
Python Web Development Libraries

 i

Python Web Development Libraries

 ii

About the Tutorial

Python provides multiple frameworks for the web development. This tutorial covers five

most commonly used python libraries which are used for web development. All the

mentioned libraries in this tutorial are the first choice in certain project-specific

conditions/requirements. Also, while trying to select the libraries, the developers interest

(based on their queries and community support) is considered.

 Audience

This tutorial is designed to compare the basic features of some of the most commonly

used python frameworks. The target audience for this tutorial is:

 Anyone who wants to have a basic understanding of Django, Flask, Pyramid,

Web2py and Dash libraries.

 Anyone who wants to compare different Python frameworks and choose the most

suitable framework for their projects.

 Anyone who wants to explore Python web technologies in detail.

Prerequisites

Though there is no mandatory requirement for this tutorial, any prior knowledge on below

mentioned technologies will be an added advantage:

 Knowledge of any web related technologies

 Python language

 Developers/users who have previously worked on any python framework will

definitely find it easier to understand

Copyright & Disclaimer

 Copyright 2018 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

Python Web Development Libraries

 iii

Table of Contents

About the Tutorial ... ii

Audience .. ii

Prerequisites .. ii

Copyright & Disclaimer .. ii

Table of Contents ... iii

1. Python Web Development Libraries – Introduction .. 1

Why Web Development? .. 1

2. Python Web Development Libraries – Python Frameworks .. 4

Django ... 4

Flask ... 4

Web2py ... 5

Pyramid.. 6

Dash ... 7

3. Python Web Development Libraries – Django Framework .. 9

Why should you use Django? .. 9

Who’s Using Django? ... 11

Installing and Creating a Django project and app ... 15

Creating Django Project ... 16

Configuring Django .. 17

Setting the settings .. 18

Setting up a Database .. 19

Starting the Web Server .. 20

Django Models ... 21

Creating an application .. 22

Creating a blog post model.. 23

Creating tables for models in your database... 25

Python Web Development Libraries

 iv

Django Admin .. 25

4. Python Web Development Libraries – Flask Framework ... 28

Flask Startup and Configuration .. 28

Creating an app with flask ... 28

Creating URL Routing ... 29

5. Python Web Development Libraries – Web2py Framework .. 36

Installing and Configuring Web2py Framework .. 36

Creating an app using Web2py .. 38

Deploying the app on cloud platform .. 40

6. Python Web Development Libraries – Pyramid Framework .. 42

Installing, starting up and configuring ... 42

Core Concepts ... 43

Configuration ... 43

URL generation .. 43

Views ... 44

Extensibility ... 44

Running a Hello, Pyramid Program.. 44

7. Python Web Development Libraries – Dash Framework ... 47

Dash Setup ... 47

Dash or App Layout ... 47

Core Components .. 47

Writing Simple Dash app ... 48

Running the Dash app ... 49

More about HTML ... 51

Reusable Components ... 53

More about Visualization .. 54

Markdown ... 56

Python Web Development Libraries

 v

Core Components .. 56

Calling Help .. 58

8. Python Web Development Libraries – Choosing a Better Framework ... 60

Django ... 60

Web2py ... 61

Dash ... 61

Conclusion ... 62

Python Web Development Libraries

 1

Whenever a user opens any web browser like Google Chrome or Mozilla and search for

‘Web development’, thousands of results appear in no time. What makes this possible?

Web development! It broadly refers to the work associated with building, creating and

maintaining websites for hosting via intranet or internet. The work associated in website

design contain multiple areas: web programming, database management, web design,

web publishing, etc.

Web development includes all the codes that influence a website to run. We can separate

the whole process of web development into two categories:

 Front-end

 Back-end

Though frontend and backend web development are certainly distinct from each other,

they are also like two sides of the same coin. A complete website relies on each side

communicating and operating effectively with the other as a single unit. Both front-end

and back-end are equally important in web development.

The front-end or client-side of an application is the code responsible for everything the

user directly experiences on screen from text colors to buttons, images and navigation

menus. Some of the common skills and tools which are used by front-end developers are

listed below:

 HTML/CSS/JavaScript

 CSS preprocessors

 Frameworks

 Libraries

 Git and Github

Generally, the back-end/server-side of an application is responsible for managing

information within the database and serving that information to the front-end. The back-

end of a website consists of a server, application, and database. In general, it involves

everything that happens before hitting your browser. The tools required in back-end web

development are:

 Programming language – Ruby, PHP, Python, etc.

 Database – MySQL, PostgreSQL, MongoDB, Oracle, etc.

Why Web Development?

In today’s world, there are multiple choices to promote your business or skills and share

your ideas. Some of them are promotion through websites, native applications in

marketplaces, etc. The trend of creating new website as a tool of business development is

rapidly gaining momentum around the world. But, some of us may be unaware of the

importance a website holds in the growth of a business.

1. Python Web Development Libraries – Introduction

Python Web Development Libraries

 2

Currently there are numerous start-ups struggling to establish their presence in the open

market. However, it is also true that most of them fail to gain as much targeted audience

as they want. One primary reason which is bringing them down is that they underestimate

the potential of a full feature developed website to earn business for them. Website

development for business or any other purpose can prove quite fruitful.

Let us look at some of the important reasons why website development is important for

business growth:

Reaching out to your audiences

Online websites can reach to broadest audience and are not restricted to a platform that

constrain native applications. The viewers or customers can have easy access i.e. from a

desktop/laptop to a mobile device, as websites have the capability to display the content

through web browser.

In comparison to native application, web browsing is much simpler because it does not

require users to access the app store on their devices or download their app (which may

include one or more processes in accessing to your contents). Distribution of your data is

much more flexible and agile with web-based application than native ones as there are no

stringent app store requirements and content restrictions to follow.

Another tool which is very helpful for web development is the power of utilizing SEO

techniques to target your audiences.

24/7 Accessible

Instead of establishing a physical outlet for the company, if the business owner develops

a website as an online forum or similar, there will be good chance of gaining larger

audience online to link up. This is because, most of the people are wired up with the

Internet all day.

Generally, people prefer to go for the smartest way to check online first and then take a

decision. So if the business owner fills all the basic details of the product and make a

secure way to get the product to the customer in timely manner, then people will prefer

buying online instead of visiting the outlet physically. This also allows people to access it

even in the oddest hour of the day.

Convenience

A fully functional website provides greater advantage for users where they can always

tune in and look for what they need. Generally, users avoid going to stores physically if

they have an option to get it online. So, if you are a smart businessman, you would prefer

to have all the details of your products or your stores on the website only to earn business,

which you otherwise might not.

Global Marketing

With an online website, you can link up to social forums and market your product/service

to a huge audience all around the globe. With this, you can regularly advertise and share

your work on social forums to gain much higher footprints of targeted audience.

Python Web Development Libraries

 3

Credible Source

An online portal is the most trustworthy platform for any company/organization.

Sometimes official websites can even function as their sole office. Consider a scenario,

where it is not easy to get access to a company’s physical location. In such case, you can

overcome this worry by focusing on their website.

In short, by developing a website, you can promote your services by a few clicks and you

can grab the attention of consumers from various parts of the world. The website of a

company can prove remarkable to gain business not only in a shorter time but also with a

much bigger audience.

Python Web Development Libraries

 4

Python is one of the most acceptable languages among web and application developers

because of its strong emphasis on efficiency and readability. There are numerous

outstanding Python web frameworks, each with their own specialties and features.

Django

Here, we will outline some necessary details and features of Django framework.

Category: Django belongs to the full-stack Python framework.

Release: Latest release – 2.1 version, commonly used release – 1.8, 1.6 version.

About: Built by experienced developers, Django is a high level Python web framework

which allows rapid, clean and pragmatic design development. Django handles much of the

complexities of web development, so you can focus on writing your app without a need to

reinvent the wheel. It’s free and open source.

