/questions/index.php gets printed in the console. The

execution has happened in the headless mode.

Puppeteer

 34

We can run the tests developed in Puppeteer in Firefox. It must be remembered that

while executing the test in Firefox, Puppeteer uses its internal Firefox browser and not

the Firefox browser installed in the local system.

Step 1: We have to first install Puppeteer for the Firefox browser by executing the below

command:

npm install puppeteer-firefox

Also, we have to add the Firefox-Puppeteer library in the code.

const f = require('puppeteer-firefox')

To begin, follow Steps 1 to 2 from the Chapter of Basic Test on Puppeteer which are as

follows:

Step 1: Create a new file within the directory where the node_modules folder is created

(location where the Puppeteer and Puppeteer core have been installed).

The details on Puppeteer installation is discussed in the Chapter of Puppeteer

Installation.

Right-click on the folder where the node_modules folder is created, then click on the

New file button.

15. Puppeteer with Firefox

Puppeteer

 35

Step 2: Enter a filename, say testcase1.js.

Step 3: Add the below code within the testcase1.js file created.

//adding Puppeteer- Firefox library

const pt = require('puppeteer-firefox');

//adding headless flag to false

pt.launch().then(async browser => {

 //browser new page

 const p = await browser.newPage();

 //set viewpoint of browser page

 await p.setViewport({ width: 1000, height: 500 })

 //launch URL

 await p.goto('https://www.tutorialspoint.com/about/about_careers.htm')

 //get browser

 const v = await p.browser().version();

 console.log("Browser: " + v)

 //browser close

Puppeteer

 36

 await browser.close()

})

Step 4: Execute the code with the command given below:

node <filename>

So in our example, we shall run the following command:

node testcase1.js

After the command has been successfully executed, the browser in which the test is

executed - Firefox/65.0 gets printed in the console.

Puppeteer

 37

The tests written in Puppeteer are executed in the Chrome or Chromium browser in a

headless mode by default. Also, we have to add the below Puppeteer library in the code.

const pt = require('puppeteer')

To begin, follow Steps 1 to 2 from the Chapter of Basic Test on Puppeteer which are as

follows:

Step 1: Create a new file within the directory where the node_modules folder is created

(location where the Puppeteer and Puppeteer core have been installed).

The details on Puppeteer installation is discussed in the Chapter of Puppeteer

Installation.

Right-click on the folder where the node_modules folder is created, then click on the

New file button.

Step 2: Enter a filename, say testcase1.js.

Step 3: Add the below code within the testcase1.js file created.

16. Puppeteer with Chrome

Puppeteer

 38

//adding Puppeteer library

const pt = require('puppeteer');

pt.launch().then(async browser => {

 //browser new page

 const p = await browser.newPage();

 //set viewpoint of browser page

 await p.setViewport({ width: 1000, height: 500 })

 //launch URL

 await p.goto('https://www.tutorialspoint.com/index.htm')

 //get browser

 const v = await p.browser().version();

 console.log("Browser: " + v)

 //browser close

 await browser.close()

 })

Step 4: Execute the code with the command given below:

node <filename>

So in our example, we shall run the following command:

node testcase1.js

After the command has been successfully executed, the browser in which the test is

executed - HeadlessChrome/92.0.4512.0 gets printed in the console.

Puppeteer

 39

Puppeteer is capable of handling Alerts. The automation tools like Selenium,

WebdriverIO, and so on, accept or dismiss an alert after it has appeared on the page.

However in Puppeteer, the user has to give direction whether to accept or dismiss an

alert before it appears on the page. For this, the on event listener has to be triggered

using Puppeteer.

Methods for Handling Confirm Alerts

Some methods to work with Alerts are listed below:

 accept(): Promise<void> - This method is used to accept an alert.

 message(): string - This method is used to yield the message obtained in an

alert.

 type(): DialogType - This method is used to obtain the Dialog type. A Dialog

type can be a prompt, confirm or prompt.

 dismiss(): Promise<void> - This method is used to dismiss an alert.

In the below given image, on clicking Click for JS Confirm, a confirm alert is displayed.

Let us obtain the text on the alert.

To begin, follow Steps 1 to 2 from the Chapter of Basic Test on Puppeteer which are as

follows:

Step 1: Create a new file within the directory where the node_modules folder is created

(location where the Puppeteer and Puppeteer core have been installed).

The details on Puppeteer installation is discussed in the Chapter of Puppeteer

Installation.

Right-click on the folder where the node_modules folder is created, then click on the

New file button.

17. Puppeteer — Handling Confirm Alerts

Puppeteer

 40

Step 2: Enter a filename, say testcase1.js.

Step 3: Add the below code within the testcase1.js file created.

//Puppeteer library

const pt= require('puppeteer')

async function confirmAlert(){

 //launch browser in headless mode

 const browser = await pt.launch()

 //browser new page

 const page = await browser.newPage();

 //on event listener trigger

 page.on('dialog', async dialog => {

 //get alert message

 console.log(dialog.message());

 //accept alert

 await dialog.accept();

 })

Puppeteer

 41

 //launch URL

 await page.goto('https://the-internet.herokuapp.com/javascript_alerts')

 //identify element with xpath then click

 const b = (await page.$x("//button[text()='Click for JS Confirm']"))[0]

 b.click()

}

confirmAlert()

Step 4: Execute the code with the following command

node <filename>

So in our example, we shall run the command given below:

node testcase1.js

After the command has been successfully executed, the confirm alert text - I am a JS

Confirm gets printed in the console.

Puppeteer

 42

We can handle drop downs in the UI while automating a test using Puppeteer. The static

drop downs are identified in the html code with the tagname as select and its options

have the tagname as option.

Methods to Handle Dropdown

Some methods to work with static dropdowns:

select()

This method is used to select an option from the dropdown. The value of the option to be

selected is passed as a parameter to this method. The syntax is as follows:

const page = await browser.newPage()

 const f = await page.$('[name="selType"]')

await f.select("subject")

We can also select multiple options from a multi-select dropdown. The syntax is as

follows:

await f.select("subject", "name")

To obtain select value from the dropdown, we have to use the getProperty method and

pass value as a parameter to this field.

const v = await (await n.getProperty("value")).jsonValue()

console.log(v)

type()

This method is used to select an option from the dropdown. The value of the option to be

selected is passed as a parameter to this method. The syntax is as follows:

const page = await browser.newPage()

18. Puppeteer — Handling Drop-downs

Puppeteer

 43

 const f = await page.$('[name="selType"]')

await f.type("subject")

To begin, follow Steps 1 to 2 from the Chapter of Basic Test on Puppeteer which are as

follows:

Step 1: Create a new file within the directory where the node_modules folder is created

(location where the Puppeteer and Puppeteer core have been installed).

The details on Puppeteer installation is discussed in the Chapter of Puppeteer

Installation.

Right-click on the folder where the node_modules folder is created, then click on the

New file button.

Step 2: Enter a filename, say testcase1.js.

Step 3: Add the below code within the testcase1.js file created.

//Puppeteer library

const pt= require('puppeteer')

async function dropDownHandle(){

 //launch browser in headless mode

Puppeteer

 44

 const browser = await pt.launch()

 //browser new page

 const page = await browser.newPage()

 //launch URL

 await page.goto('https://www.tutorialspoint.com/tutor_connect/index.php')

 //identify dropdown then select an option by value

 const f = await page.$('[name="selType"]')

 await f.select("subject")

 //wait for sometime

 await page.waitForTimeout(4000)

 //get value selected

 const v = await (await f.getProperty("value")).jsonValue()

 console.log(v)

}

dropDownHandle()

Step 4: Execute the code with the command given below:

node <filename>

So in our example, we shall run the following command:

node testcase1.j

After the command has been executed successfully, the value of the option selected in

the dropdown - subject is printed in the console.

