
Python Data Structures

 i

Python Data Structures

 ii

About the Tutorial

Computers store and process data with an extra ordinary speed and accuracy. So, it is

highly essential that the data is stored efficiently and can be accessed fast. Also, the

processing of data should happen in the smallest possible time, but without losing the

accuracy.

Data structures deal with how the data is organised and held in the memory, when a

program processes it. It is important to note that, the data that is stored in the disk as

part of persistent storages (like relational tables) are not referred as data structure here.

An Algorithm is step by step set of instruction to process the data for a specific purpose.

So, an algorithm utilises various data structures in a logical way to solve a specific

computing problem.

In this tutorial, we will cover these two fundamental concepts of computer science using

the Python programming language.

Audience

This tutorial is designed for Computer Science graduates as well as Software Professionals

who are willing to learn data structures and algorithm programming in simple and easy

steps using Python as a programming language.

Prerequisites

Before proceeding with this tutorial, you should have a basic knowledge of writing code in

Python programming language, using any python integrated development environment

(IDE) and execution of Python programs. If you are completely new to python, then please

refer our Python tutorial to get a sound understanding of the language.

Copyright & Disclaimer

 Copyright 2020 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

https://www.tutorialspoint.com/python/index.htm
mailto:contact@tutorialspoint.com

Python Data Structures

 iii

Table of Contents

About the Tutorial ... ii

Audience .. ii

Prerequisites .. ii

Copyright & Disclaimer .. ii

Table of Contents ... iii

1. Python Data Structures – Introduction .. 1

Data Structures Overview.. 1

General Data Structures .. 1

Python Specific Data Structures .. 2

2. Python Data Structures – Environment ... 3

Local Environment Setup ... 3

Getting Python .. 3

Installing Python .. 3

Setting up PATH ... 5

Python Environment Variables .. 5

Running Python ... 6

3. Python Data Structures – Arrays ... 9

Array Representation .. 9

Basic Operations .. 9

Accessing Array Element ... 11

Insertion Operation ... 11

Deletion Operation .. 12

Search Operation ... 12

Update Operation .. 13

4. Python Data Structures – Lists .. 14

Accessing Values .. 14

Python Data Structures

 iv

Updating Lists .. 14

Delete List Elements .. 15

Basic List Operations ... 16

5. Python Data Structures – Tuples ... 17

Accessing Values in Tuples .. 17

Updating Tuples ... 18

Delete Tuple Elements .. 18

Basic Tuples Operations .. 19

6. Python Data Structures – Dictionary ... 20

Accessing Values in Dictionary .. 20

Updating Dictionary ... 21

Delete Dictionary Elements ... 21

Properties of Dictionary Keys .. 22

7. Python Data Structures – 2D Array ... 23

Accessing Values .. 23

Inserting Values ... 24

Updating Values .. 25

Deleting the Values ... 25

8. Python Data Structures – Matrix ... 27

Accessing Values .. 27

Adding a row ... 28

Adding a column .. 29

Delete a row .. 29

Delete a column .. 30

Update a row ... 30

9. Python Data Structures – Sets ... 32

Set Operations ... 32

Accessing Values in a Set ... 32

Python Data Structures

 v

Adding Items to a Set .. 33

Removing Item from a Set ... 33

Union of Sets ... 34

Intersection of Sets .. 34

Difference of Sets .. 34

Compare Sets... 35

10. Python Data Structures – Maps ... 36

Creating a ChainMap ... 36

Map Reordering ... 37

Updating Map .. 38

11. Python Data Structures – Linked Lists ... 39

Creation of Linked list .. 39

Traversing a Linked List ... 40

Insertion in a Linked List .. 41

Removing an Item.. 45

12. Python Data Structures – Stack ... 47

PUSH into a Stack .. 47

POP from a Stack ... 48

13. Python Data Structures – Queue ... 50

Adding Elements .. 50

Removing Element .. 51

14. Python Data Structures – Dequeue ... 52

15. Python Data Structutres – Advanced Linked List ... 54

Creating Doubly linked list ... 54

Inserting into Doubly Linked List ... 55

Appending to a Doubly linked list .. 56

16. Python Data Structures – Hash Table .. 59

Accessing Values in Dictionary .. 59

Python Data Structures

 vi

Updating Dictionary ... 59

Delete Dictionary Elements ... 60

17. Python Data Structures – Binary Tree ... 61

Create Root .. 61

Inserting into a Tree .. 62

Traversing a Tree ... 63

Tree Traversal Algorithms ... 63

18. Python Data Structures – Search Tree ... 69

Search for a value in a B-tree .. 69

19. Python Data Structures – Heaps .. 71

Create a Heap .. 71

Creating a Heap ... 71

Inserting into heap .. 72

Removing from heap ... 72

Replacing in a Heap ... 73

20. Python Data Structures – Graphs .. 74

Display graph vertices ... 75

Display graph edges ... 76

Adding a vertex .. 77

Adding an edge .. 78

21. Python Data Structures – Algorithm Design .. 80

Characteristics of an Algorithm ... 80

How to Write an Algorithm? ... 80

22. Python Data Structures – Divide and Conquer .. 83

Binary Search implementation .. 84

23. Python Data Structures – Recursion .. 86

Binary Search using Recursion ... 86

24. Python Data Structures – Backtracking ... 87

Python Data Structures

 vii

25. Python Data Structures – Sorting Algorithms .. 88

Bubble Sort .. 88

Merge Sort ... 89

Insertion Sort ... 90

Shell Sort .. 90

Selection Sort... 91

26. Python Data Structures – Searching Algorithms .. 93

Linear Search ... 93

Interpolation Search .. 93

27. Python Data Structures – Graph Algorithms ... 95

Depth First Traversal ... 95

Breadth First Traversal .. 96

28. Python Data Structures – Algorithm Analysis .. 98

Algorithm Complexity .. 98

Space Complexity .. 98

Time Complexity .. 99

29. Python Data Structures – Algorithm Types.. 100

Asymptotic Notations .. 100

Common Asymptotic Notations .. 102

30. Python Data Structures – Algorithm Classes ... 103

Greedy Algorithms ... 103

Divide and Conquer ... 103

Dynamic Programming .. 103

31. Python Data Structures – Amortized Analysis ... 105

32. Python Data Structures – Algorithm Justification .. 106

Python Data Structures

 1

Here, we will understand what is data structure with regards to Python programming

language.

Data Structures Overview

Data structures are fundamental concepts of computer science, which helps in writing

efficient programs in any language. Python is a high-level, interpreted, interactive and

object-oriented scripting language. Hence, by using python language, we can study the

fundamentals of data structure in a simpler way as compared to other programming

languages.

In this chapter, we are going to study a short overview of some frequently used data

structures in general and how they are related to some specific python data types. There

are also some data structures specific to python which are listed as another category.

General Data Structures

The various data structures in computer science are divided broadly into two categories

as shown below. We will discuss about each of the below data structures in detail in

subsequent chapters.

Liner Data Structures

These are the data structures which store the data elements in a sequential manner.

 Array: It is a sequential arrangement of data elements paired with the index of the

data element.

 Linked List: Each data element contains a link to another element, along with the

data present in it.

 Stack: It is a data structure, which follows only to specific order of operation. LIFO

(last in First Out) or FILO(First in Last Out).

 Queue: It is similar to Stack, but the order of operation is only FIFO (First In First

Out).

 Matrix: It is two dimensional data structure in which, the data element is referred

by a pair of indices.

Non-Liner Data Structures

These are the data structures in which, there is no sequential linking of data elements.

Any pair or group of data elements can be linked to each other and can be accessed

without a strict sequence.

1. Python Data Structures – Introduction

Python Data Structures

 2

 Binary Tree: It is a data structure, where each data element can be connected to

maximum two other data elements and it starts with a root node.

 Heap: It is a special case of Tree data structure, where the data in the parent node

is either strictly greater than/ equal to the child nodes or strictly less than its child

nodes.

 Hash Table: It is a data structure, which is made of arrays associated with each

other using a hash function. It retrieves values using keys rather than, index from

a data element.

 Graph: It is an arrangement of vertices and nodes, where some of the nodes are

connected to each other through links.

Python Specific Data Structures

These data structures are specific to python language and they give greater flexibility in

storing different types of data and faster processing in python environment.

 List: It is similar to array with the exception, that the data elements can be of

different data types. You can have both numeric and string data in a python list.

 Tuple: Tuples are similar to lists, but they are immutable which means, the values

in a tuple cannot be modified they can only be read.

 Dictionary: The dictionary contains Key-value pairs as its data elements.

In the next chapters, we are going to learn the details of how each of these data structures

can be implemented using Python.

Python Data Structures

 3

Python is available on a wide variety of platforms, including Linux and Mac OS X. Let's

understand, how to set up our Python environment.

Local Environment Setup

Open a terminal window and type "python" to find out, if it is already installed and which

version is installed.

 Unix (Solaris, Linux, FreeBSD, AIX, HP/UX, SunOS, IRIX, etc.)

 Win 9x/NT/2000

 Macintosh (Intel, PPC, 68K)

 OS/2

 DOS (multiple versions)

 PalmOS

 Nokia mobile phones

 Windows CE

 Acorn/RISC OS

 BeOS

 Amiga

 VMS/OpenVMS

 QNX

 VxWorks

 Psion

 Python has also been ported to the Java and .NET virtual machines

Getting Python

The most up-to-date and current source code, binaries, documentation, news, etc., is

available on the official website of Python which is available at https://www.python.org/

You can download Python documentation from this website given herewith,

https://www.python.org/doc/. The documentation is available in HTML, PDF, and

PostScript formats.

Installing Python

Python distribution is available for a wide variety of platforms. You need to download only

the binary code applicable for your platform and install Python.

2. Python Data Structures – Environment

https://www.python.org/
https://www.python.org/doc/

Python Data Structures

 4

If the binary code for your platform is not available, you need a C compiler to compile the

source code manually. Compiling the source code offers, more flexibility in terms of choice

of features that you require in your installation.

Here is a quick overview of installing Python on various platforms.

Unix and Linux Installation

Here are the simple steps to install Python on Unix/Linux machine.

 Open a Web browser and go to https://www.python.org/downloads/.

 Follow the link to download zipped source code available for Unix/Linux.

 Download and extract files.

 Editing the Modules/Setup file, if you want to customise some options.

 run ./configure script

 make

 make install

This installs Python at standard location /usr/local/bin and its libraries

at /usr/local/lib/pythonXX where, XX is the version of Python.

Windows Installation

Here, are the steps to install Python on Windows machine.

 Open a Web browser and go to https://www.python.org/downloads/.

 Follow the link for the Windows installer python-XYZ.msi file where, XYZ is the

version you need to install.

 To use this installer python-XYZ.msi, the Windows system must support Microsoft

Installer 2.0. Save the installer file to your local machine and then, run it to find

out if your machine supports MSI.

 Run the downloaded file. This brings up the Python install wizard, which is really

easy to use. Just accept the default settings, wait until the install is finished, and

you are done.

Macintosh Installation

 Recent Macs come with Python installed, but it may be several years out of date.

See http://www.python.org/download/mac/ for instructions on getting the current

version along with extra tools to support development on the Mac. For older Mac

OS's before Mac OS X 10.3 (released in 2003), MacPython is available.

 Jack Jansen maintains it and you can have full access to the entire documentation

at his website, which is available at http://www.cwi.nl/~jack/macpython.html. You

can find complete installation details for Mac OS installation.

https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/download/mac/
http://www.cwi.nl/~jack/macpython.html

Python Data Structures

 5

Setting up PATH

Programs and other executable files can be in many directories, so operating systems

provide a search path that, lists the directories that the OS searches for executables.

The path is stored in an environment variable, which is a named string maintained by the

operating system. This variable contains information available to the command shell and

other programs.

The path variable is named as PATH in Unix or Path in Windows (Unix is case sensitive;

Windows is not).

In Mac OS, the installer handles the path details. To invoke the Python interpreter from

any particular directory, you must add the Python directory to your path.

Setting path at Unix/Linux

To add the Python directory to the path for a particular session in Unix, refer the following:

 In the csh shell: type setenv PATH "$PATH:/usr/local/bin/python" and press

Enter.

 In the bash shell (Linux): type export ATH="$PATH:/usr/local/bin/python" and

press Enter.

 In the sh or ksh shell: type PATH="$PATH:/usr/local/bin/python" and press

Enter.

 Note: /usr/local/bin/python is the path of the Python directory.

Setting path at Windows

To add the Python directory to the path for a particular session in Windows, refer the

following:

 At the command prompt: type path %path%;C:\Python and press Enter.

 Note: C:\Python is the path of the Python directory.

Python Environment Variables

Here in the table below, are important environment variables, which can be recognised by

Python.

Sr.No. Variable & Description

1 PYTHONPATH

It has a role similar to PATH. This variable tells the Python interpreter, where to locate

the module files imported into a program. It should include the Python source library

directory and the directories containing Python source code. PYTHONPATH is

sometimes, preset by the Python installer.

Python Data Structures

 6

2 PYTHONSTARTUP

It contains the path of an initialisation file containing Python source code. It is executed

every time; you start the interpreter. It is named as .pythonrc.py in Unix and it

contains commands that load utilities or modify PYTHONPATH.

3 PYTHONCASEOK

It is used in Windows to instruct Python, to find the first case-insensitive match in an

import statement. Set this variable to any value to activate it.