To map objects to database table, Django uses ORM and the same is used to transfer from

one database to other.

It works with mostly all important databases like Oracle, MySQL, PostgreSQL, SQLite, etc.

There are numerous websites in the industry which uses Django as their primary

framework for backend development.

Features of Django

Some of the exemplary features of this Python web framework are:

 URL routing

 Authentication

 Database schema migrations

 ORM (Object-relational mapper)

 Template engine

The Official Website for Django framework is: https://www.djangoproject.com/

Flask

Category: Flask belongs to Non Full-stack frameworks.

2. Python Web Development Libraries – Python Frameworks

https://www.djangoproject.com/
https://www.djangoproject.com/

Python Web Development Libraries

 5

Release: 1.0.2 released on 2018-05-02

About: It is classified as a micro-framework as we don’t require any particular libraries or

tools. It has no form validation or database abstraction layer or any other components

where pre-existing third party libraries provide common functions. However, flask support

multiple extensions which extended the application features as if they were implemented

in Flask itself. Extensions exist for object-relational mappers, form validation, upload

handling, various open authentication technologies and several common frameworks

related tools.

Features of Flask

 Integrated support for unit testing

 Restful request dispatching

 Contains development server and debugger

 Uses Jinja2 templating

 Support for secure cookies

 Unicode-based

 100% WSGI 1.0 compliant

 Extensive documentation

 Google App Engine compatibility

 Extensions available to enhance features desired

Web2py

Category: Web2py belongs to Full-stack framework family.

Release: 2.17.1, released on 2018-08-06

About: Python 2.6, 2.7 to Python 3.x version. With no further dependencies, it’s a

complete package in itself. Development, database administration, debugging,

deployment, testing, and maintenance of applications all can be done through web

interface, but generally not required. It is a scalable open source framework that comes

with its own web-based IDE alongside a code editor, one-click deployment and debugger.

Python Web Development Libraries

 6

Features of Web2py

This framework comes with many developing tools and built-in features that eliminate the

hassle of complexity to the developers.

 With no installation and configuration, it is easy to run.

 Supports almost all major operating system, like Windows, Unix/Linux, Mac, Google

App Engine and almost all web hosting platform through Python 2.7/3.5/3.6/

version.

 Easy to communicate with MySQL, MSSQL, IBM DB2, Informix, Ingres, MongoDB,

SQLite, PostgreSQL, Sybase, Oracle and Google App Engine.

 It prevents the most common types of vulnerabilities including Cross Site Scripting,

Injection Flaws, and Malicious File Execution.

 Supports error tracking and internationalization.

 Multiple protocols readability.

 Employs successful software engineering practices that makes code easy to read

and maintain.

 Ensure user-oriented advancements through backward compatibility.

Pyramid

Category: Pyramid is a non-Full Stack Frameworks

Release: 1.9.2, released on 2018-04-23

About: Pyramid is a small, fast, down-to-earth Python web framework. It is developed as

part of the Pylons Project. It is licensed under a BSD-like license. It makes real-world web

application development and deployment more fun, more predictable and more

productive.

Python Web Development Libraries

 7

Features of Pyramid

Python Pyramid is an open sourced framework with the following features:

 Simplicity - Anyone can start to work with it without any prior knowledge about

it.

 Minimalism - Quite out of the box, Pyramid comes with only some important tools,

which are needed for almost every web application, may it be security or serving

static assets like JavaScript and CSS or attaching URLs to code.

 Documentation - Includes exclusive and up to date documentation.

 Speed - Very fast and accurate.

 Reliability - It is developed, keeping in mind that it is conservative and tested

exhaustively. If not tested properly, it will be considered as broke.

 Openness - It’s sold with a permissive and open license.

Dash

Category: The Dash framework belongs to “other” Python web frameworks.

Release: 0.24.1, core dash backend.

About: Dash as an open source library for creating interactive web-based visualizations.

The plotly team created Dash – an open source framework that leverages Flask, React.js

and plotly.js to build custom data visualization apps. Key highlight of this library is that

you can build highly interactive web application only through Python code. Data scientists

love dash framework, specially all those who are less familiar with web development.

With Dash, developers get access to all the configurable properties and underlying Flask

instance. The applications developed using Dash framework can be deployed to servers

and are eventually rendered in the web browser.

Python Web Development Libraries

 8

Dash applications are inherently cross-platform (Linux/Win/Mac) and mobile friendly and

the capabilities of applications can be extended by the rich set of Flask Plugins.

Features of Dash

 Provides access to configurable properties and Flask instance

 Through Flash plugins, we can extend the capabilities of the Dash application

 Mobile-ready

Python Web Development Libraries

 9

In this chapter, we will discuss about Django Framework in detail.

Django is an MVT web framework that is used to build web applications. The huge Django

web-framework comes with so many “batteries included” that developers often get

amazed as to how everything manages to work together. The principle behind adding so

many batteries is to have common web functionalities in the framework itself instead of

adding latter as a separate library.

One of the main reasons behind the popularity of Django framework is the huge Django

community. The community is so huge that a separate website was devoted to it where

developers from all corners developed third-party packages including authentication,

authorization, full-fledged Django powered CMS systems, e-commerce add-ons and so on.

There is a high probability that what you are trying to develop is already developed by

somebody and you just need to pull that into your project.

Why should you use Django?

Django is designed in such a way that encourages developers to develop websites fast,

clean and with practical design. Django’s practical approach to getting things done is where

it stands out from the crowd.

If you’re planning to build a highly customizable app, such as social media website, Django

is one of the best frameworks to consider. Django strength lies in its interaction between

users or its ability to share different types of media. One of the great advantage of django

is its ability to utilize large community-based support which gives you highly customizable

third-party ready to use plugins in your applications.

Below are the top ten reasons to choose Django for web development:

Python

Python is arguably one of the easiest programming languages to learn because of its

simple language constructs, flow structure and easy syntax. It is versatile and runs

websites, desktop applications and mobile applications embedded in many devices and is

used in other applications as a popular scripting language.

Batteries Included

Django comes with common libraries which are essential to build common functionalities

like URL routing, authentication, an object-relational mapper (ORM), a templating system

and db-schema migrations.

Built-in admin

Django has an in-built administration interface which lets you handle your models, user/

group permissions and to manage users. With model interface in place, there is no need

for a separate database administration program for all but advanced database functions.

3. Python Web Development Libraries – Django Framework

Python Web Development Libraries

 10

Doesn’t get in your way

Creating a Django application adds no boilerplate and no unnecessary functions. There’s

no mandatory imports, third-party libraries and no XML configuration files.

Scalable

Django is based on MVC design pattern. It means that all the entities like db (database),

back-end and front-end code are individual entity. Django allows us to separate code from

the static media including pictures, files, CSS and JavaScript that make up your site.

Django supports a full list of third-party libraries for web servers, caching, performance

management, clustering and balancing. One of the advantages Django provides is the

support for major email and messaging applications and services like ReST and OAuth.

Battle tested

Django was first open-sourced in 2005. After 12 years of growth, Django now not only

runs news publishing websites but also runs all or part of major global enterprise like

Pinterest, Instagram, Disqus, Bitbucket, EventBrite and Zapier. This makes it a robust and

reliable web framework to work with.

Huge package support

Because of its large community support and huge developers network, there is a high

possibility that whatever you intend to do might have been done before. Large

international community of developers contribute to the community by releasing their

projects as open-source packages.

One such repository of these projects is Django Package site. Currently, Django packages

list over 3400 plus reusable Django apps, sites and tools to use in our Django projects.

Actively developed

One of the biggest risks associated with open source project is its sustainability. We cannot

be sure if it lasts long.