Puppeteer

 45

We can handle elements on page with Puppeteer. Once we navigate to a webpage, we

have to interact with the webelements available on the page like clicking a link/button,

entering text within an edit box, and so on to complete our automation test case.

For this, our first job is to identify the element. To get the property of an element

uniquely we need to inspect it (right-click on the element then select the option Inspect).

The ElementHandle objects are created by the methods - page.$, page.$$ and page.$x.

These objects refer to an element or tag in a page.

To determine an element uniquely, we can either take the help of any of the attributes

within the html tag or we can use a combination of attributes on the html tag. Mostly

the id attribute is used since it is unique to a page.

However, if the id attribute is not present, we can use other attributes like the class,

name, and so on. In case the attributes like id, name, and class are not present, we can

utilise a distinct attribute available to only that tag or a combination of attributes and

their values to identify an element. For this, we have to use the xpath expression.

Methods to locate elements

These methods are listed below:

page.$(locator value)

This method yields a Promise with the ElementHandle. The ElementHandle is an object of

the identified element. If there are multiple elements having the same locator value,

then only the first matching element from the top left corner of the page shall be

returned.

page.$$(locator value)

This method yields a Promise with an array of ElementHandle. If there are multiple

elements having the same locator value, then all matching elements shall be returned in

the form of an array.

page.$x(xpath value)

This method yields a Promise with an array of ElementHandle. If there are multiple

elements having the same xpath value, then all matching elements shall be returned in

the form of an array. In case, there is one matching element, then the array returned

shall have a single element.

The ElementHandle methods like elementHandle.$, elementHandle.$$ and

elementHandle.$x can be applied to an element. In that case, an element shall be

searched within the DOM of the present ElementHandle and not in the entire DOM.

In the below given image, let us take the example of an element having the li tag(having

a parent element ul) and class attribute value as heading.

19. Puppeteer — Locators

Puppeteer

 46

To identify it using the ElementHandle method on the page, the expression should be as

follows:

const n = await page.$(".heading")

To identify it using the ElementHandle method on an element, the expression should be:

const m = await page.$("ul")

const p = await m.$(".heading")

Now, refer the image given below of an element having the li tag

Types of Locators

The types of locators in Puppeteer are listed below:

 ID

 Class

 Type

 Xpath

 Attribute

 Type

To work with the above locators we should have the basic understanding of HTML code.

Let us take an example of an edit box having the below properties:

Puppeteer

 47

Here, input is the tagname. A tag in HTML may or may not have attributes. The type,

class, name, id and so on are the attributes of the element.

For example, in the expression id = "gsc-i-id1", text to the left of = is the attribute name

(id) and to the right of = is the attribute value (gsc-i-id1).

An attribute may or may not have a value assigned. Also, if a value is assigned, then it

should be enclosed in double or single quotes. The value of an attribute is set by a

developer as per his choice.

Let us take an example of an element having the below html code:

Puppeteer

 48

We can identify the first checkbox in the above image, with the expression:

 const n = await page.$("input[type='checkbox']")

To begin, follow Steps 1 to 2 from the Chapter of Basic Test on Puppeteer which are as

follows:

Step 1: Create a new file within the directory where the node_modules folder is created

(location where the Puppeteer and Puppeteer core have been installed).

The details on Puppeteer installation is discussed in the Chapter of Puppeteer

Installation.

Puppeteer

 49

Right-click on the folder where the node_modules folder is created, then click on the

New file button.

Step 2: Enter a filename, say testcase1.js.

Step 3: Add the below code within the testcase1.js file created.

//Puppeteer library

const pt= require('puppeteer')

async function checkBoxHandle(){

 //launch browser in headed mode

 const browser = await pt.launch()

 //browser new page

 const page = await browser.newPage()

 //launch URL

 await page.goto('https://the-internet.herokuapp.com/checkboxes')

 //identify element with xpath then click

 const n = await page.$("input[type='checkbox']")

 n.click()

Puppeteer

 50

 //wait for sometime

 await page.waitForTimeout(4000)

 //verify if checkbox is checked

 const v = await (await n.getProperty("checked")).jsonValue()

 console.log(v)

}

checkBoxHandle()

Step 4: Execute the code with the below mentioned command:

node <filename>

So in our example, we shall run the following command:

node testcase1.js

After the command has been executed successfully, the boolean value true is printed in

the console. This is returned by getProperty("checked") which returns true as the

checkbox is selected.

Puppeteer

 51

To determine an element uniquely, we can either take the help of any of the attributes

within the html tag or we can use a combination of attributes on the html tag. Mostly the

id attribute is used since it is unique to a page.

However, if the id attribute is not present, we can use other attributes like the class,

name, and so on. In case the attributes like id, name, and class are not present, we can

utilise a distinct attribute available to only that tag or a combination of attributes and

their values to identify an element. For this, we have to use the xpath expression.

If there are duplicate attributes or no attribute for an element, then the function text() is

used to identify an element. In order to use the text() function, it is mandatory that the

element should have a text visible on the page.

The syntax for the use of text() function is as follows:

//tagname[text()='visible text on element']

If the value of an element or the text is partially dynamic in nature or very lengthy, we

can use the contains() function. In order to use the contains() function, it is mandatory

that the element should either have an attribute value or a text.

The syntax for the use of contains() function is as follows:

//tagname[contains(@attribute,'value')]

//tagname[contains(text(),'visible text on element')]

If the text of an element begins with a particular text, we can use the starts-with()

function to it.

The syntax for the use of starts-with() function is as follows:

//tagname[starts-with(text(),'visible text on element')

In all the above functions, tagname is optional. Instead of tagname, we can use the

symbol *.

In the below image, let us identify the element - Library with the help of its displayed

text and then click on it.

20. Puppeteer — Xpath Functions

Puppeteer

 52

The xpath for the element shall be //*[text()='Library'].

Here, we are working with the xpath selector, so we have to use the method:

page.$x(xpath value). The detail on this method is discussed in the Chapter - Puppeteer

Locators.

To begin, follow Steps 1 to 2 from the Chapter of Basic Test on Puppeteer which are as

follows:

Step 1: Create a new file within the directory where the node_modules folder is created

(location where the Puppeteer and Puppeteer core have been installed).

The details on Puppeteer installation is discussed in the Chapter of Puppeteer

Installation.

Right-click on the folder where the node_modules folder is created, then click on the

New file button.

Step 2: Enter a filename, say testcase1.js.

Puppeteer

 53

Step 3: Add the below code within the testcase1.js file created.

//Puppeteer library

const pt= require('puppeteer')

async function selectorFunTextXpath(){

 //launch browser in headless mode

 const browser = await pt.launch()

 //browser new page

 const page = await browser.newPage()

 //launch URL

 await page.goto('https://www.tutorialspoint.com/index.htm')

 //identify element with xpath function - text() then click

 const b = (await page.$x("//*[text()='Library']"))[0]

 b.click()

 //wait for sometime

 await page.waitForTimeout(4000)

 //obtain URL after click

 console.log(await page.url())

}

selectorFunTextXpath()

Step 4: Execute the code with the command given below:

node <filename>

So in our example, we shall run the following command:

node testcase1.js

Puppeteer

 54

After the command has been successfully executed, the URL of the page navigated on

clicking the element Library - https://www.tutorialspoint.com/tutorialslibrary.htm gets

printed in the console.

Puppeteer

 55

To determine an element uniquely, we can either take the help of any of the attributes

within the html tag or we can use a combination of attributes on the html tag. Mostly

the id attribute is used since it is unique to a page.

However, if the id attribute is not present, we can use other attributes like the class,

name, and so on. In case the attributes like id, name, and class are not present, we can

utilise a distinct attribute available to only that tag or a combination of attributes and

their values to identify an element. For this, we have to use the xpath expression.