4 PYTHONHOME

It is an alternative module search path. It is usually embedded in the PYTHONSTARTUP

or PYTHONPATH directories to make switching module libraries easy.

Running Python

There are three different ways to start Python, which are as follows:

Interactive Interpreter

 You can start Python from Unix, DOS, or any other system, that provides you a

command - line interpreter or shell window.

 Enter python the command line.

 Start coding right away in the interactive interpreter.

$python # Unix/Linux

or

python% # Unix/Linux

or

C:> python # Windows/DOS

Here, is the list of all the available command line options, which is as mentioned below:

Sr.No. Option & Description

1 -d

It provides debug output.

2 -O

It generates optimised bytecode (resulting in .pyo files).

Python Data Structures

 7

3 -S

Do not run import site to look for Python paths on startup.

4 -v

verbose output (detailed trace on import statements).

5 -X

disable class-based built-in exceptions (just use strings); obsolete starting with version

1.6.

6 -c cmd

run Python script sent in as cmd string.

7 file

run Python script from given file.

Script from the Command-line

A Python script can be executed at command line by invoking the interpreter on your

application, as in the following:

$python script.py # Unix/Linux

or

python% script.py # Unix/Linux

or

C: >python script.py # Windows/DOS

 Note − Be sure the file permission mode allows execution.

Integrated Development Environment (IDE)

You can run Python from a Graphical User Interface (GUI) environment as well, if you have

a GUI application on your system that supports Python.

 Unix − IDLE is the very first Unix IDE for Python.

 Windows − PythonWin is the first Windows interface for Python and is an IDE with

a GUI.

Python Data Structures

 8

 Macintosh − The Macintosh version of Python, along with the IDLE IDE is available

from the main website, downloadable as either MacBinary or BinHex'd files.

If you are not able to set up the environment properly, then you can take help from your

system admin. Make sure the Python environment is properly set up and working perfectly

fine.

 Note − All the examples given in subsequent chapters are executed with Python

2.4.3 version available on CentOS flavor of Linux.

We already have set up Python Programming environment online, so that, you can execute

all the available examples online at the same time, when you are learning theory. Feel

free to modify any example and execute it online.

Python Data Structures

 9

Array is a container, which can hold a fix number of items and these items should be of

the same type. Most of the data structures make use of arrays to implement their

algorithms. The important terms to understand the concept of Array are as follows:

 Element− Each item stored in an array is called an element.

 Index − Each location of an element in an array has a numerical index, which is

used to identify the element.

Array Representation

Arrays can be declared in various ways in different languages. An illustration is given

below:

As per the above illustration, following are the important points to be considered:

 Index starts with 0.

 Array length is 10, which means it can store 10 elements.

 Each element can be accessed via its index. For example, we can fetch an element

at index 6 as 9.

Basic Operations

The basic operations supported by an array are as stated below:

 Traverse − Print all the array elements one by one.

 Insertion − Adds an element at the given index.

 Deletion − Deletes an element at the given index.

 Search − Searches an element, using the given index or by the value.

 Update − Updates an element at the given index.

3. Python Data Structures – Arrays

Python Data Structures

 10

Array is created in Python by importing array module to the python program. Then, the

array is declared as shown below:

from array import *

arrayName = array(typecode, [Initializers])

Typecode are the codes that are used to define the type of value the array will hold. Some

common typecodes used are as follows:

Typecode Value

b Represents signed integer of size 1 byte/td>

B Represents unsigned integer of size 1 byte

c Represents character of size 1 byte

i Represents signed integer of size 2 bytes

I Represents unsigned integer of size 2 bytes

f Represents floating point of size 4 bytes

d Represents floating point of size 8 bytes

Before looking at various array operations, lets create and print an array using python.

The below code creates an array named array1.

from array import *

array1 = array('i', [10,20,30,40,50])

for x in array1:

 print(x)

Output

When we compile and execute the above program, it produces the following result:

10

20

30

Python Data Structures

 11

40

50

Accessing Array Element

We can access each element of an array, using the index of the element. The below code

shows how to access an array element.

from array import *

array1 = array('i', [10,20,30,40,50])

print (array1[0])

print (array1[2])

Output

When we compile and execute the above program, it produces the following result, which

shows the element is inserted at index position 1.

10

30

Insertion Operation

Insert operation is, to insert one or more data elements into an array. Based on the

requirement, a new element can be added at the beginning, end, or any given index of

array.

Here, we add a data element at the middle of the array, using the python in-built insert()

method.

from array import *

array1 = array('i', [10,20,30,40,50])

array1.insert(1,60)

for x in array1:

 print(x)

Output

Python Data Structures

 12

When we compile and execute the above program, it produces the following result which

shows the element is inserted at index position 1.

10

60

20

30

40

50

Deletion Operation

Deletion refers to removing an existing element from the array and re-organising all

elements of an array.

Here, we remove a data element at the middle of the array, using the python in-built

remove() method.

from array import *

array1 = array('i', [10,20,30,40,50])

array1.remove(40)

for x in array1:

 print(x)

Output

When we compile and execute the above program, it produces the following result, which

shows the element is removed from the array.

10

20

30

50

Search Operation

You can perform a search for an array element based on its value or its index.

Here, we search a data element, by using the python in-built index() method.

from array import *

Python Data Structures

 13

array1 = array('i', [10,20,30,40,50])

print (array1.index(40))

Output

When we compile and execute the above program, it produces the following result which

shows the index of the element. If the value is not present in the array, then the program

returns an error.

3

Update Operation

Update operation refers to updating an existing element from the array at a given index.

Here, we simply reassign a new value to the desired index we want to update.

from array import *

array1 = array('i', [10,20,30,40,50])

array1[2] = 80

for x in array1:

 print(x)

Output

When we compile and execute the above program, it produces the following result, which

shows the new value at the index position 2.

10

20

80

40

50

Python Data Structures

 14

The list is a most versatile datatype available in Python, which can be written as a list of

comma-separated values (items) between square brackets. An important thing about the

list is that, items in a list need not be of the same type.

Creating a list is as simple as putting different comma-separated values between square

brackets.

For example:

list1 = ['physics', 'chemistry', 1997, 2000]

list2 = [1, 2, 3, 4, 5]

list3 = ["a", "b", "c", "d"]

Similar to string indices, list indices start at 0, and lists can be sliced, concatenated and

so on.

Accessing Values

To access values in lists, use the square brackets for slicing along with the index or indices

to obtain value available at that index.

For example:

#!/usr/bin/python

list1 = ['physics', 'chemistry', 1997, 2000]

list2 = [1, 2, 3, 4, 5, 6, 7]

print "list1[0]: ", list1[0]

print "list2[1:5]: ", list2[1:5]

When the above code is executed, it produces the following result:

list1[0]: physics

list2[1:5]: [2, 3, 4, 5]

Updating Lists

You can update single or multiple elements of lists, by giving the slice on the left-hand

side of the assignment operator, and you can add to elements in a list with the append()

method.

For example:

4. Python Data Structures – Lists

Python Data Structures

 15

#!/usr/bin/python

list = ['physics', 'chemistry', 1997, 2000]

print "Value available at index 2 : "

print list[2]

list[2] = 2001

print "New value available at index 2 : "

print list[2]

 Note − append() method is discussed in subsequent section.

When the above code is executed, it produces the following result:

Value available at index 2 :

1997

New value available at index 2 :

2001

Delete List Elements

To remove a list element, you can use either the del statement, if you know exactly, which

element(s) you are deleting or the remove() method, if you do not know.

For example:

#!/usr/bin/python

list1 = ['physics', 'chemistry', 1997, 2000]

print list1

del list1[2]

print "After deleting value at index 2 : "

print list1

When the above code is executed, it produces following result:

['physics', 'chemistry', 1997, 2000]

After deleting value at index 2 :

['physics', 'chemistry', 2000]

 Note − remove() method is discussed in subsequent section.

Python Data Structures

 16

Basic List Operations

Lists respond to the + and * operators. Much like strings, they mean concatenation and

repetition here too, except that the result is a new list, not a string.

In fact, lists respond to all of the general sequence operations we used on strings in the

prior chapter.

Python Expression Results Description

len([1, 2, 3]) 3 Length

[1, 2, 3] + [4, 5, 6] [1, 2, 3, 4, 5, 6] Concatenation

['Hi!'] * 4 ['Hi!', 'Hi!', 'Hi!', 'Hi!'] Repetition

3 in [1, 2, 3] True Membership

for x in [1, 2, 3]: print x, 1 2 3 Iteration

Python Data Structures

 17

A tuple is a sequence of immutable Python objects, just like lists. The differences between

tuples and lists are, the tuples cannot be changed unlike lists and tuples use parentheses,

whereas lists use square brackets.

Creating a tuple is as simple as putting different comma-separated values. Optionally, you

can put these comma-separated values between parentheses also.

For example:

tup1 = ('physics', 'chemistry', 1997, 2000);

tup2 = (1, 2, 3, 4, 5);

tup3 = "a", "b", "c", "d";

The empty tuple is written as two parentheses containing nothing.

tup1 = ();

To write a tuple containing a single value, you have to include a comma. Even though,

there is only one value.

tup1 = (50,);

Like string indices, tuple indices start at 0, and they can be sliced, concatenated, and so

on.

Accessing Values in Tuples

To access values in tuple, use the square brackets for slicing along with the index or indices

to obtain value available at that index.

For example:

#!/usr/bin/python

tup1 = ('physics', 'chemistry', 1997, 2000);

tup2 = (1, 2, 3, 4, 5, 6, 7);

print "tup1[0]: ", tup1[0];

print "tup2[1:5]: ", tup2[1:5];

When the above code is executed, it produces the following result:

tup1[0]: physics

tup2[1:5]: [2, 3, 4, 5]

5. Python Data Structures – Tuples

Python Data Structures

 18

Updating Tuples

Tuples are immutable, which means you cannot update or change the values of tuple

elements. You are able to take portions of existing tuples, to create new tuples as the

following example demonstrates:

#!/usr/bin/python

tup1 = (12, 34.56);

tup2 = ('abc', 'xyz');

Following action is not valid for tuples

tup1[0] = 100;

So let's create a new tuple as follows

tup3 = tup1 + tup2;

print tup3;

When the above code is executed, it produces the following result:

(12, 34.56, 'abc', 'xyz')

Delete Tuple Elements

Removing individual tuple elements is not possible. There is, of course, nothing wrong with

putting together another tuple with the undesired elements discarded.

To explicitly remove an entire tuple, just use the del statement.

For example:

#!/usr/bin/python

tup = ('physics', 'chemistry', 1997, 2000);

print tup;

del tup;

print "After deleting tup : ";

print tup;

 Note: An exception raised, because after del tup, tuple does not exist anymore.

This produces the following result:

('physics', 'chemistry', 1997, 2000)

Python Data Structures

 19

After deleting tup :

Traceback (most recent call last):

 File "test.py", line 9, in <module>

 print tup;

NameError: name 'tup' is not defined

Basic Tuples Operations

Tuples respond to the + and * operators. Much like strings; they mean concatenation and

repetition here too, except that the result is a new tuple, not a string.

In fact, tuples respond to all of the general sequence operations, we used on strings in the

prior chapter.

Python Expression Results Description

len((1, 2, 3)) 3 Length

(1, 2, 3) + (4, 5, 6) (1, 2, 3, 4, 5, 6) Concatenation

('Hi!',) * 4 ('Hi!', 'Hi!', 'Hi!', 'Hi!') Repetition

3 in (1, 2, 3) True Membership

for x in (1, 2, 3): print x, 1 2 3 Iteration

Python Data Structures

 20

In Dictionary each key is separated from its value by a colon (:), the items are separated

by commas, and the whole thing is enclosed in curly braces. An empty dictionary without

any items is written with just two curly braces, like this: {}.

Keys are unique within a dictionary while values may not be. The values of a dictionary

can be of any type, but the keys must be of an immutable data type, such as strings,

numbers, or tuples.

Accessing Values in Dictionary

To access dictionary elements, you can use the familiar square brackets along with the

key to obtain its value.

A simple example is as follows:

#!/usr/bin/python

dict = {'Name': 'Zara', 'Age': 7, 'Class': 'First'}

print "dict['Name']: ", dict['Name']

print "dict['Age']: ", dict['Age']

When the above code is executed, it produces the following result:

dict['Name']: Zara

dict['Age']: 7

If we attempt to access a data item with a key, which is not part of the dictionary, we get

an error as follows:

#!/usr/bin/python

dict = {'Name': 'Zara', 'Age': 7, 'Class': 'First'}

print "dict['Alice']: ", dict['Alice']

When the above code is executed, it produces the following result:

dict['Alice']:

Traceback (most recent call last):

 File "test.py", line 4, in <module>

 print "dict['Alice']: ", dict['Alice'];

KeyError: 'Alice'

6. Python Data Structures – Dictionary

Python Data Structures

 21

Updating Dictionary

You can update a dictionary by adding a new entry or a key-value pair, modifying an

existing entry, or deleting an existing entry as shown below in the simple example:

#!/usr/bin/python

dict = {'Name': 'Zara', 'Age': 7, 'Class': 'First'}

dict['Age'] = 8; # update existing entry

dict['School'] = "DPS School"; # Add new entry

print "dict['Age']: ", dict['Age']

print "dict['School']: ", dict['School']

When the above code is executed, it produces the following result:

dict['Age']: 8

dict['School']: DPS School

Delete Dictionary Elements

You can either remove individual dictionary elements or clear the entire contents of a

dictionary. You can also delete entire dictionary in a single operation.