There is no such risk with Django as it is 12 years old. Its consistent releases, newer/better

versions and active community is growing every-day with a large core team of voluntary

contributors who maintains and improve the code base every-day.

Stable releases

Open-source software projects like Django are, in many cases, actively developed and

more secure than competing proprietary software as many developers are developing and

testing it every day. However, the drawback of an open-source software project is the

absence of a stable codebase to commercially viable development.

Python Web Development Libraries

 11

In Django, we have Long Term Support (LTS) versions of the software and a defined

release process as shown in the below image:

First Class Documentation

From the very first release, Django developers made sure that there must be proper

comprehensive documents available and the tutorials are easily understand.

Who’s Using Django?

Because of the Django’s unique strength, there are multiple popular websites which are

built with Python on top of the Django framework. Below are some of the major sites which

are fully or partially built based on Django.

Disqus

It is one of the most preferred blog comment-hosting sites globally. It is easy to integrate

with most popular CMS (content management systems) like WordPress and many others

through Disqus. Handling a user-base of over 50 million, Django is able to satisfy the site

owners to reach out to their communities.

Python Web Development Libraries

 12

The Onion

The Onion website which provide an online venue for their satirical newspaper, Django

provides the framework for it.

Bitbucket

Bitbucket is like GitHub, a version control repository hosting service. The only difference

between Bitbucket and GitHub is that Bitbucket hosts mercurial repositories whereas

GitHub hosts git repositories. As millions of users are associated with Bitbucket, and all

the services which bitbucket provides (like create a repo, push your code, add

collaborators, commits, pull request, etc.) has to be stable. Django is responsible for

running the bitbucket site.

Instagram

Instagram is a social networking app built especially for those who love to share photos

and videos to all their friends. Currently there are a lot of celebrities on Instagram so as

to stay closer to their fans. Django framework is running the Instagram too.

Python Web Development Libraries

 13

Mozilla Firefox

Second most widely used browser in the world after Google Chrome is the Mozilla browser.

Now the help page of Mozilla is built with Django framework.

Pinterest

Millions of users around the globe discover their new ideas and inspiration from Pinterest.

Pinterest is using the Django framework (done modification as per their requirement) to

run it.

Python Web Development Libraries

 14

NASA

The National Aeronautics and Space Administration’s official website is a place for millions

of users to visit and check out the news, images, videos and podcasts provided by the

premiere agency. Django develops some specific parts of official NASA website.

The Washington Post

If there’s one influential newspaper in the world, it is certainly the Washington Post. The

Washington Post’s website is a hugely popular online news source to accompany their daily

paper. Its huge amount of views and traffic has been easily handled by Django web

framework.

Reddit Gifts

The massively popular Reddit website has launched an online, anonymous gift exchange

and meetup platform called Reddit Gifts. The site connects users from around the world

and facilitates gifts exchange between them. The Django web framework powers its

functionalities.

Python Web Development Libraries

 15

Prezi

Prezi is a cloud based alternative to Microsoft PowerPoint built on the Django framework.

The site provides a virtual canvas that can be manipulated and zoomed in and out. This

provides the entire view of the presentation rather than individual slides.

Installing and Creating a Django project and app

Before installing Django, we have to make sure that Python is installed. Assuming you are

using virtualenv, a simple pip install django should suffice.

Installing virtual environment and Django

Below is the process to install virtual environment and Django in your windows

environment:

Python Web Development Libraries

 16

To verify if the Django is installed properly, type the code given below:

Creating Django Project

Once the installation is completed, we need to create a Django project.

Running the below command in your windows machine will create the following django

project:

django-admin startproject my_project_name

Python Web Development Libraries

 17

Typing dir will show one new file and one new directory as shown above.

manage.py: manage.py is a command-line-executable Python file which is just a wrapper

around django-admin. It helps us manage our project which is implied in its name as well.

With this, it created a directory called, myFirstDjangoProject inside

myFirstDjangoProject which represents the configuration root for our project. Let us

explore much deeper into it.

Configuring Django

By calling the myFirstDjangoProject directory “configuration root”, we mean this directory

holds the files necessary for generally configuring our Django project. Pretty much

everything outside this directory will be focused solely on the “business logic” associated

with the project’s models, views, routes, etc. All points that connect the project together

will lead here.

Python Web Development Libraries

 18

 __init__.py: This is empty and changes the directory into an importable Python

package.

 settings.py: As the name suggest, it is the place where most configuration items

will be set.

 urls.py: The URLs are set with urls.py. With this, we don’t have to explicitly write

every URL for the project in this file. However, we have to tell Django about where

the URLs have been declared (i.e., we need to link other URL in urls.py).

 Wsgi.py: This is to help application in production and is similar to other applications

like Flask, Tornado, Pyramid which exposes some “app” object.

Setting the settings

Taking a look inside settings.py will reveal its considerable size – and these are just the

defaults. Other things that we need to take care are the static files, database, media files,

cloud integration or other dozens of ways that a Django project can be configured. Let’s

understand some points mentioned in the settings.py file:

 BASE_DIR: This is helpful for locating files. Inside the setting.py file, BASE_DIR

parameter sets the absolute path to the base directory.

 SECRET_KEY: It is used for making hashes. In general, we used secret_key for

cookies, sessions, csrf protection and auth tokens.

 DEBUG: We can set it to project running either in development or production mode.

 ALLOWED_HOSTS: We provide the list of hostnames through which our

application is being served. In development mode, it is optional to set; however, in

production machine, we need to set our Django project.

 INSTALLED_APPS: It is the list of Django “apps” that are currently installed and

running in our Django project. In-built Django provides six installed apps as

follows:

o 'django.contrib.admin'

o 'django.contrib.auth'

o django.contrib.

o django.contrib.sessions

o django.contrib.messages

o django.contrib.staticfiles

 MIDDLEWARE: It helps our Django project to run. It’s a python class that hooks

into django request/response processing.

 TEMPLATES: It defines how the document should be displayed in the frontend.

Django templates are used for producing any text-based format.

Python Web Development Libraries

 19

 WSGI_APPLICATION: Any server we set up has to know where the WSGI file is.

In case you’re using an external server, it will look in its own settings. By default,

it points to objects in wsgi.py.

 DATABASES: It sets to the databases our Django project is currently accessing. It

is mandatory to set default database. In case we set the database of our choice,

we need to mention few things related to database like - HOST, USER, PASSWORD,

PORT, database NAME, and appropriate ENGINE.

 STATIC_URL: It is the URL to use when referring to static files located in

STATIC_ROOT. By default, it’s None.

However, we may need to add a path for static files. Go down to the end of the file, and

just underneath the STATIC_URL entry, add a new one called STATIC_ROOT as shown

below:

 myFirstDjangoProject/settings.py

STATIC_URL = '/static/'

STATIC_ROOT = os.path.join(BASE_DIR, ‘static’)

Setting up a Database

There’s a lot of different database software that can store date for your site. We’ll use the

default one, sqlite3.

This is already set up in the below given part of your

myFirstDjangoProject/settings.py:

DATABASES = {

 'default': {

 'ENGINE': 'django.db.backends.sqlite3',

 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'),

 }

}

To create a database for our blog, let’s run the following in the console: python

manage.py migrate (we need to be in the myFirstDjangoProject directory that contains

the manage.py file.

You will get the following output if everything goes well:

Python Web Development Libraries

 20

Starting the Web Server

You need to be in the directory that contains the manage.py file. In the console, we can

start the web server by running python manage.py runserver as follows:

Now all you need to do is check that your website is running. Open your browser (Firefox,

Chrome, Safari, Internet Explorer or whatever you use) and enter this address:

http://127.0.0.1:8000/

or

http://localhost:8000/ # As our webserver is running in our local machine only.