If an xpath expression with a single attribute identifies multiple elements, we can use

more than one attribute in the xpath expression to locate a single element.

The format for writing an xpath with only one attribute is as follows:

//tagname[@attribute='value']

For multiple attributes, we can apply AND and OR conditions. The format for writing an

xpath with AND condition:

//tagName[@attribute1='value1'] [@attribute2='value2']

Or,

//tagName[@attribute1='value1' and @attribute2='value2']

The format for writing an xpath with OR condition is as follows:

//tagName[@attribute1='value1' or @attribute2='value2']

We can also identify an element by applying the NOT condition on an attribute. The

format for writing an xpath with NOT condition:

//tagname[not(@attribute='value')]

Let us identify the below highlighted logo on the page with the help of the alt attribute

and then click on it.

21. Puppeteer — Xpath Attributes

Puppeteer

 56

The xpath for the element shall be as follows:

 //img[@alt='tutorialspoint'].

Here, we are working with the xpath selector, so we have to use the method:

page.$x(xpath value). The detail on this method is discussed in the Chapter of Puppeteer

Locators.

To begin, follow Steps 1 to 2 from the Chapter of Basic Test on Puppeteer which are as

follows:

Step 1: Create a new file within the directory where the node_modules folder is created

(location where the Puppeteer and Puppeteer core have been installed).

The details on Puppeteer installation is discussed in the Chapter of Puppeteer

Installation.

Right-click on the folder where the node_modules folder is created, then click on the

New file button.

Step 2: Enter a filename, say testcase1.js.

Puppeteer

 57

Step 3: Add the below code within the testcase1.js file created.

//Puppeteer library

const pt= require('puppeteer')

async function selectorAttributeXpath(){

 //launch browser in headed mode

 const browser = await pt.launch()

 //browser new page

 const page = await browser.newPage()

 //launch URL

 await page.goto('https://www.tutorialspoint.com/questions/index.php')

 //identify element with relative xpath then click

 const b = (await page.$x("//img[@alt='tutorialspoint']"))[0]

 b.click()

 //wait for sometime

 await page.waitForTimeout(4000)

 //obtain URL after click

 console.log(await page.url())

}

selectorAttributeXpath()

Step 4: Execute the code with the command given below:

node <filename>

So in our example, we shall run the following command:

node testcase1.js

Puppeteer

 58

After the command has been successfully executed, the URL of the page navigated on

clicking the logo image - https://www.tutorialspoint.com/index.htm gets printed in the

console.

Puppeteer

 59

To determine an element uniquely, we can either take the help of any of the attributes

within the html tag or we can use a combination of attributes on the html tag. Mostly

the id attribute is used since it is unique to a page.

However, if the id attribute is not present, we can use other attributes like the class,

name, and so on. In case the attributes like id, name, class are not present, we can

utilise a distinct attribute available to only that tag or a combination of attributes and

their values to identify an element. For this, we have to use the xpath expression.

Obtaining one element from a collection of matching elements by utilising the index is

known as the group index. If an xpath expression identifies multiple elements, then we

can use the group index.

The format for writing a group index is first the xpath expression followed by the index

number enclosed in []. It represents an xpath array with index starting from 1. The

function last() is used to point to the last element in the xpath array.

The syntax for the use of function last() is as follows:

(/table/tbody/tr/td[1]/input)[last()]

The function position() is used to obtain an element at a particular position in the xpath

array. The syntax is as follows:

(/table/tbody/tr/td[1]/input)[position()=1]

The above xpath expression shall obtain the first element from the group of all the

matching elements.

In the below image, let us identify the highlighted edit box and input some text in it.

22. Puppeteer — Xpath Grouping

Puppeteer

 60

In the above example, there are two columns (represented by td tags) in the table

having the tr tag as their parent. The input box is present in the first column.

So the xpath expression shall be as follows:

//table/tbody/tr/td[1]/input

Here, we are working with the xpath selector, so we have to use the method:

page.$x(xpath value). The details on this method are discussed in the Chapter of

Puppeteer Locators.

To begin, follow Steps 1 to 2 from the Chapter of Basic Test on Puppeteer which are as

follows:

Step 1: Create a new file within the directory where the node_modules folder is created

(location where the Puppeteer and Puppeteer core have been installed).

The details on Puppeteer installation is discussed in the Chapter of Puppeteer

Installation.

Right-click on the folder where the node_modules folder is created, then click on the

New file button.

Step 2: Enter a filename, say testcase1.js.

Step 3: Add the below code within the testcase1.js file created.

Puppeteer

 61

//Puppeteer library

const pt= require('puppeteer')

async function selectorGroupXpath(){

 //launch browser in headless mode

 const browser = await pt.launch()

 //browser new page

 const page = await browser.newPage()

 //launch URL

 await page.goto('https://www.tutorialspoint.com/index.htm')

 //identify element with group index xpath then enter text

 const f = (await page.$x("//table/tbody/tr/td[1]/input"))[0]

 f.type("Puppeteer")

 //wait for sometime

 await page.waitForTimeout(4000)

 //capture screenshot

 await page.screenshot({

 path: 'tutorialspoint.png'

 });

 //browser close

 await browser.close()

}

selectorGroupXpath()

Step 4: Execute the code with the command given below:

node <filename>

So in our example, we shall run the following command:

node testcase1.js

Puppeteer

 62

After the command has been successfully executed, a new file called the

tutorialspoint.png gets created within the page directory. It contains the captured

screenshot of the page launched in the browser with the text Puppeteer.

Puppeteer

 63

To determine an element uniquely, we can either take the help of any of the attributes

within the html tag or we can use a combination of attributes on the html tag. Mostly

the id attribute is used since it is unique to a page.

However, if the id attribute is not present, we can use other attributes like the class,

name, and so on. In case the attributes like id, name, class are not present, we can

utilise a distinct attribute available to only that tag or a combination of attributes and

their values to identify an element. For this, we have to use the xpath expression. Also,

if the element on a page is dynamic, then xpath selector can be a good choice as a

selector.

Xpath can be of two types - absolute and relative. The absolute xpath begins with /

symbol and starts from the root node upto the element that we want to identify. An

example is given below for the same.

 /html/body/div[1]/div/div[1]/a

Let us identify the below highlighted logo on the page with the help of the absolute

xpath and then click on it.

23. Puppeteer — Absolute Xpath

Puppeteer

 64

The absolute xpath for the logo is as follows:

 html/body/header/div[4]/div[1]/div[1]/a/img.

Here, we are working with the xpath selector, so we have to use the method:

page.$x(xpath value). The detail on this method is discussed in the Chapter of Puppeteer

Locators.

To begin, follow Steps 1 to 2 from the Chapter of Basic Test on Puppeteer which are as

follows:

Puppeteer

 65

Step 1: Create a new file within the directory where the node_modules folder is created

(location where the Puppeteer and Puppeteer core have been installed).

The details on Puppeteer installation is discussed in the Chapter of Puppeteer

Installation.

Right-click on the folder where the node_modules folder is created, then click on the

New file button.

Step 2: Enter a filename, say testcase1.js.

Step 3: Add the below code within the testcase1.js file created.

//Puppeteer library

const pt= require('puppeteer')

async function selectorAbsoluteXpath(){

 //launch browser in headless mode

 const browser = await pt.launch()

 //browser new page

 const page = await browser.newPage()

 //launch URL

Puppeteer

 66

 await page.goto('https://www.tutorialspoint.com/about/about_careers.htm')

 //identify element with absolute xpath then click

 const b = (await page.$x("/html/body/header/div[4]/div[1]/div[1]/a/img"))[0]

 b.click()

 //wait for sometime

 await page.waitForTimeout(4000)

 //obtain URL after click

 console.log(await page.url())

}

selectorAbsoluteXpath()

Step 4: Execute the code with the command mentioned below:

node <filename>

So in our example, we shall run the following command:

node testcase1.js

After the command has been successfully executed, the URL of the page navigated on

clicking the logo image - https://www.tutorialspoint.com/index.htm gets printed in the

console.