To explicitly remove an entire dictionary, just use the del statement. A simple example is

as mentioned below:

#!/usr/bin/python

dict = {'Name': 'Zara', 'Age': 7, 'Class': 'First'}

del dict['Name']; # remove entry with key 'Name'

dict.clear(); # remove all entries in dict

del dict ; # delete entire dictionary

print "dict['Age']: ", dict['Age']

print "dict['School']: ", dict['School']

 Note that an exception is raised, because after del dict dictionary does not exist

anymore.

This produces the following result:

dict['Age']:

Traceback (most recent call last):

Python Data Structures

 22

 File "test.py", line 8, in <module>

 print "dict['Age']: ", dict['Age'];

TypeError: 'type' object is unsubscriptable

 Note − del() method is discussed in subsequent section.

Properties of Dictionary Keys

Dictionary values have no restrictions. They can be any arbitrary Python object, either

standard objects or user-defined objects. However, same is not true for the keys.

There are two important points to remember about dictionary keys −

 More than one entry per key not allowed. Which means, no duplicate key is allowed.

When duplicate keys are encountered during assignment, the last assignment wins.

For example:

#!/usr/bin/python

dict = {'Name': 'Zara', 'Age': 7, 'Name': 'Manni'}

print "dict['Name']: ", dict['Name']

When the above code is executed, it produces the following result:

dict['Name']: Manni

Keys must be immutable. Which means you can use strings, numbers or tuples as

dictionary keys, but something like ['key'] is not allowed.

An example is as follows:

#!/usr/bin/python

dict = {['Name']: 'Zara', 'Age': 7}

print "dict['Name']: ", dict['Name']

When the above code is executed, it produces the following result:

Traceback (most recent call last):

 File "test.py", line 3, in <module>

 dict = {['Name']: 'Zara', 'Age': 7};

TypeError: list objects are unhashable

Python Data Structures

 23

Two dimensional array is an array within an array. It is an array of arrays. In this type of

array, the position of a data element is referred by two indices instead of one. So, it

represents a table with rows and columns of data.

In the below example of a two dimensional array, observe that each array element itself

is also an array.

Consider an example of recording temperatures four times a day, every day. Sometimes,

the recording instrument may be faulty and we fail to record data. Such data for four days

can be presented as a two dimensional array as below.

Day 1 - 11 12 5 2

Day 2 - 15 6 10

Day 3 - 10 8 12 5

Day 4 - 12 15 8 6

The above data can be represented as a two dimensional array as below.

T = [[11, 12, 5, 2], [15, 6,10], [10, 8, 12, 5], [12,15,8,6]]

Accessing Values

The data elements in two dimensional arrays can be accessed using two indices. One index

referring to the main or parent array and another index referring to the position of the

data element in the inner array. If we mention only one index, then the entire inner array

is printed for that index position.

The example below illustrates how it works.

from array import *

T = [[11, 12, 5, 2], [15, 6,10], [10, 8, 12, 5], [12,15,8,6]]

print(T[0])

print(T[1][2])

When the above code is executed, it produces the following result:

[11, 12, 5, 2]

10

7. Python Data Structures – 2D Array

Python Data Structures

 24

To print out the entire two dimensional array, we can use python for loop as shown below.

We use end of line to print out the values in different rows.

from array import *

T = [[11, 12, 5, 2], [15, 6,10], [10, 8, 12, 5], [12,15,8,6]]

for r in T:

 for c in r:

 print(c,end = " ")

 print()

When the above code is executed, it produces the following result:

11 12 5 2

15 6 10

10 8 12 5

12 15 8 6

Inserting Values

We can insert new data elements at specific position, by using the insert() method and

specifying the index.

In an example mentioned below, a new data element is inserted at index position 2.

from array import *

T = [[11, 12, 5, 2], [15, 6,10], [10, 8, 12, 5], [12,15,8,6]]

T.insert(2, [0,5,11,13,6])

for r in T:

 for c in r:

 print(c,end = " ")

 print()

When the above code is executed, it produces the following result:

11 12 5 2

15 6 10

0 5 11 13 6

10 8 12 5

12 15 8 6

Python Data Structures

 25

Updating Values

We can update the entire inner array or some specific data elements of the inner array,

by reassigning the values using the array index.

from array import *

T = [[11, 12, 5, 2], [15, 6,10], [10, 8, 12, 5], [12,15,8,6]]

T[2] = [11,9]

T[0][3] = 7

for r in T:

 for c in r:

 print(c,end = " ")

 print()

When the above code is executed, it produces the following result:

11 12 5 7

15 6 10

11 9

12 15 8 6

Deleting the Values

We can delete an entire inner array or some specific data elements of the inner array, by

reassigning the values using the del() method with index. But, in case you need to remove

specific data elements in one of the inner arrays, then use the update process described

above.

from array import *

T = [[11, 12, 5, 2], [15, 6,10], [10, 8, 12, 5], [12,15,8,6]]

del T[3]

for r in T:

 for c in r:

 print(c,end = " ")

 print()

When the above code is executed, it produces the following result:

11 12 5 2

Python Data Structures

 26

15 6 10

10 8 12 5

Python Data Structures

 27

Matrix is a special case of two dimensional array, where, each data element is of strictly

same size. So, every matrix is also a two dimensional array but not, vice versa.

Matrices are very important data structures for many mathematical and scientific

calculations. As we have already discussed, two dimensional array data structure in the

previous chapter, we will be focusing on data structure operations specific to matrices in

this chapter.

We will also use the numpy package for matrix data manipulation.

Matrix Example

Consider the case of recording temperature for one week measured in the morning, mid-

day, evening and mid-night. It can be presented as a 7X5 matrix, using an array and the

reshape method available in numpy.

from numpy import *

a = array([['Mon',18,20,22,17],['Tue',11,18,21,18],

 ['Wed',15,21,20,19],['Thu',11,20,22,21],

 ['Fri',18,17,23,22],['Sat',12,22,20,18],

 ['Sun',13,15,19,16]])

m = reshape(a,(7,5))

print(m)

The above data can be represented as a two dimensional array as below:

[['Mon' '18' '20' '22' '17']

 ['Tue' '11' '18' '21' '18']

 ['Wed' '15' '21' '20' '19']

 ['Thu' '11' '20' '22' '21']

 ['Fri' '18' '17' '23' '22']

 ['Sat' '12' '22' '20' '18']

 ['Sun' '13' '15' '19' '16']]

Accessing Values

The data elements in a matrix can be accessed by using the indexes. The access methods

are same, as the way data is accessed in two dimensional array.

from numpy import *

8. Python Data Structures – Matrix

Python Data Structures

 28

m = array([['Mon',18,20,22,17],['Tue',11,18,21,18],

 ['Wed',15,21,20,19],['Thu',11,20,22,21],

 ['Fri',18,17,23,22],['Sat',12,22,20,18],

 ['Sun',13,15,19,16]])

Print data for Wednesday

print(m[2])

Print data for friday evening

print(m[4][3])

When the above code is executed, it produces the following result:

['Wed', 15, 21, 20, 19]

23

Adding a row

Use the below mentioned code to add a row in a matrix.

from numpy import *

m = array([['Mon',18,20,22,17],['Tue',11,18,21,18],

 ['Wed',15,21,20,19],['Thu',11,20,22,21],

 ['Fri',18,17,23,22],['Sat',12,22,20,18],

 ['Sun',13,15,19,16]])

m_r = append(m,[['Avg',12,15,13,11]],0)

print(m_r)

When the above code is executed, it produces the following result:

[['Mon' '18' '20' '22' '17']

 ['Tue' '11' '18' '21' '18']

 ['Wed' '15' '21' '20' '19']

 ['Thu' '11' '20' '22' '21']

 ['Fri' '18' '17' '23' '22']

 ['Sat' '12' '22' '20' '18']

 ['Sun' '13' '15' '19' '16']

 ['Avg' '12' '15' '13' '11']]

Python Data Structures

 29

Adding a column

We can add column to a matrix using the insert() method. Here, we have to mention the

index, where we want to add the column and an array containing the new values of the

columns added. In the below example, we add to a new column at the fifth position from

the beginning.

from numpy import *

m = array([['Mon',18,20,22,17],['Tue',11,18,21,18],

 ['Wed',15,21,20,19],['Thu',11,20,22,21],

 ['Fri',18,17,23,22],['Sat',12,22,20,18],

 ['Sun',13,15,19,16]])

m_c = insert(m,[5],[[1],[2],[3],[4],[5],[6],[7]],1)

print(m_c)

When the above code is executed, it produces the following result:

[['Mon' '18' '20' '22' '17' '1']

 ['Tue' '11' '18' '21' '18' '2']

 ['Wed' '15' '21' '20' '19' '3']

 ['Thu' '11' '20' '22' '21' '4']

 ['Fri' '18' '17' '23' '22' '5']

 ['Sat' '12' '22' '20' '18' '6']

 ['Sun' '13' '15' '19' '16' '7']]

Delete a row

We can delete a row from a matrix by using the delete() method. We have to specify the

index of the row and also the axis value, which is 0 for a row and 1 for a column.

 from numpy import *

m = array([['Mon',18,20,22,17],['Tue',11,18,21,18],

 ['Wed',15,21,20,19],['Thu',11,20,22,21],

 ['Fri',18,17,23,22],['Sat',12,22,20,18],

 ['Sun',13,15,19,16]])

m = delete(m,[2],0)

print(m)

Python Data Structures

 30

When the above code is executed, it produces the following result:

[['Mon' '18' '20' '22' '17']

 ['Tue' '11' '18' '21' '18']

 ['Thu' '11' '20' '22' '21']

 ['Fri' '18' '17' '23' '22']

 ['Sat' '12' '22' '20' '18']

 ['Sun' '13' '15' '19' '16']]

Delete a column

We can delete a column from a matrix using the delete() method. We have to specify the

index of the column and also the axis value, which is 0 for a row and 1 for a column.

from numpy import *

m = array([['Mon',18,20,22,17],['Tue',11,18,21,18],

 ['Wed',15,21,20,19],['Thu',11,20,22,21],

 ['Fri',18,17,23,22],['Sat',12,22,20,18],

 ['Sun',13,15,19,16]])

m = delete(m,s_[2],1)

print(m)

When the above code is executed, it produces the following result:

[['Mon' '18' '22' '17']

 ['Tue' '11' '21' '18']

 ['Wed' '15' '20' '19']

 ['Thu' '11' '22' '21']

 ['Fri' '18' '23' '22']

 ['Sat' '12' '20' '18']

 ['Sun' '13' '19' '16']]

Update a row

To update the values in the row of a matrix, we simply re-assign the values at the index

of the row. In the below example, all the values for Thursday’s data is marked as zero.

The index for this row is 3.

from numpy import *

m = array([['Mon',18,20,22,17],['Tue',11,18,21,18],

Python Data Structures

 31

 ['Wed',15,21,20,19],['Thu',11,20,22,21],

 ['Fri',18,17,23,22],['Sat',12,22,20,18],

 ['Sun',13,15,19,16]])

m[3] = ['Thu',0,0,0,0]

print(m)

When the above code is executed, it produces the following result:

[['Mon' '18' '20' '22' '17']

 ['Tue' '11' '18' '21' '18']

 ['Wed' '15' '21' '20' '19']

 ['Thu' '0' '0' '0' '0']

 ['Fri' '18' '17' '23' '22']

 ['Sat' '12' '22' '20' '18']

 ['Sun' '13' '15' '19' '16']]

Python Data Structures

 32

Mathematically, a set is a collection of items not in any particular order. A Python set is

similar to this mathematical definition with below additional conditions.

 The elements in the set cannot be duplicates.

 The elements in the set are immutable (cannot be modified), but the set as a whole

is mutable.

 There is no index attached to any element in a python set. So they do not support

any indexing or slicing operation.

Set Operations

The sets in python are typically used for mathematical operations like union, intersection,

difference and complement etc. We can create a set, access its elements and carry out

these mathematical operations as shown below.

Creating a set

A set is created by using the set() function or placing all the elements within a pair of curly

braces.

Days=set(["Mon","Tue","Wed","Thu","Fri","Sat","Sun"])

Months={"Jan","Feb","Mar"}

Dates={21,22,17}

print(Days)

print(Months)

print(Dates)

When the above code is executed, it produces the following result. Please note, how the

order of the elements has changed in the result.

set(['Wed', 'Sun', 'Fri', 'Tue', 'Mon', 'Thu', 'Sat'])

set(['Jan', 'Mar', 'Feb'])

set([17, 21, 22])

Accessing Values in a Set

We cannot access individual values in a set. We can only access all the elements together

as shown above. But, we can also get a list of individual elements, by looping through the

set.

Days=set(["Mon","Tue","Wed","Thu","Fri","Sat","Sun"])

9. Python Data Structures – Sets

Python Data Structures

 33

for d in Days:

 print(d)

When the above code is executed, it produces the following result:

Wed

Sun

Fri

Tue

Mon

Thu

Sat

Adding Items to a Set

We can add elements to a set by using add() method. Again as discussed, there is no

specific index attached to the newly added element.