Congratulations! You’ve just created your first website and run it using a web server!

http://127.0.0.1:8000/
http://localhost:8000/

Python Web Development Libraries

 21

While the web server is running, you won’t see a new command-line prompt to enter

additional commands. The terminal will accept next text but will not execute new

commands. This is because the web server continuously runs in order to listen to incoming

requests.

Django Models

We are trying to create a Django model that will store all the posts in our blog. But to

make sure it works, we need to learn about objects.

Objects

Objects is a collection of properties and actions. Let us understand this with an example.

Suppose we want to model a cat, we will create an object called Cat that has properties

such as color, age, mood (good/bad/sleepy) and owner.

Then the Cat has some actions: purr, scratch or feed.

Cat

color
age
mood
owner
purr()
scratch()
feed(cat_food)
CatFood

taste

So basically we are trying to describe real things in code with properties (called object

properties) and actions (called methods).

Python Web Development Libraries

 22

As we are building a blog, we need some text content and a title. It is also necessary to

have the author’s name, date of creation and also the date of publication.

So our blog will have the following objects:

Post

title
text
author
created_date
published_date

Also we need to have some method that publishes that post. As we are now aware of what

an object is, we can create a Django model for our blog post.

A model is a special kind of object in Django and is saved in the database. We will store

our data in SQLite database.

Creating an application

To keep everything clear, we will create a separate application inside our project. Below,

we’ll try to create a blog web application by running below mentioned simple command.

Now we will notice that a new myBlog directory is created and it contains a number of files

now. The directories and files in our project should be as following:

Python Web Development Libraries

 23

After creating an application, we also need to tell Django to use it. We do that in the file

myFirstDjangoProject/settings.py.

INSTALLED_APPS = [

 'django.contrib.admin',

 'django.contrib.auth',

 'django.contrib.contenttypes',

 'django.contrib.sessions',

 'django.contrib.messages',

 'django.contrib.staticfiles',

 'myBlog',

]

Creating a blog post model

In the myBlog/models.py file, we define all objects called Models – this is a place in

which we will define our blog post.

Let’s open myBlog/models.py, remove everything from it, and write code as follows:

Python Web Development Libraries

 24

Firstly, we import some functionalities from other files by calling from or import. So with

this, instead of copying and pasting the same things in every file, we can include some

parts with from and import.

class Post(models.Model): This line defines our model (it is an object).

 class is a special keyword that indicates that we are defining an object.

 Post is the name of our model. Always start a class name with an uppercase letter.

 models.Model means that the Post is a Django Model, so Django knows that it

should be saved in the database.

Now let us discuss about the properties we defined above: title, text, created_date,

published_date and author. To do that, we need to define the type of each field.

 models.CharField – This is how you define text with a limited number of characters.

 Models.TextField – This is for long text without a limit.

 Models.DateTimeField – This is for date and time.

 Models.ForeignKey – This is a link to another model.

We define a function/method with def and publish is the name of the method.

Methods often return something. Here when we call __str__(), we will get a text (string)

with a Post title.

Python Web Development Libraries

 25

Creating tables for models in your database

The final step is to add a new model to our database. First, we have to let Django

understand that we have made some changes in our model. Let us do the same in our

console window with command python manage.py makemigrations myBlog as shown

below:

Then, Django prepares a migration file that we now have to apply to our database. In our

console we can type: python manage.py migrate myBlog and the output should be as

follows:

Our Post model is now in our database.

Django Admin

To add, edit and delete the posts we’ve just modelled, we are using Django admin.

So let us open the myBlog/admin.py file and put below contents in this:

Firstly, we import (include) the Post model defined in the previous chapter. To make our

model visible on the admin page, we need to register the model with admin.site.register

(Post).

Python Web Development Libraries

 26

To login to an admin site, you need to create a superuser – a user account that has control

over everything on the site. So stop the webserver and type in command line python

manage.py createsuperuser, and press enter.

Ok, so it’s time to look at our Post model. Remember to run python manage.py runserver

in console to run the web server. Go to your browser and type the address

https://127.0.0.1:8000/admin/. Log in with the credentials we have just chosen. Then you

should see the Django admin dashboard as below:

Go to Posts and experiment a little with it. You can add many blog posts, and contents

from anywhere. Your blog will look something like this:

https://127.0.0.1:8000/admin/

Python Web Development Libraries

 27

This is just an overview of Django and we are able to create a blog with just a few lines of

code.

Python Web Development Libraries

 28

Flask is micro-framework which has very little dependency on external libraries. It is a

very light framework and gives us freedom to do whatever we want.

In this chapter, we are going to build a project using Python and Flask framework.

Flask Startup and Configuration

Like most widely used python libraries, the Flask package is installable from the Python

Package Index (PPI). Let’s create a directory first (In this chapter, we have created a

directory called flaskProject) then created a virtual environment (and called it as

flaskEnv) where all the project related dependencies will be loaded (including flask). You

can also install flask-sqlalchemy so that your flask application has a simple way to

communicate with SQL database.

After installing the flask, your flaskEnv (our virtualEnvironment name) will show something

like below:

Creating an app with flask

By installing flask, we can create a simple “hello application in flask” with very few lines

of code as follows:

4. Python Web Development Libraries – Flask Framework

Python Web Development Libraries

 29

Type the following in the terminal:

 $python flaskapp.py

And you can see the following output:

Running on http://127.0.0.1:5000/ or on localhost:5000

Below is the explanation of what we did in our example code:

 Firstly, we import the Flask class library. An instance from this class is the WSGI

app.

 Secondly, we create an instance of this class. Application package or module name

is our first argument. It is mandatory that flask knows where to find static files,

templates and other files.

 Next is the route() decorator we use to know which URL should trigger our

method/function.

Creating URL Routing

URL Routing makes URLs in your Web app easy to remember. We will now create some

URL routes:

/hello

/members

/members/name

We can write the following code based on the above URL and save it as app.py.

from flask import Flask, render_template

app = Flask(__name__)

@app.route('/')

def index():

 return "Index!"

@app.route('/Hello')

def hello():

http://127.0.0.1:5000/

Python Web Development Libraries

 30

 return "Hello, World!"

@app.route("/members")

def members():

 return "Members"

@app.route("/members/<name>/")

def getMember(name):

 return name

if __name__ == '__main__':

 app.run(debug=True)

On restarting the application, we use the below lines of code to get different outputs on

various URLs:

$ python app.py

Running on http://localhost:5000/

We will get the following output in our browser:

We can try other URLs in our browser as follows:

Running on http://localhost:5000/hello, will give the following output:

Running on http://localhost:5000/members, will give:

http://localhost:5000/
http://localhost:5000/hello
http://localhost:5000/members

Python Web Development Libraries

 31

Running on http://localhost:5000/members/TutorialsPoint/, will give you the

following output:

But normally we don’t want to return a string (as above), we return templates. For that

we want to use a function “render_template” from flask, and return render_template

with some input. So, below function will do our work:

from flask import render_template

return render_template(‘home.html’)

Let us create a folder template and place home.html file in it.

Next, we will discuss about layout. Instead of using html head tag and body tag for every

single template, we will design a layout to include head & body tags and wrap the current

views or current template. For that, we have to create one separate file and call it

layout.html. In this, we can put our normal head tag, body tag and all the other required

tags.

We can create our new layout.html with the following lines of code:

<!DOCTYPE html>

<html>

 <head>

 <meta charset="utf-8">

 <title>MyFlaskApp</title>

 <link rel="stylesheet"

href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.3/css/bootstrap.min.css"

>

 </head>

 <body>

 {% include 'includes/_navbar.html' %}

 <div class="container">

 {% block body %}

 {% endblock %}

 </div>

 <script

src="https://stackpath.bootstrapcdn.com/bootstrap/4.1.3/js/bootstrap.min.js">

 </script>

 </body>

http://localhost:5000/members/TutorialsPoint/

Python Web Development Libraries

 32

</html>

In above code, we have given the title track, MyFlaskAp, use css cdn in the head, and

javascript in body block to enable the bootstrap.