Puppeteer

 67

To determine an element uniquely, we can either take the help of any of the attributes

within the html tag or we can use a combination of attributes on the html tag. Mostly

the id attribute is used since it is unique to a page.

However, if the id attribute is not present, we can use other attributes like the class,

name, and so on. In case the attributes like id, name, and class are not present, we can

utilise a distinct attribute available to only that tag or a combination of attributes and

their values to identify an element.

For this, we have to use the xpath expression. Also, if the element on a page is dynamic,

then xpath selector can be a good choice as a selector.

Relative Xpath

Xpath can be of two types - absolute and relative. A relative xpath begins from the

element to be located and not from the root.

It begins with the // symbol which refers to any descendant. Its advantage is that even if

an element is deleted or added in the DOM, the relative xpath for a specific element

remains unaffected.

To obtain a relative path by an attribute, the xpath expression is as follows:

//tagname[@attribute='value'].

Let us identify the below highlighted logo on the page with the help of the alt attribute

and then click on it.

The relative xpath for the element is given below:

//img[@alt='tutorialspoint'].

24. Puppeteer — Relative Xpath

Puppeteer

 68

Here, we are working with the xpath selector, so we have to use the method:

page.$x(xpath value). The detail on this method is discussed in the Chapter - Puppeteer

Locators.

To begin, follow Steps 1 to 2 from the Chapter of Basic Test on Puppeteer which are as

follows:

Step 1: Create a new file within the directory where the node_modules folder is created

(location where the Puppeteer and Puppeteer core have been installed).

The details on Puppeteer installation is discussed in the Chapter of Puppeteer

Installation.

Right-click on the folder where the node_modules folder is created, then click on the

New file button.

Step 2: Enter a filename, say testcase1.js.

Step 3: Add the below code within the testcase1.js file created.

//Puppeteer library

const pt= require('puppeteer')

async function selectorRelativeXpath(){

 //launch browser in headless mode

Puppeteer

 69

 const browser = await pt.launch()

 //browser new page

 const page = await browser.newPage()

 //launch URL

 await page.goto('https://www.tutorialspoint.com/questions/index.php')

 //identify element with relative xpath then click

 const b = (await page.$x("//img[@alt='tutorialspoint']"))[0]

 b.click()

 //wait for sometime

 await page.waitForTimeout(4000)

 //obtain URL after click

 console.log(await page.url())

}

selectorRelativeXpath()

Step 4: Execute the code with the command given below:

node <filename>

So in our example, we shall run the following command:

node testcase1.js

After the command has been successfully executed, the URL of the page navigated on

clicking the logo image - https://www.tutorialspoint.com/index.htm gets printed in the

console.

Puppeteer

 70

To determine an element uniquely, we can either take the help of any of the attributes

within the html tag or we can use a combination of attributes on the html tag. Mostly

the id attribute is used since it is unique to a page.

However, if the id attribute is not present, we can use other attributes like the class,

name, and so on. In case the attributes like id, name, and class are not present, we can

utilise a distinct attribute available to only that tag or a combination of attributes and

their values to identify an element.

For this, we have to use the xpath expression. Also, if the element on a page is dynamic,

then xpath selector can be a good choice as a selector.

The xpath is bi-directional which means we can traverse from the parent to the child

element and also from the child to the parent element. The details of xpath axes shall be

available in the below link:

https://www.tutorialspoint.com/xpath/xpath_axes.htm

In the below image, let us identify the highlighted edit box and obtain the value of its

class attribute - gsc-input.

In the above example, there are two columns (represented by td tags) in the table

having the tr tag as their parent. The input box is present in the first column.

So the xpath expression shall be as follows:

//table/tbody/tr/child::td.

Here, we are working with the xpath selector, so we have to use the method:

page.$x(xpath value). The details on this method are discussed in the Chapter of

Puppeteer Locators.

25. Puppeteer — Xpath Axes

https://www.tutorialspoint.com/xpath/xpath_axes.htm

Puppeteer

 71

To begin, follow Steps 1 to 2 from the Chapter of Basic Test on Puppeteer which are as

follows:

Step 1: Create a new file within the directory where the node_modules folder is created

(location where the Puppeteer and Puppeteer core have been installed).

The details on Puppeteer installation is discussed in the Chapter of Puppeteer

Installation.

Right-click on the folder where the node_modules folder is created, then click on the

New file button.

Step 2: Enter a filename, say testcase1.js.

Step 3: Add the below code within the testcase1.js file created.

//Puppeteer library

const pt= require('puppeteer')

async function selectorAxesXpath(){

 //launch browser in headless mode

 const browser = await pt.launch()

 //browser new page

Puppeteer

 72

 const page = await browser.newPage()

 //launch URL

 await page.goto('https://www.tutorialspoint.com/index.htm')

 //identify element with xpath axes

 const n = (await page.$x("//table/tbody/tr/child::td"))[0]

 // get value of class attribute

 let v = await page.$eval("input",

 n => n.getAttribute("class"))

 console.log(v)

}

selectorAxesXpath()

Step 4: Execute the code with the command given below:

node <filename>

So in our example, we shall run the following command:

node testcase1.js

After the command has been successfully executed, the value of the class attribute for

the element - gsc-input gets printed in the console.

Puppeteer

 73

Once we navigate to a webpage, we have to interact with the webelements available on

the page like clicking a link/button, entering text within an edit box, and so on to

complete our automation test case.

For this, our first job is to identify the element. If a tag is used only one time in a page,

we can use it as a type selector. If there are multiple elements with the same tag, only

the first matching element on the page shall be identified.

The syntax for type selector is as follows:

const n = await page.$("h4")

In the below example, let us identify the highlighted element having tagname h4 and

obtain its text - You are browsing the best resource for Online Education.

To begin, follow Steps 1 to 2 from the Chapter of Basic Test on Puppeteer which is as

follows:

Step 1: Create a new file within the directory where the node_modules folder is created

(location where the Puppeteer and Puppeteer core have been installed).

The details on Puppeteer installation is discussed in the Chapter of Puppeteer

Installation.

Right-click on the folder where the node_modules folder is created, then click on the

New file button.

26. Puppeteer — Type Selector

Puppeteer

 74

Step 2: Enter a filename, say testcase1.js.

Step 3: Add the below code within the testcase1.js file created.

//Puppeteer library

const pt= require('puppeteer')

async function selectorType(){

 //launch browser in headless mode

 const browser = await pt.launch()

 //browser new page

 const page = await browser.newPage()

 //launch URL

 await page.goto('https://www.tutorialspoint.com/index.htm')

 //identify element with type selector

 const n = await page.$("h4")

 //obtain text

 const text = await (await n.getProperty('textContent')).jsonValue()

 console.log("Text is: " + text)

}

selectorType()

Step 4: Execute the code with the command given below:

node <filename>

So in our example, we shall run the following command:

node testcase1.js

Puppeteer

 75

After the command has been successfully executed, the text on the element - You are

browsing the best resource for Online Education gets printed in the console.

Puppeteer

 76

Let us begin by learning about name selector.

Name Selector

Once we navigate to a webpage, we have to interact with the webelements available on

the page like clicking a link/button, entering text within an edit box, and so on to

complete our automation test case.

For this, our first job is to identify the element. If a value of the name attribute is used

only one time in a page, we can use it as a name selector. If there are multiple elements

with the same name, only the first matching element on the page shall be identified.

The syntax for name selector is as follows:

const f = await page.$('[name="search"]')

Let us identify the edit box highlighted in the below image and enter text:

The element highlighted in the above image has the name attribute value as search. The

name selector expression for the above element shall be [name="search"].