Days=set(["Mon","Tue","Wed","Thu","Fri","Sat"])

Days.add("Sun")

print(Days)

When the above code is executed, it produces the following result:

set(['Wed', 'Sun', 'Fri', 'Tue', 'Mon', 'Thu', 'Sat'])

Removing Item from a Set

We can remove elements from a set by using discard() method. Again as discussed, there

is no specific index attached to the newly added element.

Days=set(["Mon","Tue","Wed","Thu","Fri","Sat"])

Days.discard("Sun")

print(Days)

When the above code is executed, it produces the following result.

set(['Wed', 'Fri', 'Tue', 'Mon', 'Thu', 'Sat'])

Python Data Structures

 34

Union of Sets

The union operation on two sets produces a new set containing all the distinct elements

from both the sets. In the below example, the element “Wed” is present in both the sets.

DaysA = set(["Mon","Tue","Wed"])

DaysB = set(["Wed","Thu","Fri","Sat","Sun"])

AllDays = DaysA|DaysB

print(AllDays)

When the above code is executed, it produces the following result. Please note the result

has only one “wed”.

set(['Wed', 'Fri', 'Tue', 'Mon', 'Thu', 'Sat'])

Intersection of Sets

The intersection operation on two sets produces a new set containing only the common

elements from both the sets. In the below example, the element “Wed” is present in both

the sets.

DaysA = set(["Mon","Tue","Wed"])

DaysB = set(["Wed","Thu","Fri","Sat","Sun"])

AllDays = DaysA & DaysB

print(AllDays)

When the above code is executed, it produces the following result. Please note the result

has only one “wed”.

set(['Wed'])

Difference of Sets

The difference operation on two sets produces a new set containing only the elements

from the first set and none from the second set. In the below example, the element “Wed”

is present in both the sets so it will not be found in the result set.

DaysA = set(["Mon","Tue","Wed"])

DaysB = set(["Wed","Thu","Fri","Sat","Sun"])

AllDays = DaysA - DaysB

print(AllDays)

When the above code is executed, it produces the following result. Please note the result

has only one “wed”.

set(['Mon', 'Tue'])

Python Data Structures

 35

Compare Sets

We can check, if a given set is a subset or superset of another set. The result is True or

False depending on the elements present in the sets.

DaysA = set(["Mon","Tue","Wed"])

DaysB = set(["Mon","Tue","Wed","Thu","Fri","Sat","Sun"])

SubsetRes = DaysA <= DaysB

SupersetRes = DaysB >= DaysA

print(SubsetRes)

print(SupersetRes)

When the above code is executed, it produces the following result:

True

True

Python Data Structures

 36

Python Maps also called ChainMap is a type of data structure to manage multiple

dictionaries together as one unit. The combined dictionary contains the key and value pairs

in a specific sequence eliminating any duplicate keys. The best use of ChainMap is to

search through multiple dictionaries at a time and get the proper key-value pair mapping.

We also see that these ChainMaps behave as stack data structure.

Creating a ChainMap

We create two dictionaries and club them using the ChainMap method from the collections

library. Then, we print the keys and values of the result of the combination of the

dictionaries. If there are duplicate keys, then only the value from the first key is preserved.

import collections

dict1 = {'day1': 'Mon', 'day2': 'Tue'}

dict2 = {'day3': 'Wed', 'day1': 'Thu'}

res = collections.ChainMap(dict1, dict2)

Creating a single dictionary

print(res.maps,'\n')

print('Keys = {}'.format(list(res.keys())))

print('Values = {}'.format(list(res.values())))

print()

Print all the elements from the result

print('elements:')

for key, val in res.items():

 print('{} = {}'.format(key, val))

print()

Find a specific value in the result

print('day3 in res: {}'.format(('day1' in res)))

print('day4 in res: {}'.format(('day4' in res)))

When the above code is executed, it produces the following result:

10. Python Data Structures – Maps

Python Data Structures

 37

[{'day1': 'Mon', 'day2': 'Tue'}, {'day1': 'Thu', 'day3': 'Wed'}]

Keys = ['day1', 'day3', 'day2']

Values = ['Mon', 'Wed', 'Tue']

elements:

day1 = Mon

day3 = Wed

day2 = Tue

day3 in res: True

day4 in res: False

Map Reordering

If we change the order of the dictionaries while clubbing them in the above example, we

see that, the position of the elements get interchanged as if, they are in a continuous

chain. This again shows the behaviour of Maps as stacks.

import collections

dict1 = {'day1': 'Mon', 'day2': 'Tue'}

dict2 = {'day3': 'Wed', 'day4': 'Thu'}

res1 = collections.ChainMap(dict1, dict2)

print(res1.maps,'\n')

res2 = collections.ChainMap(dict2, dict1)

print(res2.maps,'\n')

When the above code is executed, it produces the following result:

[{'day1': 'Mon', 'day2': 'Tue'}, {'day3': 'Wed', 'day4': 'Thu'}]

[{'day3': 'Wed', 'day4': 'Thu'}, {'day1': 'Mon', 'day2': 'Tue'}]

Python Data Structures

 38

Updating Map

When the element of the dictionary is updated, the result is instantly updated in the result

of the ChainMap. In the below example, we see that the new updated value reflects in the

result without explicitly applying the ChainMap method again.

 import collections

dict1 = {'day1': 'Mon', 'day2': 'Tue'}

dict2 = {'day3': 'Wed', 'day4': 'Thu'}

res = collections.ChainMap(dict1, dict2)

print(res.maps,'\n')

dict2['day4'] = 'Fri'

print(res.maps,'\n')

When the above code is executed, it produces the following result:

[{'day1': 'Mon', 'day2': 'Tue'}, {'day3': 'Wed', 'day4': 'Thu'}]

[{'day1': 'Mon', 'day2': 'Tue'}, {'day3': 'Wed', 'day4': 'Fri'}]

Python Data Structures

 39

A linked list is a sequence of data elements, which are connected together via links. Each

data element contains a connection to another data element in form of a pointer. Python

does not have linked lists in its standard library. We implement the concept of linked lists

using the concept of nodes as discussed in the previous chapter.

We have already seen, how we create a node class and how to traverse the elements of a

node. In this chapter, we are going to study the types of linked lists known as singly linked

lists. In this type of data structure, there is only one link between any two data elements.

We create such a list and create additional methods to insert, update and remove elements

from the list.

Creation of Linked list

A linked list is created by using the node class we studied in the last chapter. We create a

Node object and create another class to use this node object. We pass the appropriate

values through the node object, to point them to the next data elements. The below

program, creates the linked list with three data elements. In the next section, we will see

how to traverse the linked list.

class Node:

 def __init__(self, dataval=None):

 self.dataval = dataval

 self.nextval = None

class SLinkedList:

 def __init__(self):

 self.headval = None

list1 = SLinkedList()

list1.headval = Node("Mon")

e2 = Node("Tue")

e3 = Node("Wed")

Link first Node to second node

list1.headval.nextval = e2

Link second Node to third node

e2.nextval = e3

11. Python Data Structures – Linked Lists

Python Data Structures

 40

Traversing a Linked List

Singly linked lists can be traversed in only forward direction starting form the first data

element. We simply print the value of the next data element by assigning the pointer of

the next node to the current data element.

class Node:

 def __init__(self, dataval=None):

 self.dataval = dataval

 self.nextval = None

class SLinkedList:

 def __init__(self):

 self.headval = None

 def listprint(self):

 printval = self.headval

 while printval is not None:

 print (printval.dataval)

 printval = printval.nextval

list = SLinkedList()

list.headval = Node("Mon")

e2 = Node("Tue")

e3 = Node("Wed")

Link first Node to second node

list.headval.nextval = e2

Link second Node to third node

e2.nextval = e3

list.listprint()

When the above code is executed, it produces the following result:

Mon

Tue

Wed

Python Data Structures

 41

Insertion in a Linked List

Inserting element in the linked list involves, reassigning the pointers from the existing

nodes to the newly inserted node. Depending on whether the new data element is getting

inserted at the beginning or at the middle or at the end of the linked list, we have the

below scenarios.

Inserting at the Beginning

This involves pointing the next pointer of the new data node to the current head of the

linked list. So, the current head of the linked list becomes the second data element and

the new node becomes the head of the linked list.

class Node:

 def __init__(self, dataval=None):

 self.dataval = dataval

 self.nextval = None

class SLinkedList:

 def __init__(self):

 self.headval = None

Print the linked list

 def listprint(self):

 printval = self.headval

 while printval is not None:

 print (printval.dataval)

 printval = printval.nextval

 def AtBegining(self,newdata):

 NewNode = Node(newdata)

Update the new nodes next val to existing node

 NewNode.nextval = self.headval

 self.headval = NewNode

list = SLinkedList()

list.headval = Node("Mon")

e2 = Node("Tue")

e3 = Node("Wed")

Python Data Structures

 42

list.headval.nextval = e2

e2.nextval = e3

list.AtBegining("Sun")

list.listprint()

When the above code is executed, it produces the following result:

Sun

Mon

Tue

Wed

Inserting at the End

This involves pointing the next pointer of the the current last node of the linked list to the

new data node. So the current last node of the linked list becomes the second last data

node and the new node becomes the last node of the linked list.

class Node:

 def __init__(self, dataval=None):

 self.dataval = dataval

 self.nextval = None

class SLinkedList:

 def __init__(self):

 self.headval = None

Function to add newnode

 def AtEnd(self, newdata):

 NewNode = Node(newdata)

 if self.headval is None:

 self.headval = NewNode

 return

 laste = self.headval

 while(laste.nextval):

 laste = laste.nextval

 laste.nextval=NewNode

Python Data Structures

 43

Print the linked list

 def listprint(self):

 printval = self.headval

 while printval is not None:

 print (printval.dataval)

 printval = printval.nextval

list = SLinkedList()

list.headval = Node("Mon")

e2 = Node("Tue")

e3 = Node("Wed")

list.headval.nextval = e2

e2.nextval = e3

list.AtEnd("Thu")

list.listprint()

When the above code is executed, it produces the following result:

Mon

Tue

Wed

Thu

Inserting in between two Data Nodes

This involves changing the pointer of a specific node to point to the new node. That is

possible by passing in both the new node and the existing node after which, the new node

will be inserted. So, we define an additional class which will change the next pointer of the

new node to the next pointer of middle node. Then, assign the new node to next pointer

of the middle node.

class Node:

 def __init__(self, dataval=None):

 self.dataval = dataval

 self.nextval = None

class SLinkedList:

Python Data Structures

 44

 def __init__(self):

 self.headval = None

Function to add node

 def Inbetween(self,middle_node,newdata):

 if middle_node is None:

 print("The mentioned node is absent")

 return

 NewNode = Node(newdata)

 NewNode.nextval = middle_node.nextval

 middle_node.nextval = NewNode

Print the linked list

 def listprint(self):

 printval = self.headval

 while printval is not None:

 print (printval.dataval)

 printval = printval.nextval

list = SLinkedList()

list.headval = Node("Mon")

e2 = Node("Tue")

e3 = Node("Thu")

list.headval.nextval = e2

e2.nextval = e3

list.Inbetween(list.headval.nextval,"Fri")

list.listprint()

When the above code is executed, it produces the following result:

Mon

Tue

Fri

Python Data Structures

 45

Thu

Removing an Item

We can remove an existing node using the key for that node. In the below program, we

locate the previous node of the node which is to be deleted. Then, point the next pointer

of this node to the next node of the node to be deleted.

class Node:

 def __init__(self, data=None):

 self.data = data

 self.next = None

class SLinkedList:

 def __init__(self):

 self.head = None

 def Atbegining(self, data_in):

 NewNode = Node(data_in)

 NewNode.next = self.head

 self.head = NewNode

Function to remove node

 def RemoveNode(self, Removekey):

 HeadVal = self.head

 if (HeadVal is not None):

 if (HeadVal.data == Removekey):

 self.head = HeadVal.next

 HeadVal = None

 return

 while (HeadVal is not None):

 if HeadVal.data == Removekey:

 break

 prev = HeadVal

 HeadVal = HeadVal.next

Python Data Structures

 46

 if (HeadVal == None):

 return

 prev.next = HeadVal.next

 HeadVal = None

 def LListprint(self):

 printval = self.head

 while (printval):

 print(printval.data),

 printval = printval.next

llist = SLinkedList()

llist.Atbegining("Mon")

llist.Atbegining("Tue")

llist.Atbegining("Wed")

llist.Atbegining("Thu")

llist.RemoveNode("Tue")

llist.LListprint()

When the above code is executed, it produces the following result:

Thu

Wed

Mon

Python Data Structures

 47

In the English dictionary, the word stack means arranging objects one over another. It is

the same way; memory is allocated in this data structure. It stores the data elements in

a similar fashion as a bunch of plates are stored one above another in the kitchen. So,

stack data structure allows operations at one end, which can be called top of the stack.

We can add elements or remove elements only form this end of the stack.

In a stack the element inserted last in sequence, will come out first as we can remove only

from the top of the stack. Such feature is known as Last in First Out(LIFO) feature. The

operations of adding and removing the elements is known as PUSH and POP. In the

following program, we implement it as add and remove functions. We declare an empty

list and use the append() and pop() methods, to add and remove the data elements.