Now, we have to create navbar for every single page. For that, we have to first create an

include folder and then create _navbar.html file inside it. Now in the _navbar.html, we

have to use the standard starter template from getbootstrap.com. The newly created

_navbar.html file will be as follows:

And include this _navbar.html file into our layout.html file.

{% include 'includes/_navbar.html' %}

As we have the layout block, we can extend this block in our home file (home.html).

Our home.html file can be created using the below code:

{% extends 'layout.html' %}

{% block body %}

 <div class="jumbotron text-center">

 <h1>Welcome to FlaskApp</h1>

 <p>This application is built on Flask webframework!</p>

 </div>

{% endblock %}

Python Web Development Libraries

 33

Using this if we try to run our flaskapp.py file, then we could see the below output in our

browser:

Now we want to activate (currently the tabs are not working) our about tab. Create a

route for the about tab and create a template file, about.html.

About tab route in appflask.py will be as shown below:

about.html file will have the below content:

So Home and About are now taken care of. For Articles, we can create a new file (data.py)

in the root directory, where we put the data and call it in our webpage.

data.py

def Articles():

 articles = [

 {

 'uid': 1,

 'title': 'Article_One',

 'body': 'Flask, being a microframework, often requires some

repetitive steps to get a third party library working. Because very often these

Python Web Development Libraries

 34

steps could be abstracted to support multiple projects the Flask Extension

Registry was created.',

 'Author': 'Rajesh Joshi',

 'Created-on': '07-09-2018'

 },

 {

 'uid': 2,

 'title': 'Article_Two',

 'body': "Flask, being a microframework, often requires some

repetitive steps to get a third party library working. Because very often these

steps could be abstracted to support multiple projects the Flask Extension

Registry was created.",

 'Author': 'Rajesh J',

 'Created-on': '07-09-2018'

 },

 {

 'uid': 3,

 'title': 'Article_Three',

 'body': 'Flask, being a microframework, often requires some

repetitive steps to get a third party library working. Because very often these

steps could be abstracted to support multiple projects the Flask Extension

Registry was created.',

 'Author': 'Joshi Rajesh',

 'Created-on': '07-09-2018'

 }

]

 return articles

Below is the code for articles.html, which will display article titles for each uid.

{% extends 'layout.html' %}

{% block body %}

 <h1>Articles</h1>

 {% for article in articles %}

Python Web Development Libraries

 35

 <li class="list-group-item">

{{article.title}}

 {% endfor %}

{% endblock %}

To summarize, Flask is one of the most popular python web frameworks because of its

lightweight. Although it is micro it is an extensible python web framework. By providing

the required functionality, flask accelerates the development of simple web application. So

Flask, is more suitable for smaller, less complicated applications.

Python Web Development Libraries

 36

Web2py is an easy-to-use framework. With web2py, no installation and configuration is

required as it is portable and can be run on a USD drive too. It is based on the MVC

frameworks like many other python frameworks. Though most of them do not support

older versions of Python, web2py still supports older versions: python 2.6 and 2.7. It also

supports LDAP for authentication which is widely accepted these days.

Web2py tries to lower the barrier of entry to web development by focusing on three main

goals:

 Rapid development

 Ease of use

 Security

Keeping in mind the user perspective, Web2py is built and constantly being optimized

internally to make it a faster and leaner framework including support for backward

compatibility.

Installing and Configuring Web2py Framework

Running a web2py is easy, you need to download the exe from the below link:

http://www.web2py.com/init/default/download

For windows, you can download the zip file, unzip it and run the exe file either directly or

from the command line. You will be prompted with below screen asking for the admin

password.

5. Python Web Development Libraries – Web2py Framework

http://www.web2py.com/init/default/download

Python Web Development Libraries

 37

You can choose an administrator password and start the server. You will see the following

screen:

Python Web Development Libraries

 38

Creating an app using Web2py

Now we are ready to create a new app. Click on the admin tab located at the bottom. So

after entering the admin password, we will get the below screen:

Go to new simple application, enter some application name (like helloWeb2py) and click

on create. This will display design interface page as given below:

Python Web Development Libraries

 39

You can also go to your current live web,helloWeb2py, simply type

http://127.0.0.1:8000/helloWeb2py on your local machine, you will get the below output:

In the design page of helloWeb2py application, go to the controller and click on edit button

next to default.py. If you change the return value of the index() function, the following

output will be displayed:

http://127.0.0.1:8000/helloWeb2py

Python Web Development Libraries

 40

Save the changes, and now you can check the changes made in your helloWeb2py app.

Just refresh the http://127.0.0.1:8000/helloWeb2py link and you will see the below

output:

Deploying the app on cloud platform

Now if you want to deploy your app on cloud platform, come back to your home page and

click on the site. You can choose any option for deployment. Here, we choose

“pythonAnywhere”. Go to pythonAnywhere website and register yourself (if not already

done). Click on “Add a new web app” and fill all the credentials (Choose web2py app).

All done.

Now go to http://username.pythonanywhere.com/welcome/default/index, click on admin

tab (enter password). Next click on upload and install packed application. Fill the

credentials as below and click install.

Once everything is done, a pop-up message will appear as given below:

Now to view your app, open the below link:

https://username.pythonanywhere.com/appName/default/index and you can see the

following screen:

http://127.0.0.1:8000/helloWeb2py
http://username.pythonanywhere.com/welcome/default/index
https://username.pythonanywhere.com/appName/default/index

Python Web Development Libraries

 41

Our first web2py application is successfully created and deployed.

To summarize, Web2py is a free, fast, secure web development framework that is entirely

written in python and encourages using python in every way possible (model, view,

controller). It is a very good framework for small web applications or prototypes but fails

to fulfil the enterprise class quality requirements. It is because, in an enterprise level

application, the complexity of solving bugs will increase exponentially because of the lack

of unit tests, good and accurate error reporting and scattered model.

Python Web Development Libraries

 42

Pyramid is a general, open source, web application development framework built in

python. It allows python developer to create web applications with ease.

Pyramid is backed by the enterprise knowledge Management System KARL (a George

Soros project).

Installing, starting up and configuring

As described, “the start small, finish big, stay finished framework”, Pyramid is much like

Flask which takes very little effort to install and run. In fact, you’ll recognize that some of

the patterns are similar to Flask once you start building this application.

Following are the steps to create pyramid framework environment:

 First, create a project directory. Here, we have created a directory named

pyramidProject (you can choose any name you want).

 Next, create a virtual environment where you will install all the project specific

dependencies. Here, we created a virtual environment folder named pyramidEnv

where Pyramid is installed.

 Then, go to the directory, pyramidEnv and install the pyramid with pip install

pyramid.

Once everything is done as mentioned above, your directory structure will be as shown

below:

And the pyramid version installed in the system is given below:

6. Python Web Development Libraries – Pyramid Framework

Python Web Development Libraries

 43

Core Concepts

The Pyramid framework is based on below core concepts:

 Zope (extensibility, traversal, declarative security): Pyramid is loosely based on

Zope in terms of extensibility, the concept of traversal and the declarative security.

 Pylons (URL dispatch, non-opinionated view of persistence, templating, etc.):

Another area from where pyramid draws its concept is the pylons project. Pylons

have that concept of routes, that calls the URL dispatch inside the pyramid

framework and they also have the non-opinionated view of persistence layer or

templating.

 Django (View, level of documentation): Pyramid also gets hint from Django. The

way we take our view, routed our URL and the level of documentation is very

Django way.

The following are the features of the Pyramid framework:

 It is the fastest known Python web framework.