To begin, follow Steps 1 to 2 from the Chapter of Basic Test on Puppeteer which are as

follows:

Step 1: Create a new file within the directory where the node_modules folder is created

(location where the Puppeteer and Puppeteer core have been installed).

The details on Puppeteer installation is discussed in the Chapter of Puppeteer

Installation.

Right-click on the folder where the node_modules folder is created, then click on the

New file button.

27. Puppeteer — Name Selector and Class Name
Selector

Puppeteer

 77

Step 2: Enter a filename, say testcase1.js.

Step 3: Add the below code within the testcase1.js file created.

//Puppeteer library

const pt= require('puppeteer')

async function selectorName(){

 //launch browser in headless mode

 const browser = await pt.launch()

 //browser new page

 const page = await browser.newPage();

 //launch URL

 await page.goto('https://www.tutorialspoint.com/index.htm')

 //identify edit box with name

 const f = await page.$('[name="search"]')

 //enter text

 f.type("Puppeteer")

Puppeteer

 78

 //wait for sometime

 await page.waitForTimeout(4000)

 //browser close

 await browser.close()

}

selectorName()

Step 4: Execute the code with the command given below:

node <filename>

So in our example, we shall run the following command:

node testcase1.js

Class Name Selector

Once we navigate to a webpage, we have to interact with the webelements available on

the page like clicking a link/button, entering text within an edit box, and so on to

complete our automation test case.

For this, our first job is to identify the element. If a class name is used only one time in a

page, we can use it as a class name selector. If there are multiple elements with the

same class name, only the first matching element on the page shall be identified.

The syntax for class name selector is as follows:

const n = await page.$(".txtloc")

In the below example, let us identify the highlighted element having class name heading

and obtain its text - About Tutorialspoint.

The id selector expression for the above element shall be .heading.

Puppeteer

 79

To begin, follow Steps 1 to 2 from the Chapter of Basic Test on Puppeteer which are as

follows:

Step 1: Create a new file within the directory where the node_modules folder is created

(location where the Puppeteer and Puppeteer core have been installed).

The details on Puppeteer installation is discussed in the Chapter of Puppeteer

Installation.

Right-click on the folder where the node_modules folder is created, then click on the

New file button.

Step 2: Enter a filename, say testcase1.js.

Step 3: Add the below code within the testcase1.js file created.

//Puppeteer library

const pt= require('puppeteer')

async function getText(){

 //launch browser in headless mode

 const browser = await pt.launch()

 //browser new page

Puppeteer

 80

 const page = await browser.newPage()

 //launch URL

 await page.goto('https://www.tutorialspoint.com/about/about_careers.htm')

 //identify element with class name

 const f = await page.$(".heading")

 //obtain text

 const text = await (await f.getProperty('textContent')).jsonValue()

 console.log("Text is: " + text)

}

getText()

Step 4: Execute the code with the command given below:

node <filename>

So in our example, we shall run the following command:

node testcase1.js

After the command has been successfully executed, the text of the element - About

Tutorialspoint gets printed in the console.

Puppeteer

 81

Once we navigate to a webpage, we have to interact with the webelements available on

the page like clicking a link/button, entering text within an edit box, and so on to

complete our automation test case.

For this, our first job is to identify the element. An id attribute is generally unique in a

page and can be used as an id selector. It is a very useful locator and speeds up the

execution of automation tests in comparison to all the selectors.

The syntax for Id selector is as follows:

const n = await page.$("#loc")

In the below example, let us identify the highlighted element having id txtSearchText

and enter text into it.

The id selector expression for the above element shall be #txtSearchText.

To begin, follow Steps 1 to 2 from the Chapter of Basic Test on Puppeteer which are as

follows:

Step 1: Create a new file within the directory where the node_modules folder is created

(location where the Puppeteer and Puppeteer core have been installed).

The details on Puppeteer installation is discussed in the Chapter of Puppeteer

Installation.

Right-click on the folder where the node_modules folder is created, then click on the

New file button.

28. Puppeteer — Id Selector

Puppeteer

 82

Step 2: Enter a filename, say testcase1.js.

Step 3: Add the below code within the testcase1.js file created.

//Puppeteer library

const pt= require('puppeteer')

async function selectorId(){

 //launch browser in headless mode

 const browser = await pt.launch()

 //browser new page

 const page = await browser.newPage();

 //launch URL

 await page.goto('https://www.tutorialspoint.com/tutor_connect/index.php')

 //identify element with id

 const f = await page.$("#txtSearchText")

 //enter text

 f.type("Puppeteer")

Puppeteer

 83

 //wait for sometime

 await page.waitForTimeout(4000)

 //browser close

 await browser.close()

}

selectorId()

Step 4: Execute the code with the command given below:

node <filename>

So in our example, we shall run the following command:

node testcase1.js

Puppeteer

 84

Once we navigate to a webpage, we have to interact with the webelements available on

the page like clicking a link/button, entering text within an edit box, and so on to

complete our automation test case.

For this, our first job is to identify the element. If an attribute and its value is used only

one time in a tag, we can use it as an attribute selector. If there are multiple elements

with the same attribute value, only the first matching element on the page shall be

identified.

The syntax for attribute selector is as follows:

 const f = await page.$("ul[name='val']")

Here, ul is the tagname and val is the value set for the name attribute.

In the below image, let us obtain the text - About Tutorialspoint for the highlighted

element:

The attribute selector expression for the above element shall be li[class='heading'].

To begin, follow Steps 1 to 2 from the Chapter of Basic Test on Puppeteer which are as

follows:

Step 1: Create a new file within the directory where the node_modules folder is created

(location where the Puppeteer and Puppeteer core have been installed).

The details on Puppeteer installation is discussed in the Chapter of Puppeteer

Installation.

Right-click on the folder where the node_modules folder is created, then click on the

New file button.

29. Puppeteer — Attribute Selector

Puppeteer

 85

Step 2: Enter a filename, say testcase1.js.

Step 3: Add the below code within the testcase1.js file created.

//Puppeteer library

const pt= require('puppeteer')

async function selectorAttribute(){

 //launch browser in headed mode

 const browser = await pt.launch()

 //browser new page

 const page = await browser.newPage()

 //launch URL

 await page.goto('https://www.tutorialspoint.com/about/about_careers.htm')

 //identify element with attribute selector

 const n = await page.$("li[class='heading']")

 //obtain text

 const t = await (await n.getProperty('textContent')).jsonValue()

Puppeteer

 86

 console.log("Obtained text is: " + t)

}

selectorAttribute()

Step 4: Execute the code with the command given below:

node <filename>

So in our example, we shall run the following command:

node testcase1.js

After the command has been successfully executed, the text of the element - About

Tutorialspoint gets printed in the console.

Puppeteer

 87

Puppeteer is capable of handling a link/button on a page. Before clicking an element we

must be able to uniquely identify it with the help of any of the locators. In Puppeteer, we

can click an element only if its dimensions are greater than zero pixel.

In the below image, we shall click on the below highlighted link - Subscribe to Premium

Plan having tagname as h1:

To begin, follow Steps 1 to 2 from the Chapter of Basic Test on Puppeteer which are as

follows:

Step 1: Create a new file within the directory where the node_modules folder is created

(location where the Puppeteer and Puppeteer core have been installed).

The details on Puppeteer installation is discussed in the Chapter of Puppeteer

Installation.

Right-click on the folder where the node_modules folder is created, then click on the

New file button.

Step 2: Enter a filename, say testcase1.js.

30. Puppeteer — Handling Links/Button

Puppeteer

 88

Step 3: Add the below code within the testcase1.js file created.