PUSH into a Stack

Let us understand, how to use PUSH in Stack. Refer the program mentioned program

below:

class Stack:

 def __init__(self):

 self.stack = []

 def add(self, dataval):

Use list append method to add element

 if dataval not in self.stack:

 self.stack.append(dataval)

 return True

 else:

 return False

Use peek to look at the top of the stack

 def peek(self):

 return self.stack[-1]

AStack = Stack()

AStack.add("Mon")

AStack.add("Tue")

AStack.peek()

12. Python Data Structures – Stack

Python Data Structures

 48

print(AStack.peek())

AStack.add("Wed")

AStack.add("Thu")

print(AStack.peek())

When the above code is executed, it produces the following result:

Tue

Thu

POP from a Stack

As we know, we can remove only the top most data element from the stack, we implement

a python program which does that. The remove function in the following program returns

the top most element. We check the top element by calculating the size of the stack first

and then, use the in-built pop() method to find out the top most element.

class Stack:

 def __init__(self):

 self.stack = []

 def add(self, dataval):

Use list append method to add element

 if dataval not in self.stack:

 self.stack.append(dataval)

 return True

 else:

 return False

Use list pop method to remove element

 def remove(self):

 if len(self.stack) <= 0:

 return ("No element in the Stack")

 else:

 return self.stack.pop()

AStack = Stack()

AStack.add("Mon")

AStack.add("Tue")

Python Data Structures

 49

AStack.add("Wed")

AStack.add("Thu")

print(AStack.remove())

print(AStack.remove())

When the above code is executed, it produces the following result:

Thu

Wed

Python Data Structures

 50

We are familiar with queue in our day to day life as we wait for a service. The queue data

structure also means the same, where the data elements are arranged in a queue. The

uniqueness of queue lies in the way items are added and removed. The items are allowed

at on end, but removed from the other end. So, it is a First-in-First out method.

A queue can be implemented using python list, where we can use the insert() and pop()

methods to add and remove elements. There is no insertion as data elements are always

added at the end of the queue.

Adding Elements

In the below example, we create a queue class, where we implement the First-in-First-Out

method. We use the in-built insert method for adding data elements.

class Queue:

 def __init__(self):

 self.queue = list()

 def addtoq(self,dataval):

Insert method to add element

 if dataval not in self.queue:

 self.queue.insert(0,dataval)

 return True

 return False

 def size(self):

 return len(self.queue)

TheQueue = Queue()

TheQueue.addtoq("Mon")

TheQueue.addtoq("Tue")

TheQueue.addtoq("Wed")

print(TheQueue.size())

When the above code is executed, it produces the following result:

3

13. Python Data Structures – Queue

Python Data Structures

 51

Removing Element

In the below example, we create a queue class, where we insert the data and then remove

the data using the in-built pop method.

class Queue:

 def __init__(self):

 self.queue = list()

 def addtoq(self,dataval):

Insert method to add element

 if dataval not in self.queue:

 self.queue.insert(0,dataval)

 return True

 return False

Pop method to remove element

 def removefromq(self):

 if len(self.queue)>0:

 return self.queue.pop()

 return ("No elements in Queue!")

TheQueue = Queue()

TheQueue.addtoq("Mon")

TheQueue.addtoq("Tue")

TheQueue.addtoq("Wed")

print(TheQueue.removefromq())

print(TheQueue.removefromq())

When the above code is executed, it produces the following result:

Mon

Tue

Python Data Structures

 52

A double-ended queue, or deque, supports adding and removing elements from either

end. The more commonly used stacks and queues are degenerate forms of deques, where

the inputs and outputs are restricted to a single end.

import collections

DoubleEnded = collections.deque(["Mon","Tue","Wed"])

DoubleEnded.append("Thu")

print ("Appended at right - ")

print (DoubleEnded)

DoubleEnded.appendleft("Sun")

print ("Appended at right at left is - ")

print (DoubleEnded)

DoubleEnded.pop()

print ("Deleting from right - ")

print (DoubleEnded)

DoubleEnded.popleft()

print ("Deleting from left - ")

print (DoubleEnded)

Appended at right -

deque(['Mon', 'Tue', 'Wed', 'Thu'])

Appended at right at left is -

deque(['Sun', 'Mon', 'Tue', 'Wed', 'Thu'])

Deleting from right -

deque(['Sun', 'Mon', 'Tue', 'Wed'])

14. Python Data Structures – Dequeue

Python Data Structures

 53

Deleting from left -

deque(['Mon', 'Tue', 'Wed'])

Python Data Structures

 54

We have already seen Linked List in earlier chapter, in which it is possible only to travel

forward. In this chapter we see another type of linked list in which it is possible to travel

both forward and backward. Such a linked list is called Doubly Linked List. Following is the

features of doubly linked list.

 Doubly Linked List contains a link element called first and last.

 Each link carries a data field(s) and two link fields called next and prev.

 Each link is linked with its next link using its next link.

 Each link is linked with its previous link using its previous link.

 The last link carries a link as null to mark the end of the list.

Creating Doubly linked list

We create a Doubly Linked list by using the Node class. Now, we use the same approach

as used in the Singly Linked List but, the head and next pointers will be used for proper

assignation to create two links in each of the nodes in addition to the data present in the

node.

class Node:

 def __init__(self, data):

 self.data = data

 self.next = None

 self.prev = None

class doubly_linked_list:

 def __init__(self):

 self.head = None

Adding data elements

 def push(self, NewVal):

 NewNode = Node(NewVal)

 NewNode.next = self.head

 if self.head is not None:

 self.head.prev = NewNode

 self.head = NewNode

15. Python Data Structutres – Advanced Linked
List

Python Data Structures

 55

Print the Doubly Linked list

 def listprint(self, node):

 while (node is not None):

 print(node.data),

 last = node

 node = node.next

dllist = doubly_linked_list()

dllist.push(12)

dllist.push(8)

dllist.push(62)

dllist.listprint(dllist.head)

When the above code is executed, it produces the following result:

62 8 12

Inserting into Doubly Linked List

Here, we are going to see how to insert a node to the Doubly Link List using the following

program. The program uses a method named insert, which inserts the new node at the

third position from the head of the doubly linked list.

Create the Node class

class Node:

 def __init__(self, data):

 self.data = data

 self.next = None

 self.prev = None

Create the doubly linked list

class doubly_linked_list:

 def __init__(self):

 self.head = None

Define the push method to add elements

 def push(self, NewVal):

Python Data Structures

 56

 NewNode = Node(NewVal)

 NewNode.next = self.head

 if self.head is not None:

 self.head.prev = NewNode

 self.head = NewNode

Define the insert method to insert the element

 def insert(self, prev_node, NewVal):

 if prev_node is None:

 return

 NewNode = Node(NewVal)

 NewNode.next = prev_node.next

 prev_node.next = NewNode

 NewNode.prev = prev_node

 if NewNode.next is not None:

 NewNode.next.prev = NewNode

Define the method to print the linked list

 def listprint(self, node):

 while (node is not None):

 print(node.data),

 last = node

 node = node.next

dllist = doubly_linked_list()

dllist.push(12)

dllist.push(8)

dllist.push(62)

dllist.insert(dllist.head.next, 13)

dllist.listprint(dllist.head)

When the above code is executed, it produces the following result:

62 8 13 12

Appending to a Doubly linked list

Appending to a doubly linked list will add the element at the end.

Python Data Structures

 57

Create the node class

class Node:

 def __init__(self, data):

 self.data = data

 self.next = None

 self.prev = None

Create the doubly linked list class

class doubly_linked_list:

 def __init__(self):

 self.head = None

Define the push method to add elements at the begining

 def push(self, NewVal):

 NewNode = Node(NewVal)

 NewNode.next = self.head

 if self.head is not None:

 self.head.prev = NewNode

 self.head = NewNode

Define the append method to add elements at the end

 def append(self, NewVal):

 NewNode = Node(NewVal)

 NewNode.next = None

 if self.head is None:

 NewNode.prev = None

 self.head = NewNode

 return

 last = self.head

 while (last.next is not None):

 last = last.next

 last.next = NewNode

 NewNode.prev = last

 return

Define the method to print

Python Data Structures

 58

 def listprint(self, node):

 while (node is not None):

 print(node.data),

 last = node

 node = node.next

dllist = doubly_linked_list()

dllist.push(12)

dllist.append(9)

dllist.push(8)

dllist.push(62)

dllist.append(45)

dllist.listprint(dllist.head)

When the above code is executed, it produces the following result:

62 8 12 9 45

Please note the position of the elements 9 and 45 for the append operation.

Python Data Structures

 59

Hash tables are a type of data structure, in which the address or the index value of the

data element is generated from a hash function. That makes accessing the data faster, as

the index value behaves as a key for the data value. In other words, Hash table stores

key-value pairs but the key is generated through a hashing function.

So, the search and insertion function of a data element becomes much faster as the key

values themselves become the index of the array which stores the data.

In Python, the Dictionary data types represent the implementation of hash tables. The

Keys in the dictionary satisfy the following requirements.

 The keys of the dictionary are hashable, i.e. they are generated by hashing

function, which generates unique result for each unique value supplied to the hash

function.

 The order of data elements in a dictionary is not fixed.

So, we see the implementation of hash table by using the dictionary data types as below.

Accessing Values in Dictionary

To access dictionary elements, you can use the familiar square brackets along with the

key to obtain its value.

Declare a dictionary

dict = {'Name': 'Zara', 'Age': 7, 'Class': 'First'}

Accessing the dictionary with its key

print "dict['Name']: ", dict['Name']

print "dict['Age']: ", dict['Age']

When the above code is executed, it produces the following result:

dict['Name']: Zara

dict['Age']: 7

Updating Dictionary

You can update a dictionary by adding a new entry or a key-value pair, modifying an

existing entry, or deleting an existing entry as shown below in the simple example:

Declare a dictionary

dict = {'Name': 'Zara', 'Age': 7, 'Class': 'First'}

16. Python Data Structures – Hash Table

Python Data Structures

 60

dict['Age'] = 8; # update existing entry

dict['School'] = "DPS School"; # Add new entry

print "dict['Age']: ", dict['Age']

print "dict['School']: ", dict['School']

When the above code is executed, it produces the following result:

dict['Age']: 8

dict['School']: DPS School

Delete Dictionary Elements

You can either remove individual dictionary elements or clear the entire contents of a

dictionary. You can also delete entire dictionary in a single operation. To explicitly remove

an entire dictionary, just use the del statement.

dict = {'Name': 'Zara', 'Age': 7, 'Class': 'First'}

del dict['Name']; # remove entry with key 'Name'

dict.clear(); # remove all entries in dict

del dict ; # delete entire dictionary

print "dict['Age']: ", dict['Age']

print "dict['School']: ", dict['School']

This produces the following result. Note, that an exception is raised because after del dict

dictionary does not exist anymore.

dict['Age']:

Traceback (most recent call last):

 File "test.py", line 8, in

 print "dict['Age']: ", dict['Age'];

TypeError: 'type' object is unsubscriptable

Python Data Structures

 61

Tree represents the nodes connected by edges. It is a non-linear data structure. It has the

following properties:

 One node is marked as Root node.

 Every node other than the root is associated with one parent node.

 Each node can have an arbitrary number of chid node.

We create a tree data structure in python by using the concept of node discussed earlier.

We designate one node as root node and then add more nodes as child nodes. Below is

program to create the root node.

Create Root

We just create a Node class and add assign a value to the node. This becomes tree with

only a root node.

class Node:

 def __init__(self, data):

 self.left = None

 self.right = None

 self.data = data

 def PrintTree(self):

 print(self.data)

root = Node(10)

root.PrintTree()

When the above code is executed, it produces the following result:

10

17. Python Data Structures – Binary Tree

Python Data Structures

 62

Inserting into a Tree

To insert into a tree, we use the same node class created above and add an insert class

to it. The insert class compares the value of the node to the parent node and decides to

add it as a left node or a right node. Finally, the PrintTree class is used to print the tree.

class Node:

 def __init__(self, data):

 self.left = None

 self.right = None

 self.data = data

 def insert(self, data):

Compare the new value with the parent node

 if self.data:

 if data < self.data:

 if self.left is None:

 self.left = Node(data)

 else:

 self.left.insert(data)

 elif data > self.data:

 if self.right is None:

 self.right = Node(data)

 else:

 self.right.insert(data)

 else:

 self.data = data

Print the tree

 def PrintTree(self):

 if self.left:

 self.left.PrintTree()

 print(self.data),

 if self.right:

 self.right.PrintTree()

Use the insert method to add nodes

Python Data Structures

 63

root = Node(12)

root.insert(6)

root.insert(14)

root.insert(3)

root.PrintTree()

When the above code is executed, it produces the following result:

3 6 12 14

Traversing a Tree

The tree can be traversed by deciding on a sequence to visit each node. As we can clearly

see we can start at a node then visit the left sub-tree first and right sub-tree next. Or we

can also visit the right sub-tree first and left sub-tree next. Accordingly, there are different

names for these tree traversal methods.

Tree Traversal Algorithms

Traversal is a process to visit all the nodes of a tree and may print their values too.

Because, all nodes are connected via edges (links) we always start from the root (head)

node. That is, we cannot randomly access a node in a tree. There are three ways which

we use to traverse a tree.

 In-order Traversal

 Pre-order Traversal

 Post-order Traversal

In-order Traversal

In this traversal method, the left subtree is visited first, then the root and later the right

sub-tree. We should always remember that every node may represent a subtree itself.

In the below python program, we use the Node class to create place holders for the root

node as well as the left and right nodes. Then, we create an insert function to add data to

the tree. Finally, the In-order traversal logic is implemented by creating an empty list and

adding the left node first followed by the root or parent node.