 It supports small and large projects (why rewrite when you outgrow your small

framework).

 It supports single file webapps like microframeworks.

 It has built-in sessions.

 It supports events similar to Plone/Zope.

 It provides Transaction Management (if already have noticed that we have used

Zope before).

Configuration

Configuration is the settings that influence the operation of an application. There are two

ways to configure a pyramid application: imperative configuration and declarative

configuration.

Pyramid configuration supports:

 Imperative configuration or even the overriding of the decorator-based configs

 Configuration conflict detection (including more local vs. less local determination)

 Configuration Extensibility (included from multiple apps)

 Flexible Authentication and Authorization Policies

 Programmatic Introspection of Configuration (view current state of routes to

generate nav)

URL generation

In pyramid, we can generate URLs for routes, resources and static assets. It is easy and

flexible to work with URL generation APIs. By generating URLs through pyramid’s various

Python Web Development Libraries

 44

APIs, users can change the configuration arbitrarily without much worry of breaking a link

with any of your web pages.

So in short, URL in pyramid:

 supports URL generation to allow changes to app that won’t break links.

 generates URLs to static resources that live either inside or outside the application.

 supports Routes and Traversal.

Views

One of the primary jobs of pyramid is to find and invoke a view callable when a request

reaches your application. View callables are bits of code which do something interesting in

response to a request made in your application.

When you map your views onto your URL dispatch or python code, there can be any kind

of call. Views can be a function declaration or an instance, it can be used as a view in the

pyramid.

Some important points about Views are given below:

 Views are generated from any callable.

 Renderer based views can simply return dictionaries (not required to return a

webby style object).

 Support multiple views per route (GET vs. POST vs. HTTP Header check, etc.).

 View response adapters (when you want to specify how view returns values should

be handled vs. response objects).

Extensibility

Pyramid is designed with extensibility in mind. So if a pyramid developer is keeping in

mind certain constraints while building an application, a third party should be able to

change the application’s behaviour without needing to modify its source code. The

behaviour of a pyramid application that obeys certain constraints can be overridden or

extended without any modification. It is designed for flexible deployments to multiple

environments (No Singletons). Pyramid has “Tweens” middleware support (WSGI middle

ware, but runs in the context of Pyramid itself).

Running a Hello, Pyramid Program

The simplest program we can think after installing pyramid framework to check if

everything is working fine, is to run a simple “Hello, World” or “Hello, Pyramid” program.

Below is my pyramid “Hello, Pyramid” program on 8000 port number:

Python Web Development Libraries

 45

Above simple example is easy to run. Save this as app.py (In this, we have given the

name pyramid_helloW.py).

Running the simplest program:

Next, open http://localhost:8000/ in a browser, and you will see the Hello, Pyramid!

Message as follows:

The following is the explanation for above code:

Line no. 1-3

At the head of the file, we have import statements. The first line imports make_server

function, which can create a simple web server when it is passed to an application. The

second and third line import the configuration and Response function from pyramid. These

functions are used to configure details and set parameters for the application and respond

to requests, respectively.

Line no. 5-6

Now we have a function definition called hello_world. Implement view code that

generates the response. A function that fulfils the requirement of a view is responsible for

rendering the text that will be passed back to the requesting entity. In the above case,

the function, when called, uses the Response function we imported earlier. This passes

back a value that should be given to the client.

http://localhost:8000/

Python Web Development Libraries

 46

Line no. 8

if __name__ == ‘__main__’: Python is saying, “Start here when running from the

command line”, rather than when this module is imported.

Line no. 9-11

In line no. 9, we create a variable called config out of the object created by the configurator

function that we imported at the top of the program. Line 10 and 11 call the add_route

and add_view method of this object. This method is used to define a view that can be used

by the application. As we can see, we pass the hello_world function we defined earlier.

This is where that function is actually incorporated as a view.

Line no. 12-14

In this, we actually create the WSGI application by calling the make_wsgi_app method of

the config object. This uses the object’s attributes, such as the view we added, to create

an application. This application is then passed to the make_server function we imported

in order to create an object that can launch a web server to serve our application. The last

line launches this server.

Our hello world application is one of the simplest and easiest possible pyramid

applications, configured “imperatively”. It is imperative because the full power of Python

is available to us as we perform configuration tasks.

To summarize, Pyramid is an open source python web framework with a large and active

community. This large community contributes towards making the python web framework

popular and relevant. Pyramid web framework simplify and accelerate web application

development by providing a set of robust features and tools.

Python Web Development Libraries

 47

In this chapter, we will discuss about the Dash framework in detail.

Dash is an open-source Python framework used for building analytical web applications. It

is a powerful library that simplifies the development of data-driven applications. It’s

especially useful for Python data scientists who aren’t very familiar with web development.

Users can create amazing dashboards in their browser using dash.

Built on top of Plotly.js, React, and Flask, Dash ties modern UI elements like dropdowns,

sliders and graphs directly to your analytical python code.

Dash apps consist of a Flask server that communicates with front-end React components

using JSON packets over HTTP requests.

Dash applications are written purely in python, so NO HTML or JavaScript is necessary.

Dash Setup

If Dash is not already installed in your terminal, then install the below mentioned Dash

libraries. As these libraries are under active development, install and upgrade then

frequently. Python 2 and 3 are also supported.

 pip install dash==0.23.1 # The core dash backend

 pip install dash-renderer==0.13.0 # The dash front-end

 pip install dash-html-components==0.11.0 # HTML components

 pip install dash-core-components==0.26.0 # Supercharged components

 pip install plotly==3.1.0 # Plotly graphing library

In order to make sure everything is working properly, here, we created a simple

dashApp.py file.

Dash or App Layout

Dash apps are composed of two parts. The first part is the “layout” of the app which

basically describes how the application looks like. The second part describes the

interactivity of the application.

Core Components

We can build the layout with the dash_html_components and the

dash_core_components library. Dash provides python classes for all the visual

components of the application. We can also customize our own components with

JavaScript and React.js.

import dash_core_components as dcc

import dash_html_components as html

7. Python Web Development Libraries – Dash Framework

Python Web Development Libraries

 48

The dash_html_components is for all HTML tags where the dash_core_components is for

interactivity built with React.js.

Using above two libraries, let us write a code as given below:

app = dash.Dash()

app.layout = html.Div(children=[

 html.H1(children='Hello Dash'),

 html.Div(children='''

 Dash Framework: A web application framework for Python.

 ''')

And the equivalent HTML code would look like this:

<div>

 <h1> Hello Dash </h1>

 <div> Dash Framework: A web application framework for Python. </div>

</div>

Writing Simple Dash app

We will learn how to write a simple example on dash using above mentioned library in a

file dashApp.py.

-*- coding: utf-8 -*-

import dash

import dash_core_components as dcc

import dash_html_components as html

app = dash.Dash()

app.layout = html.Div(children=[

 html.H1(children='Hello Dash'),

 html.Div(children='''

 Dash Framework: A web application framework for Python.

 '''),

 dcc.Graph(

Python Web Development Libraries

 49

 id='example-graph',

 figure={

 'data': [

 {'x': [1, 2, 3], 'y': [4, 1, 2], 'type': 'bar', 'name':

'Delhi'},

 {'x': [1, 2, 3], 'y': [2, 4, 5], 'type': 'bar', 'name':

u'Mumbai'},

],

 'layout': {

 'title': 'Dash Data Visualization'

 }

 }

)

])

if __name__ == '__main__':

 app.run_server(debug=True)

Running the Dash app

Note the following points while running the Dash app.

(MyDjangoEnv) C:\Users\rajesh\Desktop\MyDjango\dash>python dashApp1.py

 * Serving Flask app "dashApp1" (lazy loading)

 * Environment: production

 WARNING: Do not use the development server in a production environment.