//Puppeteer library

const pt= require('puppeteer')

async function clickElement(){

 //launch browser in headless mode

 const browser = await pt.launch()

 //browser new page

 const page = await browser.newPage()

 //launch URL

 await page.goto('https://www.tutorialspoint.com/index.htm')

 //identify element then click

 await page.click('h1');

 //get page title after click

 console.log(await page.title())

}

clickElement()

Step 4: Execute the code with the command given below:

node <filename>

So in our example, we shall run the following command:

node testcase1.js

Puppeteer

 89

After the command has been successfully executed, the title - Tutorials Point Paid

Subscription Packages - Tutorialspoint obtained after clicking the link - Subscribe to

Premium Plan gets printed in the console.

Puppeteer

 90

Let us understand how Puppeteer can handle edit boxes.

Handling Edit Boxes

Puppeteer is capable of handling edit boxes. An edit box has an HTML tag as input and

its type attribute is set to the value as text.

Some methods to work with edit boxes are listed below:

type()

This method is used to input text into an edit box and text area without replacing the

already present content.

The syntax for type() is as follows::

const n = await page.$("#txt")

await n.type("Puppeteer")

We can enter text in an edit box with some delay. This is done by adding the parameter

{delay:time interval}. The time interval is expressed in the milliseconds.

The syntax for the same is as follows:

await page.type("[class='loc']", "Tutorialspoint", {delay:700})

To delete a text entered in an edit box, we have to perform the click event three times

on the field(with the parameter clickCount) and then press backspace. It is similar to

selecting all values in an edit box and then pressing backspace.

The syntax is given below:

const n = await page.$("#txt")

await n.type("Puppeteer")

await n.click({clickCount: 3});

await page.keyboard.press('Backspace')

To get value entered in an edit box, we have to use the getProperty method and pass

value as a parameter to this field.

const v = await (await n.getProperty("value")).jsonValue()

console.log(v)

In the below image, let us input the text Puppeteer and then clear it.

31. Puppeteer — Handling Edit Boxes and
Checkboxes

Puppeteer

 91

To begin, follow Steps 1 to 2 from the Chapter of Basic Test on Puppeteer which is as

follows:

Step 1: Create a new file within the directory where the node_modules folder is created

(location where the Puppeteer and Puppeteer core have been installed).

The details on Puppeteer installation is discussed in the Chapter of Puppeteer

Installation.

Right-click on the folder where the node_modules folder is created, then click on the

New file button.

Step 2: Enter a filename, say testcase1.js.

Step 3: Add the below code within the testcase1.js file created.

Puppeteer

 92

//Puppeteer library

const pt= require('puppeteer')

async function enterText(){

 //launch browser in headless mode

 const browser = await pt.launch()

 //browser new page

 const page = await browser.newPage();

 //launch URL

 await page.goto('https://www.tutorialspoint.com/index.htm')

 //identify edit box

 const f = await page.$("#gsc-i-id1")

 //enter text

 f.type("Puppeteer")

 //clear text entered

 await f.click({clickCount: 3})

 //wait for sometime

 await page.waitForTimeout(4000)

 await page.keyboard.press('Backspace')

 //browser close

 await browser.close()

}

enterText()

Step 4: Execute the code with the command given below:

node <filename>

So in our example, we shall run the following command:

node testcase1.js

Handling Checkboxes

We can handle checkboxes in the UI while automating a test using Puppeteer. The

checkboxes are identified in the html code with the tagname as input and type as

checkbox.

Puppeteer

 93

Some methods to work with checkboxes are given below:

click()

It is used to check and uncheck a checkbox. This method is a part of the ElementHandle

class.

The syntax of click() is as follows:

const n = await page.$("#txt")

n.click()

Puppeteer

 94

To verify if a checkbox is checked, we have to use the getProperty method and pass

value as a parameter to this field. It returns a Boolean value(true if checked, false if

not).

const v = await (await n.getProperty("checked")).jsonValue()

console.log(v)

To begin, follow Steps 1 to 2 from the Chapter of Basic Test on Puppeteer which are as

follows:

Step 1: Create a new file within the directory where the node_modules folder is created

(location where the Puppeteer and Puppeteer core have been installed).

The details on Puppeteer installation is discussed in the Chapter of Puppeteer

Installation.

Right-click on the folder where the node_modules folder is created, then click on the

New file button.

Step 2: Enter a filename, say testcase1.js.

Step 3: Add the below code within the testcase1.js file created.

//Puppeteer library

Puppeteer

 95

const pt= require('puppeteer')

async function checkBoxHandle(){

 //launch browser in headless mode

 const browser = await pt.launch()

 //browser new page

 const page = await browser.newPage()

 //launch URL

 await page.goto('https://the-internet.herokuapp.com/checkboxes')

 //identify element then click

 const n = await page.$("input[type='checkbox']")

 n.click()

 //wait for sometime

 await page.waitForTimeout(4000)

 //verify if checkbox is checked

 const v = await (await n.getProperty("checked")).jsonValue()

 console.log(v)

}

checkBoxHandle()

Step 4: Execute the code with the command given below:

node <filename>

So in our example, we shall run the following command:

node testcase1.js

After the command has been executed successfully, the boolean value true is printed in

the console. This is returned by the getProperty("checked") which returns true as the

checkbox is selected.

Puppeteer

 96

The frames in an html code are represented by the frames/iframe tag. Puppeteer can

handle frames by switching from the main page to the frame. To work with elements

inside a frame, first we have to identify the frame with the help of locators. The method

contentFrame is used to access the elements inside the frame.

The syntax to handle frames is as follows:

const f = await page.$("frame[name='frame-bottom']")

const m = await f.contentFrame()

Let us see the html code of an element inside a frame and obtain the text - BOTTOM

inside it.

The tagname highlighted in the above image is frame and the value of its name attribute

is frame-bottom.

To begin, follow Steps 1 to 2 from the Chapter of Basic Test on Puppeteer which are as

follows:

Step 1: Create a new file within the directory where the node_modules folder is created

(location where the Puppeteer and Puppeteer core have been installed).

The details on Puppeteer installation is discussed in the Chapter of Puppeteer

Installation.

32. Puppeteer — Handling Frames

Puppeteer

 97

Right-click on the folder where the node_modules folder is created, then click on the

New file button.

Step 2: Enter a filename, say testcase1.js.

Step 3: Add the below code within the testcase1.js file created.

//Puppeteer library

const pt= require('puppeteer')

async function frameHandle(){

 //launch browser in headless mode

 const browser = await pt.launch()

 //browser new page

 const page = await browser.newPage()

 //launch URL

 await page.goto('https://the-internet.herokuapp.com/nested_frames')

 //identify frame

 const f = await page.$("frame[name='frame-bottom']")

Puppeteer

 98

 //move to frame

 const x = await f.contentFrame();

 //identify element inside frame

 const n = await x.$("body")

 //get text

 const v = await (await n.getProperty("textContent")).jsonValue()

 console.log(v)

}

frameHandle()

Step 4: Execute the code with the command:

node <filename>

So in our example, we shall run the command:

node testcase1.js

After the command has been successfully executed, the text within the frame - BOTTOM

gets printed in the console.

Puppeteer

 99

Puppeteer can perform keyboard simulation actions like pressing a key in the keyboard,

pressing the up, down keys, and so on. All these are done using the keyboard method.

Keyboard Methods

Some of the keyboard methods are as follows:

keyboard.press()

This method is used to simulate a key press. The key to be pressed is passed as a

parameter to this method. The syntax is as follows:

keyboard.press('Enter')

keyboard.type()

This method is used to simulate entering text from the keyboard. The text to be entered

is passed as a parameter to this method. The syntax is as follows:

keyboard.type('Puppeteer')

keyboard.sendCharacter()

It is same as keyboard.type(). The syntax is as follows:

keyboard.sendCharacter('Puppeteer')

keyboard.up()

This method is used to simulate pressing the up arrow from the keyboard. The syntax is

as follows:

keyboard.up()

keyboard.down()

This method is used to simulate pressing the down arrow from the keyboard. The syntax

is as follows:

keyboard.down()

In the below image, let us input a text and then press Enter.