At last the left node is added to complete the In-order traversal. Please note that this

process is repeated for each sub-tree until all the nodes are traversed.

class Node:

 def __init__(self, data):

 self.left = None

Python Data Structures

 64

 self.right = None

 self.data = data

Insert Node

 def insert(self, data):

 if self.data:

 if data < self.data:

 if self.left is None:

 self.left = Node(data)

 else:

 self.left.insert(data)

 elif data > self.data:

 if self.right is None:

 self.right = Node(data)

 else:

 self.right.insert(data)

 else:

 self.data = data

Print the Tree

 def PrintTree(self):

 if self.left:

 self.left.PrintTree()

 print(self.data),

 if self.right:

 self.right.PrintTree()

Inorder traversal

Left -> Root -> Right

 def inorderTraversal(self, root):

 res = []

 if root:

 res = self.inorderTraversal(root.left)

 res.append(root.data)

 res = res + self.inorderTraversal(root.right)

 return res

Python Data Structures

 65

root = Node(27)

root.insert(14)

root.insert(35)

root.insert(10)

root.insert(19)

root.insert(31)

root.insert(42)

print(root.inorderTraversal(root))

When the above code is executed, it produces the following result:

[10, 14, 19, 27, 31, 35, 42]

Pre-order Traversal

In this traversal method, the root node is visited first, then the left subtree and finally the

right subtree.

In the below python program, we use the Node class to create place holders for the root

node as well as the left and right nodes. Then, we create an insert function to add data to

the tree. Finally, the Pre-order traversal logic is implemented by creating an empty list

and adding the root node first followed by the left node.

At last, the right node is added to complete the Pre-order traversal. Please note that, this

process is repeated for each sub-tree until all the nodes are traversed.

class Node:

 def __init__(self, data):

 self.left = None

 self.right = None

 self.data = data

Insert Node

 def insert(self, data):

 if self.data:

 if data < self.data:

 if self.left is None:

 self.left = Node(data)

 else:

 self.left.insert(data)

Python Data Structures

 66

 elif data > self.data:

 if self.right is None:

 self.right = Node(data)

 else:

 self.right.insert(data)

 else:

 self.data = data

Print the Tree

 def PrintTree(self):

 if self.left:

 self.left.PrintTree()

 print(self.data),

 if self.right:

 self.right.PrintTree()

Preorder traversal

Root -> Left ->Right

 def PreorderTraversal(self, root):

 res = []

 if root:

 res.append(root.data)

 res = res + self.PreorderTraversal(root.left)

 res = res + self.PreorderTraversal(root.right)

 return res

root = Node(27)

root.insert(14)

root.insert(35)

root.insert(10)

root.insert(19)

root.insert(31)

root.insert(42)

print(root.PreorderTraversal(root))

When the above code is executed, it produces the following result:

Python Data Structures

 67

[27, 14, 10, 19, 35, 31, 42]

Post-order Traversal

In this traversal method, the root node is visited last, hence the name. First, we traverse

the left subtree, then the right subtree and finally the root node.

In the below python program, we use the Node class to create place holders for the root

node as well as the left and right nodes. Then, we create an insert function to add data to

the tree. Finally, the Post-order traversal logic is implemented by creating an empty list

and adding the left node first followed by the right node.

At last the root or parent node is added to complete the Post-order traversal. Please note

that, this process is repeated for each sub-tree until all the nodes are traversed.

class Node:

 def __init__(self, data):

 self.left = None

 self.right = None

 self.data = data

Insert Node

 def insert(self, data):

 if self.data:

 if data < self.data:

 if self.left is None:

 self.left = Node(data)

 else:

 self.left.insert(data)

 elif data > self.data:

 if self.right is None:

 self.right = Node(data)

 else:

 self.right.insert(data)

 else:

 self.data = data

Print the Tree

Python Data Structures

 68

 def PrintTree(self):

 if self.left:

 self.left.PrintTree()

 print(self.data),

 if self.right:

 self.right.PrintTree()

Postorder traversal

Left ->Right -> Root

 def PostorderTraversal(self, root):

 res = []

 if root:

 res = self.PostorderTraversal(root.left)

 res = res + self.PostorderTraversal(root.right)

 res.append(root.data)

 return res

root = Node(27)

root.insert(14)

root.insert(35)

root.insert(10)

root.insert(19)

root.insert(31)

root.insert(42)

print(root.PostorderTraversal(root))

When the above code is executed, it produces the following result:

[10, 19, 14, 31, 42, 35, 27]

Python Data Structures

 69

A Binary Search Tree (BST) is a tree, in which all the nodes follow the below-mentioned

properties. The left sub-tree of a node has a key less than or equal to its parent node's

key. The right sub-tree of a node has a key greater than to its parent node's key. Thus,

BST divides all its sub-trees into two segments; the left sub-tree and the right sub-tree.

left_subtree (keys) ≤ node (key) ≤ right_subtree (keys)

Search for a value in a B-tree

Searching for a value in a tree involves comparing the incoming value with the value

exiting nodes. Here also, we traverse the nodes from left to right and then finally, with the

parent. If the searched for value does not match any of the existing value, then we return

not found message, or else the found message is returned.

class Node:

 def __init__(self, data):

 self.left = None

 self.right = None

 self.data = data

Insert method to create nodes

 def insert(self, data):

 if self.data:

 if data < self.data:

 if self.left is None:

 self.left = Node(data)

 else:

 self.left.insert(data)

 elif data > self.data:

 if self.right is None:

 self.right = Node(data)

 else:

 self.right.insert(data)

18. Python Data Structures – Search Tree

Python Data Structures

 70

 else:

 self.data = data

findval method to compare the value with nodes

 def findval(self, lkpval):

 if lkpval < self.data:

 if self.left is None:

 return str(lkpval)+" Not Found"

 return self.left.findval(lkpval)

 elif lkpval > self.data:

 if self.right is None:

 return str(lkpval)+" Not Found"

 return self.right.findval(lkpval)

 else:

 print(str(self.data) + ' is found')

Print the tree

 def PrintTree(self):

 if self.left:

 self.left.PrintTree()

 print(self.data),

 if self.right:

 self.right.PrintTree()

root = Node(12)

root.insert(6)

root.insert(14)

root.insert(3)

print(root.findval(7))

print(root.findval(14))

When the above code is executed, it produces the following result:

7 Not Found

14 is found

Python Data Structures

 71

Heap is a special tree structure in which each parent node is less than or equal to its child

node. Then, it is called a Min Heap. If each parent node is greater than or equal to its child

node, then it is called a max heap. It is very useful is implementing priority queues, where

the queue item with higher weightage is given more priority in processing.

A detailed discussion on heaps is available in our website here. Please study it first, if you

are new to head data structure. In this chapter, we will see the implementation of heap

data structure using python.

Create a Heap

A heap is created by using python’s inbuilt library named heapq. This library has the

relevant functions to carry out various operations on heap data structure. Below, is a list

of these functions.

 heapify - This function converts a regular list to a heap. In the resulting heap the

smallest element gets pushed to the index position 0. But rest of the data elements

are not necessarily sorted.

 heappush – This function adds an element to the heap without altering the current

heap.

 heappop - This function returns the smallest data element from the heap.

 heapreplace – This function replaces the smallest data element with a new value

supplied in the function.

Creating a Heap

A heap is created by simply using a list of elements with the heapify function. In the below

example, we supply a list of elements and the heapify function rearranges the elements

bringing the smallest element to the first position.

import heapq

H = [21,1,45,78,3,5]

Use heapify to rearrange the elements

heapq.heapify(H)

print(H)

When the above code is executed, it produces the following result:

[1, 3, 5, 78, 21, 45]

19. Python Data Structures – Heaps

Python Data Structures

 72

Inserting into heap

Inserting a data element to a heap always adds the element at the last index. But, you

can apply heapify function again to bring the newly added element to the first index only

if it smallest in value. In the below example we insert the number 8.

import heapq

H = [21,1,45,78,3,5]

Covert to a heap

heapq.heapify(H)

print(H)

Add element

heapq.heappush(H,8)

print(H)

When the above code is executed, it produces the following result:

[1, 3, 5, 78, 21, 45]

[1, 3, 5, 78, 21, 45, 8]

Removing from heap

You can remove the element at first index by using this function. In the below example,

the function will always remove the element at the index position 1.

import heapq

H = [21,1,45,78,3,5]

Create the heap

heapq.heapify(H)

print(H)

Remove element from the heap

heapq.heappop(H)

print(H)

When the above code is executed, it produces the following result:

[1, 3, 5, 78, 21, 45]

[3, 21, 5, 78, 45]

Python Data Structures

 73

Replacing in a Heap

The heapreplace function always removes the smallest element of the heap and inserts

the new incoming element at some place not fixed by any order.

import heapq

H = [21,1,45,78,3,5]

Create the heap

heapq.heapify(H)

print(H)

Replace an element

heapq.heapreplace(H,6)

print(H)

[1, 3, 5, 78, 21, 45]

[3, 6, 5, 78, 21, 45]

Python Data Structures

 74

A graph is a pictorial representation of a set of objects where some pairs of objects are

connected by links. The interconnected objects are represented by points termed as

vertices, and the links that connect the vertices are called edges. The various terms and

functionalities associated with a graph is described in great detail in our tutorial here.

In this chapter, we are going to see how to create a graph and add various data elements

to it using a python program. Following are the basic operations we perform on graphs.

 Display graph vertices

 Display graph edges

 Add a vertex

 Add an edge

 Creating a graph

A graph can be easily presented using the python dictionary data types. We represent the

vertices as the keys of the dictionary and the connection between the vertices also called

edges as the values in the dictionary.

Take a look at the following graph:

In the above graph,

V = {a, b, c, d, e}

E = {ab, ac, bd, cd, de}

We can present this graph in a python program as below:

Create the dictionary with graph elements

graph = { "a" : ["b","c"],

 "b" : ["a", "d"],

 "c" : ["a", "d"],

 "d" : ["e"],

 "e" : ["d"]

 }

20. Python Data Structures – Graphs

Python Data Structures

 75

Print the graph

print(graph)

When the above code is executed, it produces the following result:

{'c': ['a', 'd'], 'a': ['b', 'c'], 'e': ['d'], 'd': ['e'], 'b': ['a', 'd']}

Display graph vertices

To display the graph vertices, we simple find the keys of the graph dictionary. We use the

keys() method.

class graph:

 def __init__(self,gdict=None):

 if gdict is None:

 gdict = []

 self.gdict = gdict

Get the keys of the dictionary

 def getVertices(self):

 return list(self.gdict.keys())

Create the dictionary with graph elements

graph_elements = { "a" : ["b","c"],

 "b" : ["a", "d"],

 "c" : ["a", "d"],

 "d" : ["e"],

 "e" : ["d"]

 }

g = graph(graph_elements)

print(g.getVertices())

When the above code is executed, it produces the following result:

['d', 'b', 'e', 'c', 'a']

Python Data Structures

 76

Display graph edges

Finding the graph edges is little trickier than the vertices as we have to find each of the

pairs of vertices which have an edge in between them. So, we create an empty list of

edges then iterate through the edge values associated with each of the vertices. A list is

formed containing the distinct group of edges found from the vertices.

class graph:

 def __init__(self,gdict=None):

 if gdict is None:

 gdict = {}

 self.gdict = gdict

 def edges(self):

 return self.findedges()

Find the distinct list of edges

 def findedges(self):

 edgename = []

 for vrtx in self.gdict:

 for nxtvrtx in self.gdict[vrtx]:

 if {nxtvrtx, vrtx} not in edgename:

 edgename.append({vrtx, nxtvrtx})

 return edgename

Create the dictionary with graph elements

graph_elements = { "a" : ["b","c"],

 "b" : ["a", "d"],

 "c" : ["a", "d"],

 "d" : ["e"],

 "e" : ["d"]

 }

g = graph(graph_elements)

print(g.edges())

When the above code is executed, it produces the following result:

Python Data Structures

 77

[{'b', 'a'}, {'b', 'd'}, {'e', 'd'}, {'a', 'c'}, {'c', 'd'}]

Adding a vertex

Adding a vertex is straight forward, where we add another additional key to the graph

dictionary.

class graph:

 def __init__(self,gdict=None):

 if gdict is None:

 gdict = {}

 self.gdict = gdict

 def getVertices(self):

 return list(self.gdict.keys())

Add the vertex as a key

 def addVertex(self, vrtx):

 if vrtx not in self.gdict:

 self.gdict[vrtx] = []

Create the dictionary with graph elements

graph_elements = { "a" : ["b","c"],

 "b" : ["a", "d"],

 "c" : ["a", "d"],

 "d" : ["e"],

 "e" : ["d"]

 }

g = graph(graph_elements)

g.addVertex("f")

print(g.getVertices())

When the above code is executed, it produces the following result:

['f', 'e', 'b', 'a', 'c','d']

Python Data Structures

 78

Adding an edge

Adding an edge to an existing graph involves treating the new vertex as a tuple and

validating if the edge is already present. If not, then the edge is added.

class graph:

 def __init__(self,gdict=None):

 if gdict is None:

 gdict = {}

 self.gdict = gdict

 def edges(self):

 return self.findedges()

Add the new edge

 def AddEdge(self, edge):

 edge = set(edge)

 (vrtx1, vrtx2) = tuple(edge)

 if vrtx1 in self.gdict:

 self.gdict[vrtx1].append(vrtx2)

 else:

 self.gdict[vrtx1] = [vrtx2]

List the edge names

 def findedges(self):

 edgename = []

 for vrtx in self.gdict:

 for nxtvrtx in self.gdict[vrtx]:

 if {nxtvrtx, vrtx} not in edgename:

 edgename.append({vrtx, nxtvrtx})

 return edgename

Create the dictionary with graph elements

graph_elements = { "a" : ["b","c"],

 "b" : ["a", "d"],

 "c" : ["a", "d"],

 "d" : ["e"],

Python Data Structures

 79

 "e" : ["d"]

 }

g = graph(graph_elements)

g.AddEdge({'a','e'})

g.AddEdge({'a','c'})

print(g.edges())

When the above code is executed, it produces the following result:

[{'e', 'd'}, {'b', 'a'}, {'b', 'd'}, {'a', 'c'}, {'a', 'e'}, {'c', 'd'}]

Python Data Structures

 80

Algorithm is a step-by-step procedure, which defines a set of instructions to be executed

in a certain order to get the desired output. Algorithms are generally created independent

of underlying languages, i.e. an algorithm can be implemented in more than one

programming language.