 Use a production WSGI server instead.

 * Debug mode: on

 * Restarting with stat

 * Debugger is active!

 * Debugger PIN: 130-303-947

 * Running on http://127.0.0.1:8050/ (Press CTRL+C to quit)

127.0.0.1 - - [12/Aug/2018 09:32:39] "GET / HTTP/1.1" 200 -

127.0.0.1 - - [12/Aug/2018 09:32:42] "GET /_dash-layout HTTP/1.1" 200 -

127.0.0.1 - - [12/Aug/2018 09:32:42] "GET /_dash-dependencies HTTP/1.1" 200 -

127.0.0.1 - - [12/Aug/2018 09:32:42] "GET /favicon.ico HTTP/1.1" 200 -

127.0.0.1 - - [12/Aug/2018 09:39:52] "GET /favicon.ico HTTP/1.1" 200 -

Python Web Development Libraries

 50

Visit http:127.0.0.1:8050/ in your web browser. You should see an app that looks like this.

In above program, few important points to be noted are as follows:

 The app layout is composed of a tree of “components” like html.Div and dcc.Graph.

 The dash_html_components library has a component for every HTML tag. The

html.H1 (children = ‘Hello Dash’) component generates a <h1> Hello Dash </h1>

HTML element in your application.

 Not all components are pure HTML. The dash_core_components describe higher-

level components that are interactive and are generated with JavaScript, HTML,

and CSS through the React.js library.

 Each component is described entirely through keyword attributes. Dash is

declarative: you will primarily describe your application through these attributes.

 The children property is special. By convention, it’s always the first attribute which

means that you can omit it.

 Html.H1 (children=’Hello Dash’) is the same as html.H1 (‘Hello Dash’).

 The fonts in your application will look a little bit different than what is displayed

here. This application is using a custom CSS stylesheet to modify the default styles

of the elements. Custom font style is permissible, but as of now, we can add the

below URL or any URL of your choice:

Python Web Development Libraries

 51

app.css.append_css

({“external_url”:https://codepen.io/chriddyp/pen/bwLwgP.css}) to get your file to

get the same look and feel of these examples.

More about HTML

The dash_html_components library contains a component class for every HTML tag as well

as keyword arguments for all of the HTML arguments.

Let us add the inline style of the components in our previous app text:

-*- coding: utf-8 -*-

import dash

import dash_core_components as dcc

import dash_html_components as html

app = dash.Dash()

colors = {

 'background': '#87D653',

 'text': '#ff0033'

}

app.layout = html.Div(style={'backgroundColor': colors['background']},

children=[

 html.H1(

 children='Hello Dash',

 style={

 'textAlign': 'center',

 'color': colors['text']

 }

),

 html.Div(children='Dash: A web application framework for Python.', style={

 'textAlign': 'center',

 'color': colors['text']

 }),

 dcc.Graph(

 id='example-graph-2',

https://codepen.io/chriddyp/pen/bwLwgP.css%7d

Python Web Development Libraries

 52

 figure={

 'data': [

 {'x': [1, 2, 3], 'y': [4, 1, 2], 'type': 'bar', 'name':

'Delhi'},

 {'x': [1, 2, 3], 'y': [2, 4, 5], 'type': 'bar', 'name':

u'Mumbai'},

],

 'layout': {

 'plot_bgcolor': colors['background'],

 'paper_bgcolor': colors['background'],

 'font': {

 'color': colors['text']

 }

 }

 }

)

])

if __name__ == '__main__':

 app.run_server(debug=True)

In the above example, we modified the inline styles of the html.Div and html.H1

components with the style property.

It is rendered in the Dash application as follows:

There are couple of key distinctions between dash_html_components and HTML attributes:

 For style property in Dash, you can just supply a dictionary, whereas in HTML, it is

semicolon-separated string.

 Style dictionary keys are camelCased, so text-align changes to textalign.

 ClassName in Dash is similar to HTML class attribute.

 The first argument is the children of the HTML tag which is specified through the

children keyword argument.

Python Web Development Libraries

 53

Reusable Components

By writing our markup in Python, we can create complex reusable components like tables

without switching contexts or languages:

Below is a quick example that generates a “Table” from pandas dataframe.

import dash

import dash_core_components as dcc

import dash_html_components as html

import pandas as pd

df = pd.read_csv(

 'https://gist.githubusercontent.com/chriddyp/'

 'c78bf172206ce24f77d6363a2d754b59/raw/'

 'c353e8ef842413cae56ae3920b8fd78468aa4cb2/'

 'usa-agricultural-exports-2011.csv')

def generate_table(dataframe, max_rows=10):

 return html.Table(

 # Header

 [html.Tr([html.Th(col) for col in dataframe.columns])] +

 # Body

 [html.Tr([

 html.Td(dataframe.iloc[i][col]) for col in dataframe.columns

]) for i in range(min(len(dataframe), max_rows))]

)

app = dash.Dash()

app.layout = html.Div(children=[

 html.H4(children='US Agriculture Exports (2011)'),

 generate_table(df)

])

if __name__ == '__main__':

Python Web Development Libraries

 54

 app.run_server(debug=True)

Our output will be something like:

More about Visualization

The dash_core_components library includes a component called Graph.

Graph renders interactive data visualizations using the open source plotly.js JavaScript

graphing library. Plotly.js support around 35 chart types and renders charts in both vector-

quality SVG and high-performance WebGL.

Below is an example that creates a scatter plot from a Pandas dataframe:

import dash

import dash_core_components as dcc

import dash_html_components as html

import pandas as pd

import plotly.graph_objs as go

app = dash.Dash()

df = pd.read_csv(

 'https://gist.githubusercontent.com/chriddyp/' +

 '5d1ea79569ed194d432e56108a04d188/raw/' +

 'a9f9e8076b837d541398e999dcbac2b2826a81f8/'+

 'gdp-life-exp-2007.csv')

app.layout = html.Div([

Python Web Development Libraries

 55

 dcc.Graph(

 id='life-exp-vs-gdp',

 figure={

 'data': [

 go.Scatter(

 x=df[df['continent'] == i]['gdp per capita'],

 y=df[df['continent'] == i]['life expectancy'],

 text=df[df['continent'] == i]['country'],

 mode='markers',

 opacity=0.7,

 marker={

 'size': 15,

 'line': {'width': 0.5, 'color': 'white'}

 },

 name=i

) for i in df.continent.unique()

],

 'layout': go.Layout(

 xaxis={'type': 'log', 'title': 'GDP Per Capita'},

 yaxis={'title': 'Life Expectancy'},

 margin={'l': 40, 'b': 40, 't': 10, 'r': 10},

 legend={'x': 0, 'y': 1},

 hovermode='closest'

)

 }

)

])

if __name__ == '__main__':

 app.run_server()

The output of the above code is as follows:

Python Web Development Libraries

 56

These graphs are interactive and responsive. You can hover over points to see their values,

click on legend items to toggle traces, click and drag to zoom, hold down shift, and click

and drag to pan.

Markdown

While dash exposes HTML flavours through the dash_html_components library, it can be

tedious to write your copy in HTML. For writing blocks of texts, you can use the Markdown

component in the dash_core_components library.

Core Components

The dash_core_components includes a set of higher-level components like dropdowns,

graphs, markdown, blocks and many more.

Like all other Dash components, they are described entirely declaratively. Every option

that is configurable is available as a keyword argument of the component.