33. Puppeteer — Keyboard Simulation

Puppeteer

 100

To begin, follow Steps 1 to 2 from the Chapter of Basic Test on Puppeteer which are as

follows:

Step 1: Create a new file within the directory where the node_modules folder is created

(location where the Puppeteer and Puppeteer core have been installed).

The details on Puppeteer installation is discussed in the Chapter of Puppeteer

Installation.

Right-click on the folder where the node_modules folder is created, then click on the

New file button.

Step 2: Enter a filename, say testcase1.js.

Step 3: Add the below code within the testcase1.js file created.

Puppeteer

 101

//Puppeteer library

const pt= require('puppeteer')

async function keyboradSimulation(){

 //launch browser in headless mode

 const browser = await pt.launch()

 //browser new page

 const page = await browser.newPage()

 //launch URL

 await page.goto('https://www.tutorialspoint.com/index.htm')

 //identify edit box with id

 const f = await page.$("#gsc-i-id1")

 //enter text

 f.type("Puppeteer")

 //wait for sometime

 await page.waitForTimeout(4000)

 //press Enter

 await page.keyboard.press('Enter')

 //wait for sometime

 await page.waitForTimeout(4000)

 //identify element

 const t = await page.$(".gsc-result-info")

 //obtain text

 const text = await (await t.getProperty('textContent')).jsonValue()

 console.log("Text is: " + text)

}

keyboradSimulation()

Step 4: Execute the code with the command given below:

node <filename>

So in our example, we shall run the following command:

node testcase1.js

After the command has been successfully executed, the text obtained on pressing Enter

after entering Puppeteer - About 39 results (0.15 seconds) gets printed in the console.

Puppeteer

 102

We can get element text in Puppeteer. This is done with the help of the textContent

property. This property of the element is passed as a parameter to the getProperty

method.

The syntax of getting element text is as follows:

const n = await page.$("#txt")

 const t = await (await n.getProperty('textContent')).jsonValue()

In the below image, let us obtain the text - About Tutorialspoint for the highlighted

element:

To begin, follow Steps 1 to 2 from the Chapter of Basic Test on Puppeteer which are as

follows:

Step 1: Create a new file within the directory where the node_modules folder is created

(location where the Puppeteer and Puppeteer core have been installed).

The details on Puppeteer installation is discussed in the Chapter of Puppeteer

Installation.

Right-click on the folder where the node_modules folder is created, then click on the

New file button.

34. Puppeteer — Getting Element Text

Puppeteer

 103

Step 2: Enter a filename, say testcase1.js.

Step 3: Add the below code within the testcase1.js file created.

//Puppeteer library

const pt= require('puppeteer')

async function getText(){

 //launch browser in headless mode

 const browser = await pt.launch()

 //browser new page

 const page = await browser.newPage()

 //launch URL

 await page.goto('https://www.tutorialspoint.com/about/about_careers.htm')

 //identify element

 const f = await page.$("[class='heading']")

 //obtain text

 const text = await (await f.getProperty('textContent')).jsonValue()

Puppeteer

 104

 console.log("Text is: " + text)

}

getText()

Step 4: Execute the code with the command given below:

node <filename>

So in our example, we shall run the following command:

node testcase1.js

After the command has been successfully executed, the text of the element - About

Tutorialspoint gets printed in the console.

Puppeteer

 105

We can get attribute values of an element using Puppeteer. The attributes are added

within the HTML tag. They are used to describe the properties of an element. An

attribute and its value are defined in a key-value pair.

Let us take an example of an edit box having the below properties:

Here, input is the tagname. A tag in HTML may or may not have attributes. The type,

class , name, id and so on are the attributes of this element. For example, in id = gsc-i-

id1, text to the left of = is the attribute name(i.e id) and to the right of = is the attribute

value(i.e gsc-i-id1).

An attribute may or may not have a value assigned. Also, if a value is assigned, then it

should be enclosed in double or single quotes. The value of an attribute is set by a

developer as per his choice.

Methods for Element Attribute

The ways to obtain an element attribute are listed below:

getAttribute()

This method is used to get the value of the attribute which is passed as a parameter to

this method. The syntax is as follows:

let v = await page.$eval("input",

 element=> element.getAttribute("class"))

element.<attribute name>

The syntax is as follows:

let v = await page.$eval("input",

 element=> element.class)

35. Puppeteer — Getting Element Attribute

Puppeteer

 106

element.getProperty()

This method is used to get the value of the attribute which is passed as a parameter to

this method. The syntax is as follows:

const n = await page.$("#txt")

 const t = await (await n.getProperty('textContent')).jsonValue()

In the below image, let us identify the highlighted edit box and obtain the value of its

class attribute - gsc-input.

To begin, follow Steps 1 to 2 from the Chapter of Basic Test on Puppeteer which are as

follows:

Step 1: Create a new file within the directory where the node_modules folder is created

(location where the Puppeteer and Puppeteer core have been installed).

The details on Puppeteer installation is discussed in the Chapter of Puppeteer

Installation.

Right-click on the folder where the node_modules folder is created, then click on the

New file button.

Step 2: Enter a filename, say testcase1.js.

Puppeteer

 107

Step 3: Add the below code within the testcase1.js file created.

//Puppeteer library

const pt= require('puppeteer')

async function getElementAttribute(){

 //launch browser in headless mode

 const browser = await pt.launch()

 //browser new page

 const page = await browser.newPage()

 //launch URL

 await page.goto('https://www.tutorialspoint.com/index.htm')

 //identify element with id

 const n = await page.$("#gsc-i-id1")

 //get class attribute

 let v = await page.$eval("input",

 n => n.getAttribute("class"))

 console.log(v)

}

getElementAttribute()

Step 4: Execute the code with the command given below:

node <filename>

So in our example, we shall run the following command:

node testcase1.js

Puppeteer

 108

After the command has been successfully executed, the value of the class attribute for

the element - gsc-input gets printed in the console.

Puppeteer

 109

We can run tests with mobile configurations in Puppeteer and check the responsive

property of a webpage. The list of devices that the Puppeteer supports can be obtained

from the Chrome DevTools. Right-click on a page opened in the Chrome browser, then

select Inspect.

Then, click on the Toggle Device Toolbar.

Click on the dropdown - Responsive to get the list of devices.

36. Puppeteer — Device Emulation

Puppeteer

 110

To emulate a device, we have to use the method emulate() and the device to be

emulated is passed as a parameter to this method. The syntax for this method is as

follows:

 const m = puppeteer.devices['iPhone X']

 //emulate iPhoneX

 await page.emulate(m)

Puppeteer

 111

Let us emulate the device iPhone X using the emulate function in Puppeteer.

To begin, follow Steps 1 to 2 from the Chapter of Basic Test on Puppeteer which are as

follows:

Step 1: Create a new file within the directory where the node_modules folder is created

(location where the Puppeteer and Puppeteer core have been installed).

The details on Puppeteer installation is discussed in the Chapter of Puppeteer

Installation.

Right-click on the folder where the node_modules folder is created, then click on the

New file button.

Step 2: Enter a filename, say testcase1.js.

Step 3: Add the below code within the testcase1.js file created.

//Puppeteer library

const puppeteer = require('puppeteer')

//launch browser in headed mode

puppeteer.launch({headless:false}).then(async browser => {

 //browser new page

Puppeteer

 112

 const page = await browser.newPage()

 //set device to iPhone X

 const m = puppeteer.devices['iPhone X']

 //emulate iPhoneX

 await page.emulate(m)

 //launch URL

 await page.goto('https://www.tutorialspoint.com/index.htm')

 //capture screenshot of emulated device

 await page.screenshot({ path: 'iPhoneDevice.png'})

 //browser close

 await browser.close()

})

Step 4: Execute the code with the command given below:

node <filename>

So in our example, we shall run the following command:

node testcase1.js

Puppeteer

 113

After the command has been successfully executed, a new file called the

iPhoneDevice.png gets created within the page directory. It contains the captured

screenshot of the emulated webpage for the iPhone X device.