From the data structure point of view, following are some important categories of

algorithms:

 Search − Algorithm to search an item in a data structure.

 Sort − Algorithm to sort items in a certain order.

 Insert − Algorithm to insert item in a data structure.

 Update − Algorithm to update an existing item in a data structure.

 Delete − Algorithm to delete an existing item from a data structure.

Characteristics of an Algorithm

Not all procedures can be called an algorithm. An algorithm should have the following

characteristics:

 Unambiguous − Algorithm should be clear and unambiguous. Each of its steps

(or phases), and their inputs/outputs should be clear and must lead to only one

meaning.

 Input − An algorithm should have 0 or more well-defined inputs.

 Output − An algorithm should have 1 or more well-defined outputs, and should

match the desired output.

 Finiteness − Algorithms must terminate after a finite number of steps.

 Feasibility − Should be feasible with the available resources.

 Independent − An algorithm should have step-by-step directions, which should

be independent of any programming code.

How to Write an Algorithm?

There are no well-defined standards for writing algorithms. Rather, it is problem and

resource dependent. Algorithms are never written to support a particular programming

code.

As we know that all programming languages share basic code constructs like loops (do,

for, while), flow-control (if-else), etc. These common constructs can be used to write an

algorithm.

21. Python Data Structures – Algorithm Design

Python Data Structures

 81

We write algorithms in a step-by-step manner, but it is not always the case. Algorithm

writing is a process and is executed after the problem domain is well-defined. That is, we

should know the problem domain, for which we are designing a solution.

Example

Let's try to learn algorithm-writing by using an example.

 Problem − Design an algorithm to add two numbers and display the result.

step 1 − START

step 2 − declare three integers a, b & c

step 3 − define values of a & b

step 4 − add values of a & b

step 5 − store output of step 4 to c

step 6 − print c

step 7 − STOP

Algorithms tell the programmers how to code the program. Alternatively, the algorithm

can be written as:

step 1 − START ADD

step 2 − get values of a & b

step 3 − c ← a + b

step 4 − display c

step 5 − STOP

In design and analysis of algorithms, usually the second method is used to describe an

algorithm. It makes it easy for the analyst to analyse the algorithm ignoring all unwanted

definitions. He can observe what operations are being used and how the process is flowing.

Writing step numbers, is optional.

We design an algorithm to get a solution of a given problem. A problem can be solved in

more than one ways.

Python Data Structures

 82

Hence, many solution algorithms can be derived for a given problem. The next step is to

analyse those proposed solution algorithms and implement the best suitable solution.

Python Data Structures

 83

In divide and conquer approach, the problem in hand, is divided into smaller sub-problems

and then each problem is solved independently. When, we keep on dividing the sub

problems into even smaller sub-problems, we may eventually reach a stage where no

more division is possible. Those "atomic" smallest possible sub-problem (fractions) are

solved. The solution of all sub-problems is finally merged in order to obtain the solution of

an original problem.

Broadly, we can understand divide-and-conquer approach in a three-step process.

Divide/Break

This step involves breaking the problem into smaller sub-problems. Sub-problems should

represent a part of the original problem. This step generally takes a recursive approach to

divide the problem until no sub-problem is further divisible. At this stage, sub-problems

become atomic in nature but still represent some part of the actual problem.

Conquer/Solve

This step receives a lot of smaller sub-problems to be solved. Generally, at this level, the

problems are considered 'solved' on their own.

Merge/Combine

When the smaller sub-problems are solved, this stage recursively combines them until

they formulate a solution of the original problem. This algorithmic approach works

recursively and conquer & merge steps works so close that they appear as one.

22. Python Data Structures – Divide and Conquer

Python Data Structures

 84

Examples

The following program is an example of divide-and-conquer programming approach

where the binary search is implemented using python.

Binary Search implementation

In binary search, we take a sorted list of elements and start looking for an element at the

middle of the list. If the search value matches with the middle value in the list, we complete

the search. Otherwise, we eliminate half of the list of elements by choosing whether to

process with the right or left half of the list depending on the value of the item searched.

This is possible as the list is sorted and it is much quicker than linear search. Here, we

divide the given list and conquer by choosing the proper half of the list. We repeat this

approach till we find the element or conclude about its absence in the list.

def bsearch(list, val):

 list_size = len(list) - 1

 idx0 = 0

 idxn = list_size

Find the middle most value

 while idx0 <= idxn:

 midval = (idx0 + idxn)// 2

 if list[midval] == val:

 return midval

Compare the value the middle most value

 if val > list[midval]:

 idx0 = midval + 1

 else:

 idxn = midval - 1

 if idx0 > idxn:

 return None

Initialize the sorted list

list = [2,7,19,34,53,72]

Print the search result

Python Data Structures

 85

print(bsearch(list,72))

print(bsearch(list,11))

When the above code is executed, it produces the following result:

5

None

Python Data Structures

 86

Recursion allows a function to call itself. Fixed steps of code get executed again and again

for new values. We also have to set criteria for deciding when the recursive call ends. In

the below example we see a recursive approach to the binary search. We take a sorted

list and give its index range as input to the recursive function.

Binary Search using Recursion

We implement the algorithm of binary search using python as shown below. We use an

ordered list of items and design a recursive function to take in the list along with starting

and ending index as input. Then, the binary search function calls itself till find the searched

item or concludes about its absence in the list.

def bsearch(list, idx0, idxn, val):

 if (idxn < idx0):

 return None

 else:

 midval = idx0 + ((idxn - idx0) // 2)

Compare the search item with middle most value

 if list[midval] > val:

 return bsearch(list, idx0, midval-1,val)

 elif list[midval] < val:

 return bsearch(list, midval+1, idxn, val)

 else:

 return midval

list = [8,11,24,56,88,131]

print(bsearch(list, 0, 5, 24))

print(bsearch(list, 0, 5, 51))

When the above code is executed, it produces the following result:

2

None

23. Python Data Structures – Recursion

Python Data Structures

 87

Backtracking is a form of recursion. But, it involves choosing only option out of any

possibilities. We begin by choosing an option and backtrack from it, if we reach a state

where we conclude that this specific option does not give the required solution. We repeat

these steps by going across each available option until we get the desired solution.

Below is an example of finding all possible order of arrangements of a given set of letters.

When we choose a pair we apply backtracking to verify if that exact pair has already been

created or not. If not already created, the pair is added to the answer list else it is ignored.

def permute(list, s):

 if list == 1:

 return s

 else:

 return [y + x

 for y in permute(1, s)

 for x in permute(list - 1, s)

]

print(permute(1, ["a","b","c"]))

print(permute(2, ["a","b","c"]))

When the above code is executed, it produces the following result:

['a', 'b', 'c']

['aa', 'ab', 'ac', 'ba', 'bb', 'bc', 'ca', 'cb', 'cc']

24. Python Data Structures – Backtracking

Python Data Structures

 88

Sorting refers to arranging data in a particular format. Sorting algorithm specifies the way

to arrange data in a particular order. Most common orders are in numerical or

lexicographical order.

The importance of sorting lies in the fact that data searching can be optimized to a very

high level, if data is stored in a sorted manner. Sorting is also used to represent data in

more readable formats. Below we see five such implementations of sorting in python.

 Bubble Sort

 Merge Sort

 Insertion Sort

 Shell Sort

 Selection Sort

Bubble Sort

It is a comparison-based algorithm in which each pair of adjacent elements is compared

and the elements are swapped if they are not in order.

def bubblesort(list):

Swap the elements to arrange in order

 for iter_num in range(len(list)-1,0,-1):

 for idx in range(iter_num):

 if list[idx]>list[idx+1]:

 temp = list[idx]

 list[idx] = list[idx+1]

 list[idx+1] = temp

list = [19,2,31,45,6,11,121,27]

bubblesort(list)

print(list)

When the above code is executed, it produces the following result:

[2, 6, 11, 19, 27, 31, 45, 121]

25. Python Data Structures – Sorting Algorithms

Python Data Structures

 89

Merge Sort

Merge sort first divides the array into equal halves and then combines them in a sorted

manner.

def merge_sort(unsorted_list):

 if len(unsorted_list) <= 1:

 return unsorted_list

Find the middle point and devide it

 middle = len(unsorted_list) // 2

 left_list = unsorted_list[:middle]

 right_list = unsorted_list[middle:]

 left_list = merge_sort(left_list)

 right_list = merge_sort(right_list)

 return list(merge(left_list, right_list))

Merge the sorted halves

def merge(left_half,right_half):

 res = []

 while len(left_half) != 0 and len(right_half) != 0:

 if left_half[0] < right_half[0]:

 res.append(left_half[0])

 left_half.remove(left_half[0])

 else:

 res.append(right_half[0])

 right_half.remove(right_half[0])

 if len(left_half) == 0:

 res = res + right_half

 else:

 res = res + left_half

 return res

unsorted_list = [64, 34, 25, 12, 22, 11, 90]

print(merge_sort(unsorted_list))

Python Data Structures

 90

When the above code is executed, it produces the following result:

[11, 12, 22, 25, 34, 64, 90]

Insertion Sort

Insertion sort involves finding the right place for a given element in a sorted list. So in

beginning we compare the first two elements and sort them by comparing them. Then, we

pick the third element and find its proper position among the previous two sorted

elements. This way, we gradually go on adding more elements to the already sorted list

by putting them in their proper position.

def insertion_sort(InputList):

 for i in range(1, len(InputList)):

 j = i-1

 nxt_element = InputList[i]

Compare the current element with next one

 while (InputList[j] > nxt_element) and (j >= 0):

 InputList[j+1] = InputList[j]

 j=j-1

 InputList[j+1] = nxt_element

list = [19,2,31,45,30,11,121,27]

insertion_sort(list)

print(list)

When the above code is executed, it produces the following result:

[2, 11, 19, 27, 30, 31, 45, 121]

Shell Sort

Shell Sort involves sorting elements, which are away from each other. We sort a large

sublist of a given list and go on reducing the size of the list until all elements are sorted.

The below program finds the gap by equating it to half of the length of the list size and

then starts sorting all elements in it. Then, we keep resetting the gap until the entire list

is sorted.

def shellSort(input_list):

 gap = len(input_list) // 2

 while gap > 0:

Python Data Structures

 91

 for i in range(gap, len(input_list)):

 temp = input_list[i]

 j = i

Sort the sub list for this gap

 while j >= gap and input_list[j - gap] > temp:

 input_list[j] = input_list[j - gap]

 j = j-gap

 input_list[j] = temp

Reduce the gap for the next element

 gap = gap//2

list = [19,2,31,45,30,11,121,27]

shellSort(list)

print(list)

When the above code is executed, it produces the following result:

[2, 11, 19, 27, 30, 31, 45, 121]

Selection Sort

In selection sort we start by finding the minimum value in a given list and move it to a

sorted list. Then, we repeat the process for each of the remaining elements in the unsorted

list. The next element entering the sorted list is compared with the existing elements and

placed at its correct position. So, at the end all the elements from the unsorted list are

sorted.

def selection_sort(input_list):

 for idx in range(len(input_list)):

 min_idx = idx

 for j in range(idx +1, len(input_list)):

 if input_list[min_idx] > input_list[j]:

 min_idx = j

Python Data Structures

 92

Swap the minimum value with the compared value

 input_list[idx], input_list[min_idx] = input_list[min_idx],

input_list[idx]

l = [19,2,31,45,30,11,121,27]

selection_sort(l)

print(l)

When the above code is executed, it produces the following result:

[2, 11, 19, 27, 30, 31, 45, 121]

Python Data Structures

 93

Searching is a very basic necessity when you store data in different data structures. The

simplest approach is to go across every element in the data structure and match it with

the value you are searching for. This is known as Linear search. It is inefficient and rarely

used, but creating a program for it gives an idea about how we can implement some

advanced search algorithms.