Below is the example, using some of the available components:

-*- coding: utf-8 -*-

import dash

import dash_core_components as dcc

import dash_html_components as html

app = dash.Dash()

app.layout = html.Div([

 html.Label('Dropdown'),

 dcc.Dropdown(

 options=[

 {'label': 'New York City', 'value': 'NYC'},

Python Web Development Libraries

 57

 {'label': u'Montréal', 'value': 'MTL'},

 {'label': 'San Francisco', 'value': 'SF'}

],

 value='MTL'

),

 html.Label('Multi-Select Dropdown'),

 dcc.Dropdown(

 options=[

 {'label': 'New York City', 'value': 'NYC'},

 {'label': u'Montréal', 'value': 'MTL'},

 {'label': 'San Francisco', 'value': 'SF'}

],

 value=['MTL', 'SF'],

 multi=True

),

 html.Label('Radio Items'),

 dcc.RadioItems(

 options=[

 {'label': 'New York City', 'value': 'NYC'},

 {'label': u'Montréal', 'value': 'MTL'},

 {'label': 'San Francisco', 'value': 'SF'}

],

 value='MTL'

),

 html.Label('Checkboxes'),

 dcc.Checklist(

 options=[

 {'label': 'New York City', 'value': 'NYC'},

 {'label': u'Montréal', 'value': 'MTL'},

 {'label': 'San Francisco', 'value': 'SF'}

],

 values=['MTL', 'SF']

),

Python Web Development Libraries

 58

 html.Label('Text Input'),

 dcc.Input(value='MTL', type='text'),

 html.Label('Slider'),

 dcc.Slider(

 min=0,

 max=9,

 marks={i: 'Label {}'.format(i) if i == 1 else str(i) for i in range(1,

6)},

 value=5,

),

], style={'columnCount': 2})

if __name__ == '__main__':

 app.run_server(debug=True)

Output from the above program is as follows:

Calling Help

Dash components are declarative. Every configurable aspect of these components is set

during installation as a keyword argument. You can call help in your python console on

any of the components to learn more about a component and its available arguments.

Some of them are given below:

>>> help(dcc.Dropdown)

Help on class Dropdown in module builtins:

class Dropdown(dash.development.base_component.Component)

 | A Dropdown component.

 | Dropdown is an interactive dropdown element for selecting one or more

Python Web Development Libraries

 59

 | items.

 | The values and labels of the dropdown items are specified in the `options`

 | property and the selected item(s) are specified with the `value` property.

 |

 | Use a dropdown when you have many options (more than 5) or when you are

 | constrained for space. Otherwise, you can use RadioItems or a Checklist,

 | which have the benefit of showing the users all of the items at once.

 |

 | Keyword arguments:

 | - id (string; optional)

 | - options (list; optional): An array of options

 | - value (string | list; optional): The value of the input. If `multi` is

false (the default)

-- More --

To summarize, the layout of a Dash app describes what the app looks like. The layout is a

hierarchical tree of components. The dash_html_components library provides classes for

all the HTML tags and the keyword arguments, and describes the HTML attributes like

style, className, and id. The dash_core_components library generates higher-level

components like controls and graphs.

Python Web Development Libraries

 60

The world of Python web frameworks provides lots of choices. Some of the prominent

frameworks to consider are Django, Flask, Bottle, Diesel, Web2py, Pyramid, Falcon, Pecan,

etc., that compete for the developer mindshare. Frameworks like Pyramid, Django,

Web2py and Flask are ideal with their list of pros and cons; choosing just one for your

project is a difficult choice to make.

Dash is entirely designed for different set of needs. So, as a developer you want to cut the

legions of options down to the one that will help you finish your project on time and with

perfection.

If we compare Flask, Pyramid and Django frameworks, Flask is a micro-framework

primarily aimed at small applications with simpler requirements whereas Pyramid and

Django are both aimed at larger applications. Pyramid is built with flexibility and freedom

in mind, so the developer has right tools for the project. In case of pyramid, the developer

is free to choose the database, URL structure, templating style and more. However, Django

includes all the batteries a web application needs, so we just need to install Django and

start working.

Django comes with an ORM, whereas Pyramid and Flask leave it to the developer to choose

how (or if) they want their data to be stored. Generally, the most common ORM for non-

Django web applications is SQLAlchemy by far, however, other options can be DjangoDB,

MongoDB, LevelDB and SQLite.

Being a developer, if I have to choose between Django and Web2py for my project. I need

to have some idea of both the frameworks’ benefits and limitations. So let us compare

Django and Web2py:

Django

The community of Django is a big plus. This actually means to a developer is the wealth

of resources will be greater. Specifically, this comes down to:

 Documentation

 Open source resources

 Third-party apps support

 Deployment support

 IRC channels with helpful developers

Django has a very big community of development team and documentation. It is the right

framework when we are dealing with writing a complex backend as it provides a lot of

third party apps that lets you automate things like user’s logic (signup, authentication),

asynchronous tasks, API creation, blogs, etc.

8. Python Web Development Libraries – Choosing a Better
Framework

Python Web Development Libraries

 61

Web2py

Web2py is a good fit to fast development of simple web apps or http servers. Below are

some of the benefits and limitations of web2py.

Benefits of Web2py

The following are some of the benefits of Web2py framework:

 Web2py is a potential framework when compared to Django and Flask in terms of

speed and simplicity of the development. As Web2py uses python-based template

language, this allows python developers to start writing code immediately after

understanding the basics of writing template as views.

 Web2py can run python compiled code as an optimization to lower the running time

and to allow you to distribute your code in a compiled fashion.

Limitations of Web2py

The following are some of the limitations of the framework:

 Web2py supports doctests, however it does not support unit testing. Now doctests

are not the optimal choice because of their limited scope.

 There is no differentiation between production and development mode. In case an

exception occurred, ticket is generated all the times and you will have to navigate

to the ticket to check the error. This might be helpful in case of production server

but will be difficult in development environment as developers really need to see

the error instantly rather than checking the ticket number.

 Web2py has a good database abstraction layer (DAL) that allows you to abstract

many types of database engines but it lacks powerful ORM. In case you are dealing

with relatively large model, your code will get scattered by all nested definitions

and attributes which makes things complicated.

 We cannot use standard python development tools without modifications as

web2py has really poor IDE support.

The Django and Web2py framework are full stack frameworks. This means they provide

all the code needed – from form generators to templating layouts and forms validation,

and leave you to write things according to your specific needs.

However, with the non-stack frameworks like Flask and Pyramid, if you want to create a

full-featured website, you will need to add a lot of code and extra bits yourself. This takes

lot of skill and time.

Dash

Dash is entirely designed for specific task of building a reactive framework for dashboards.

Dash by Plotly is a great way for the python developer to create interactive web apps

without having to learn Javascript and front end web development. Dash is built on top of

Flask, Plotly.js, React and React Js.

Python Web Development Libraries

 62

There is no comparison between Dash and other frameworks (mentioned above) as they

belong to different category of frameworks. Below are some of the reasons to prefer dash

over other interactive dashboard frameworks (Jupiter Dashboards, matplotlib and other):

 With just 50 lines of code, you can write a simple “hello world” Dash app, as Dash

requires very little boilerplater.

 Entire Dash apps are written in python language, the most preferred language

globally.

 In your own python code, you can bind dash interactive components like dropdown,

text inputs, sliders, and graphs with reactive Dash “callbacks”.

 Complicated UIs in Dash apps can have multiple inputs, multiple outputs and inputs

that depends on other inputs.

 Simultaneously, multiple users can work on Dash apps.

 For creating your own Dash components with React, dash uses React.js to render

components and includes a plugin system.

 Developers or writers can write dash apps that respond to clicking, hovering or

selecting points on the graph as Dash’s Graph components are interactive.

Conclusion

We can conclude that choosing the right framework out of many available python

frameworks solely depends on the type of project, complexity, small or enterprise level

project, kind of community support available or online resource available, scalability,

security, etc.

The above mentioned python frameworks are best in their class but have their own

benefits and drawbacks (depending on the project requirement). So, one type of

framework is not suitable for all kinds of projects.