Puppeteer

 114

We can disable JavaScript using Puppeteer. For this, we have to block the

requests/response based on its type. Let us make an attempt to launch a page by

disabling JavaScript.

To begin, follow Steps 1 to 2 from the Chapter of Basic Test on Puppeteer which are as

follows:

Step 1: Create a new file within the directory where the node_modules folder is created

(location where the Puppeteer and Puppeteer core have been installed).

The details on Puppeteer installation is discussed in the Chapter of Puppeteer

Installation.

Right-click on the folder where the node_modules folder is created, then click on the

New file button.

Step 2: Enter a filename, say testcase1.js.

Step 3: Add the below code within the testcase1.js file created.

37. Puppeteer — Disable JavaScript

Puppeteer

 115

 //Puppeteer library

 const pt = require('puppeteer')

 pt.launch().then(async browser => {

 //browser new page

 const page = await browser.newPage()

 //monitor requests

 await page.setRequestInterception(true)

 //check resourceType is script

 page.on('request', request => {

 if (request.resourceType() === 'script')

 request.abort();

 else

 request.continue();

 })

 //launch application

 await page.goto('https://www.tutorialspoint.com/index.htm')

 //browser close

 await browser.close()

 })

Step 4: Execute the code with the command given below:

node <filename>

So in our example, we shall run the following command:

node testcase1.js

Puppeteer

 116

Puppeteer Page class contains methods to achieve synchronization. These methods are

used to wait for an action/element on the page. It waits for criteria to be met (a true

value). For example, we often wait for a text to appear on the page.

Synchronization methods

The synchronization methods in Puppeteer are listed below:

waitFor

This method is used to wait for a specific amount of time before resolving a Promise. The

syntax is as follows:

await page.waitFor(4000)

waitForSelector

This method is used to wait for an element to be visible or disappear from the webpage.

The syntax is as follows:

page.waitForSelector(

 selector,

 {options : value}

)

The waitForSelector accepts two parameters. The first parameter is the selector value of

an element. The second parameter is the array of options. The options are listed below:

 Visible: Puppeteer shall wait till an element locator is visible on the page. The

default value is false.

 Hidden: Puppeteer shall wait till an element locator is hidden from the page. The

default value is false.

 Timeout: The maximum wait time for an element in milliseconds. The default

value is 30000. If the timeout is set to zero, this is discarded.

The default wait time can be modified by using the method given below:

page.setDefaultTimeout(6000)

For example,

let l = await page.waitForSelector("#ltxt", { visible: true })

38. Puppeteer — Synchronization

Puppeteer

 117

waitForXpath

This method is used to wait for element/elements identified by xpath to be visible or

disappear from the webpage. The syntax is as follows:

page.waitXpath(

 Xpath value,

 {options : value}

)

The waitForXpath accepts two parameters. The first parameter is the xpath selector

value of an element. The second parameter is the array of options. The options are listed

below:

 Visible: Puppeteer shall wait till an element locator is visible on the page. The

default value is false.

 Hidden: Puppeteer shall wait till an element locator is hidden from the page. The

default value is false.

 Timeout: The maximum wait time for an element in milliseconds. The default

value is 30000. If the timeout is set to zero, this is discarded.

The default wait time can be modified using the below method:

page.setDefaultTimeout(6000)

For example,

 let x= await page.waitForXPath("//*[@name='search']", { visible: true })

waitForFunction

This method is used to wait till the provided function returns a true value. The syntax is

as follows:

page.waitForFunction(

 pagefunction,

 {options : value},

 pagefunction args

)

The waitForFunction has the following parameters:

The pagefunction is the function to be executed. For example,

page.waitForFunction("document.getElementById('txt').value === 'text'", {})

This function shall wait till the value of the element with id is equal to text.

Puppeteer

 118

The option is an array of waiting parameters. They are - polling (the interval at which

the pagefunction should be executed in milliseconds) and timeout (The maximum time

the Puppeteer shall wait for the pagefunction to return true value).

The pagefunction args are the arguments passed to the pagefunction function.

In the below image, let us input text - Puppeteer and then press Enter.

After pressing Enter, a new window having the search results with text - About 39

results should open up.

To begin, follow Steps 1 to 2 from the Chapter of Basic Test on Puppeteer which are as

follows:

Step 1: Create a new file within the directory where the node_modules folder is created

(location where the Puppeteer and Puppeteer core have been installed).

The details on Puppeteer installation is discussed in the Chapter of Puppeteer

Installation.

Right-click on the folder where the node_modules folder is created, then click on the

New file button.

Step 2: Enter a filename, say testcase1.js.

Puppeteer

 119

Step 3: Add the below code within the testcase1.js file created.

 //Puppeteer library

const pt= require('puppeteer')

async function waitImplementation(){

 //launch browser in headless mode

 const browser = await pt.launch()

 //browser new page

 const page = await browser.newPage()

 //launch URL

 await page.goto('https://www.tutorialspoint.com/index.htm')

 //identify edit box

 const f = await page.$("#gsc-i-id1")

 //enter text

 f.type("Puppeteer")

 //wait for sometime

 await page.waitForTimeout(4000)

 //press Enter

 await page.keyboard.press('Enter')

 //wait for an element xpath

 await page.waitForXPath("//div[@class='gsc-result-info']")

 //identify element

 const t = await page.$(".gsc-result-info")

 //obtain text

 const text = await (await t.getProperty('textContent')).jsonValue()

Puppeteer

 120

 console.log("Text is: " + text)

}

waitImplementation()

Step 4: Execute the code with the command given below:

node <filename>

So in our example, we shall run the following command:

node testcase1.js

Puppeteer

 121

We can capture screenshots while working on automation tests developed in Puppeteer

using the screenshot method. A screenshot is generally captured if we encounter an

application error, a failure in a test case, and so on.

The syntax to capture screenshot in Puppeteer is as follows:

await page.screenshot({

 path: 'tutorialspoint.png'

 })

Here, the path where the screenshot is to be saved is passed as a parameter to the

method. With this, only the viewable part of the web page shall be captured. To capture

the full page screenshot, we have to pass another parameter called the fullPage and set

its value to true.

The syntax is as follows:

await page.screenshot({

 path: 'tutorialspoint.png', fullPage: true

 })

Let us capture the screenshot of the below page:

To begin, follow Steps 1 to 2 from the Chapter of Basic Test on Puppeteer which are as

follows:

Step 1: Create a new file within the directory where the node_modules folder is created

(location where the Puppeteer and Puppeteer core have been installed).

39. Puppeteer — Capture Screenshot

Puppeteer

 122

The details on Puppeteer installation is discussed in the Chapter of Puppeteer

Installation.

Right-click on the folder where the node_modules folder is created, then click on the

New file button.

Step 2: Enter a filename, say testcase1.js.

Step 3: Add the below code within the testcase1.js file created.

//adding Puppeteer library

const pt = require('puppeteer');

pt.launch().then(async browser => {

 //browser new page

 const p = await browser.newPage();

 //set viewpoint of browser page

 await p.setViewport({ width: 1000, height: 500 })

 //launch URL

 await p.goto('https://www.tutorialspoint.com/index.htm')

 //capture screenshot

Puppeteer

 123

 await p.screenshot({

 path: 'tutorialspoint.png'

 });

 //browser close

 await browser.close()

})

Step 4: Execute the code with the command given below:

node <filename>

So in our example, we shall run the following command:

node testcase1.js

After the command has been successfully executed, a new file called the

tutorialspoint.png gets created within the page directory. It contains the captured

screenshot of the page launched in the browser.