Linear Search

In this type of search, a sequential search is made over all items one by one. Every item

is checked and if a match is found then that particular item is returned, otherwise the

search continues till the end of the data structure.

def linear_search(values, search_for):

 search_at = 0

 search_res = False

Match the value with each data element

 while search_at < len(values) and search_res is False:

 if values[search_at] == search_for:

 search_res = True

 else:

 search_at = search_at + 1

 return search_res

l = [64, 34, 25, 12, 22, 11, 90]

print(linear_search(l, 12))

print(linear_search(l, 91))

When the above code is executed, it produces the following result:

True

False

Interpolation Search

This search algorithm works on the probing position of the required value. For this

algorithm to work properly, the data collection should be in a sorted form and equally

distributed. Initially, the probe position is the position of the middle most item of the

26. Python Data Structures – Searching
Algorithms

Python Data Structures

 94

collection. If a match occurs, then the index of the item is returned. If the middle item is

greater than the item, then the probe position is again calculated in the sub-array to the

right of the middle item. Otherwise, the item is searched in the subarray to the left of the

middle item. This process continues on the sub-array as well until the size of subarray

reduces to zero.

There is a specific formula to calculate the middle position, which is indicated in the

program below:

def intpolsearch(values,x):

 idx0 = 0

 idxn = (len(values) - 1)

 while idx0 <= idxn and x >= values[idx0] and x <= values[idxn]:

Find the mid point

 mid = idx0 +\

 int(((float(idxn - idx0)/(values[idxn] - values[idx0]))

 * (x - values[idx0])))

Compare the value at mid point with search value

 if values[mid] == x:

 return "Found "+str(x)+" at index "+str(mid)

 if values[mid] < x:

 idx0 = mid + 1

 return "Searched element not in the list"

l = [2, 6, 11, 19, 27, 31, 45, 121]

print(intpolsearch(l, 2))

When the above code is executed, it produces the following result:

Found 2 at index 0

Python Data Structures

 95

Graphs are very useful data structures in solving many important mathematical

challenges. For example, computer network topology or analysing molecular structures of

chemical compounds. They are also used in city traffic or route planning and even in human

languages and their grammar. All these applications have a common challenge of

traversing the graph using their edges and ensuring that all nodes of the graphs are

visited. There are two common established methods to do this traversal which is described

below.

Depth First Traversal

Also called depth first search (DFS), this algorithm traverses a graph in a depth ward

motion and uses a stack to remember to get the next vertex to start a search, when a

dead end occurs in any iteration. We implement DFS for a graph in python using the set

data types as they provide the required functionalities to keep track of visited and unvisited

nodes.

class graph:

 def __init__(self,gdict=None):

 if gdict is None:

 gdict = {}

 self.gdict = gdict

Check for the visisted and unvisited nodes

def dfs(graph, start, visited = None):

 if visited is None:

 visited = set()

 visited.add(start)

 print(start)

 for next in graph[start] - visited:

 dfs(graph, next, visited)

 return visited

gdict = { "a" : set(["b","c"]),

 "b" : set(["a", "d"]),

 "c" : set(["a", "d"]),

 "d" : set(["e"]),

 "e" : set(["a"])

27. Python Data Structures – Graph Algorithms

Python Data Structures

 96

 }

dfs(gdict, 'a')

When the above code is executed, it produces the following result:

a b d e c

Breadth First Traversal

Also called breadth first search (BFS), this algorithm traverses a graph breadth ward

motion and uses a queue to remember to get the next vertex to start a search, when a

dead end occurs in any iteration. Please visit this link in our website to understand the

details of BFS steps for a graph.

We implement BFS for a graph in python using queue data structure discussed earlier.

When we keep visiting the adjacent unvisited nodes and keep adding it to the queue. Then

we start deque only the node which is left with no unvisited nodes. We stop the program

when there is no next adjacent node to be visited.

import collections

class graph:

 def __init__(self,gdict=None):

 if gdict is None:

 gdict = {}

 self.gdict = gdict

def bfs(graph, startnode):

Track the visited and unvisited nodes using queue

 seen, queue = set([startnode]), collections.deque([startnode])

 while queue:

 vertex = queue.popleft()

 marked(vertex)

 for node in graph[vertex]:

 if node not in seen:

 seen.add(node)

 queue.append(node)

def marked(n):

 print(n)

Python Data Structures

 97

The graph dictionary

gdict = { "a" : set(["b","c"]),

 "b" : set(["a", "d"]),

 "c" : set(["a", "d"]),

 "d" : set(["e"]),

 "e" : set(["a"])

 }

bfs(gdict, "a")

When the above code is executed, it produces the following result:

 a c b d e

Python Data Structures

 98

Efficiency of an algorithm can be analysed at two different stages, before implementation

and after implementation. They are as follows:

 A Priori Analysis − This is a theoretical analysis of an algorithm. Efficiency of an

algorithm is measured by assuming that all other factors, for example, processor

speed, are constant and have no effect on the implementation.

 A Posterior Analysis − This is an empirical analysis of an algorithm. The selected

algorithm is implemented using programming language. This is then executed on

target computer machine. In this analysis, actual statistics like running time and

space required, are collected.

Algorithm Complexity

Suppose X is an algorithm and n is the size of input data, the time and space used by the

algorithm X are the two main factors, which decide the efficiency of X.

 Time Factor − Time is measured by counting the number of key operations such

as comparisons in the sorting algorithm.

 Space Factor − Space is measured by counting the maximum memory space

required by the algorithm.

The complexity of an algorithm f(n) gives the running time and/or the storage space

required by the algorithm in terms of n as the size of input data.

Space Complexity

Space complexity of an algorithm represents the amount of memory space required by

the algorithm in its life cycle. The space required by an algorithm is equal to the sum of

the following two components:

 A fixed part that is a space required to store certain data and variables, that are

independent of the size of the problem. For example, simple variables and

constants used, program size, etc.

 A variable part is a space required by variables, whose size depends on the size of

the problem. For example, dynamic memory allocation, recursion stack space, etc.

Space complexity S(P) of any algorithm P is S(P) = C + SP(I), where C is the fixed part

and S(I) is the variable part of the algorithm, which depends on instance characteristic I.

Following is a simple example that tries to explain the concept −

Algorithm: SUM(A, B)

28. Python Data Structures – Algorithm Analysis

Python Data Structures

 99

Step 1 - START

Step 2 - C ← A + B + 10

Step 3 - Stop

Here, we have three variables A, B, and C and one constant. Hence S(P) = 1 + 3. Now,

space depends on data types of given variables and constant types and it will be multiplied

accordingly.

Time Complexity

Time complexity of an algorithm represents the amount of time required by the algorithm

to run to completion. Time requirements can be defined as a numerical function T(n),

where T(n) can be measured as the number of steps, provided each step consumes

constant time.

For example, addition of two n-bit integers takes n steps. Consequently, the total

computational time is T(n) = c ∗ n, where c is the time taken for the addition of two bits.

Here, we observe that T(n) grows linearly as the input size increases.

Python Data Structures

 100

The efficiency and accuracy of algorithms have to be analysed to compare them and

choose a specific algorithm for certain scenarios. The process of making this analysis is

called Asymptotic analysis. It refers to computing the running time of any operation in

mathematical units of computation.

For example, the running time of one operation is computed as f(n) and may be for another

operation it is computed as g(n2). This means the first operation running time will increase

linearly with the increase in n and the running time of the second operation will increase

exponentially when n increases. Similarly, the running time of both operations will be

nearly the same if n is significantly small.

Usually, the time required by an algorithm falls under three types:

 Best Case − Minimum time required for program execution.

 Average Case − Average time required for program execution.

 Worst Case − Maximum time required for program execution.

Asymptotic Notations

The commonly used asymptotic notations to calculate the running time complexity of an

algorithm are as follows:

 Ο Notation

 Ω Notation

 θ Notation

Big Oh Notation, Ο

The notation Ο(n) is the formal way to express the upper bound of an algorithm's running

time. It measures the worst case time complexity or the longest amount of time an

algorithm can possibly take to complete.

For example, for a function f(n)

29. Python Data Structures – Algorithm Types

Python Data Structures

 101

Ο(f(n)) = { g(n) : there exists c > 0 and n0 such that f(n) ≤ c.g(n) for all n

> n0. }

Omega Notation, Ω

The notation Ω(n) is the formal way to express the lower bound of an algorithm's running

time. It measures the best case time complexity or the best amount of time an algorithm

can possibly take to complete.

For example, for a function f(n)

Ω(f(n)) ≥ { g(n) : there exists c > 0 and n0 such that g(n) ≤ c.f(n) for all n

> n0. }

Theta Notation, θ

The notation θ(n) is the formal way to express both the lower bound and the upper bound

of an algorithm's running time. It is represented as follows:

θ(f(n)) = { g(n) if and only if g(n) = Ο(f(n)) and g(n) = Ω(f(n)) for all n >

n0. }

Python Data Structures

 102

Common Asymptotic Notations

A list of some common asymptotic notations is mentioned below:

constant − Ο(1)

logarithmic − Ο(log n)

linear − Ο(n)

n log n − Ο(n log n)

quadratic − Ο(n2)

cubic − Ο(n3)

polynomial − nΟ(1)

exponential − 2Ο(n)

Python Data Structures

 103

Algorithms are unambiguous steps, which should give us a well-defined output by

processing zero or more inputs. This leads to many approaches in designing and writing

the algorithms. It has been observed that most of the algorithms can be classified into the

following categories.

Greedy Algorithms

Greedy algorithms try to find a localized optimum solution, which may eventually lead to

globally optimized solutions. However, generally greedy algorithms do not provide globally

optimized solutions.

So greedy algorithms look for an easy solution at that point in time without considering

how it impacts the future steps. It is similar to how; humans solve problems without going

through the complete details of the inputs provided.

Most networking algorithms use the greedy approach. Here, is a list of few of them:

 Travelling Salesman Problem

 Prim's Minimal Spanning Tree Algorithm

 Kruskal's Minimal Spanning Tree Algorithm

 Dijkstra's Minimal Spanning Tree Algorithm

Divide and Conquer

This class of algorithms involve dividing the given problem into smaller sub-problems and

then, solving each of the sub-problem independently. When the problem cannot be further

sub divided, we start merging the solution to each of the sub-problem to arrive at the

solution for the bigger problem.

The important examples of divide and conquer algorithms are:

 Merge Sort

 Quick Sort

 Kruskal's Minimal Spanning Tree Algorithm

 Binary Search

Dynamic Programming

Dynamic programming involves dividing the bigger problem into smaller ones but, unlike

divide and conquer it does not involve solving each sub-problem independently. Rather

the results of smaller sub-problems are remembered and used for similar or overlapping

sub-problems.

Mostly, these algorithms are used for optimization. Before solving the in-hand sub-

problem, dynamic algorithm will try to examine the results of the previously solved sub-

30. Python Data Structures – Algorithm Classes

Python Data Structures

 104

problems. Dynamic algorithms are motivated for an overall optimization of the problem

and not the local optimization.

The important examples of Dynamic programming algorithms are:

 Fibonacci number series

 Knapsack problem

 Tower of Hanoi

Python Data Structures

 105

Amortized analysis involves estimating the run time for the sequence of operations in a

program without taking into consideration the span of the data distribution in the input

values. A simple example is finding a value in a sorted list is quicker than in an unsorted

list.

If the list is already sorted, it does not matter how distributed the data is. But of course,

the length of the list has an impact as it decides the number of steps the algorithm has to

go through to get the final result.

So, we see that, if the initial cost of a single step of obtaining a sorted list is high, then

the cost of subsequent steps of finding an element becomes considerably low. So

Amortized analysis helps us find a bound on the worst-case running time for a sequence

of operations. There are three approaches to amortized analysis.

 Accounting Method − This involves assigning a cost to each operation performed.

If the actual operation finishes quicker than the assigned time, then some positive

credit is accumulated in the analysis.

In the reverse scenario, it will be negative credit. To keep track of these accumulated

credits, we use a stack or tree data structure. The operations which are carried out

early (like sorting the list) have high amortized cost but the operations that are late in

sequence have lower amortized cost as the accumulated credit is utilized. So the

amortized cost is an upper bound of actual cost.

 Potential Method − In this method the saved credit is utilized for future

operations as mathematical function of the state of the data structure. The

evaluation of the mathematical function and the amortized cost should be equal.

So when the actual cost is greater than amortized cost there is a decrease in

potential and it is used utilized for future operations which are expensive.

 Aggregate analysis − In this method, we estimate the upper bound on the total

cost of n steps. The amortized cost is a simple division of total cost and the number

of steps (n).

31. Python Data Structures – Amortized Analysis

Python Data Structures

 106

In order to make claims about an Algorithm being efficient, we need some mathematical

tools as proof. These tools help us on providing a mathematically satisfying explanation

on the performance and accuracy of the algorithms. Below, is a list of some of those

mathematical tools which can be used for justifying one algorithm over another.

Direct Proof

It is direct verification of the statement by using the direct calculations. For example, sum

of two even numbers is always an even number. In this case just add the two numbers

you are investigating and verify the result as even.

Proof by induction

Here, we start with a specific instance of a truth and then generalize it to all possible

values which are part of the truth. The approach is to take a case of verified truth, then

prove it is also true for the next case for the same given condition. For example, all positive

numbers of the form 2n-1 are odd. We prove it for a certain value of n, then prove it for

the next value of n. This establishes the statement as generally true by proof of induction.

Proof by contraposition

This proof is based on the condition, If Not A implies Not B, then, A implies B. A simple

example is, if square of n is even, then n must be even. Because, if square on n is not

even, then n is not even.

Proof by exhaustion

This is similar to direct proof, but it is established by visiting each case separately and

proving each of them. An example of such proof is the four colour theorem.

32. Python Data Structures – Algorithm
Justification

