
Python Web Scraping

Python Web Scraping

i

About the Tutorial

Web scraping, also called web data mining or web harvesting, is the process of

constructing an agent which can extract, parse, download and organize useful information

from the web automatically.

This tutorial will teach you various concepts of web scraping and makes you comfortable

with scraping various types of websites and their data.

Audience

This tutorial will be useful for graduates, post graduates, and research students who either

have an interest in this subject or have this subject as a part of their curriculum. The

tutorial suits the learning needs of both a beginner or an advanced learner.

Prerequisites

The reader must have basic knowledge about HTML, CSS, and Java Script. He/she should

also be aware about basic terminologies used in Web Technology along with Python

programming concepts. If you do not have knowledge on these concepts, we suggest you

to go through tutorials on these concepts first.

Copyright & Disclaimer

Copyright 2018 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

Python Web Scraping

ii

Table of Contents

About the Tutorial .. i

Audience .. i

Prerequisites .. i

Copyright & Disclaimer ... i

Table of Contents .. ii

1. PYTHON WEB SCRAPING – INTRODUCTION ... 1

What is Web Scraping?.. 1

Origin of Web Scraping.. 1

Web Crawling v/s Web Scraping ... 1

Uses of Web Scraping .. 2

Components of a Web Scraper .. 3

Working of a Web Scraper... 3

2. PYTHON WEB SCRAPING – GETTING STARTED WITH PYTHON ... 5

Why Python for Web Scraping? ... 5

Installation of Python .. 5

Setting Up the PATH .. 7

Running Python ... 7

3. PYTHON WEB SCRAPING – PYTHON MODULES FOR WEB SCRAPING 9

Python Development Environments using virtualenv ... 9

Python Modules for Web Scraping .. 11

Requests ... 11

Urllib3 ... 12

Selenium ... 13

Scrapy ... 14

4. PYTHON WEB SCRAPING — LEGALITY OF WEB SCRAPING ... 15

Python Web Scraping

iii

Introduction .. 15

Research Required Prior to Scraping ... 15

5. PYTHON WEB SCRAPING – DATA EXTRACTION .. 21

Web page Analysis .. 21

Different Ways to Extract Data from Web Page .. 21

Beautiful Soup ... 23

Lxml .. 24

6. PYTHON WEB SCRAPING – DATA PROCESSING .. 26

Introduction .. 26

CSV and JSON Data Processing .. 26

Data Processing using AWS S3 ... 27

Data processing using MySQL .. 28

Data processing using PostgreSQL ... 30

7. PYTHON WEB SCRAPING – PROCESSING IMAGES AND VIDEOS ... 31

Introduction .. 31

Getting Media Content from Web Page .. 31

Extracting Filename from URL ... 31

Information about Type of Content from URL ... 32

Generating Thumbnail for Images ... 34

Screenshot from Website .. 34

Thumbnail Generation for Video ... 35

Ripping an MP4 video to an MP3 .. 36

8. PYTHON WEB SCRAPING – DEALING WITH TEXT ... 37

Introduction .. 37

Getting started with NLTK ... 37

Installing Other Necessary packages ... 38

Python Web Scraping

iv

Tokenization ... 38

Stemming .. 39

Lemmatization .. 39

Chunking ... 40

Bag of Word (BoW) Model Extracting and converting the Text into Numeric Form 41

Building a Bag of Words Model in NLTK .. 42

Topic Modeling: Identifying Patterns in Text Data ... 42

Topic Modeling Algorithms ... 43

9. PYTHON WEB SCRAPING – SCRAPING DYNAMIC WEBSITES ... 44

Introduction .. 44

Dynamic Website Example .. 44

Approaches for Scraping data from Dynamic Websites ... 44

Reverse Engineering JavaScript ... 45

Rendering JavaScript ... 46

10. PYTHON WEB SCRAPING — SCRAPING FORM BASED WEBSITES 48

Introduction .. 48

Interacting with Login forms ... 48

Loading Cookies from the Web Server .. 49

Automating forms with Python ... 50

11. PYTHON WEB SCRAPING — PROCESSING CAPTCHA .. 52

What is CAPTCHA? .. 52

Loading CAPTCHA with Python .. 52

Pillow Python Package .. 53

OCR: Extracting Text from Image using Python ... 54

12. PYTHON WEB SCRAPING — TESTING WITH SCRAPERS .. 55

Introduction .. 55

Python Web Scraping

v

Testing using Python ... 55

Unittest: Python Module ... 55

Testing with Selenium ... 57

Comparison: unittest or Selenium ... 58

Python Web Scraping

1

Web scraping is an automatic process of extracting information from web. This chapter

will give you an in-depth idea of web scraping, its comparison with web crawling, and why

you should opt for web scraping. You will also learn about the components and working of

a web scraper.

What is Web Scraping?

The dictionary meaning of word ‘Scrapping’ implies getting something from the web. Here

two questions arise: What we can get from the web and How to get that.

The answer to the first question is ‘data’. Data is indispensable for any programmer and

the basic requirement of every programming project is the large amount of useful data.

The answer to the second question is a bit tricky, because there are lots of ways to get

data. In general, we may get data from a database or data file and other sources. But

what if we need large amount of data that is available online? One way to get such kind

of data is to manually search (clicking away in a web browser) and save (copy-pasting into

a spreadsheet or file) the required data. This method is quite tedious and time consuming.

Another way to get such data is using web scraping.

Web scraping, also called web data mining or web harvesting, is the process of

constructing an agent which can extract, parse, download and organize useful information

from the web automatically. In other words, we can say that instead of manually saving

the data from websites, the web scraping software will automatically load and extract data

from multiple websites as per our requirement.

Origin of Web Scraping

The origin of web scraping is screen scrapping, which was used to integrate non-web based

applications or native windows applications. Originally screen scraping was used prior to

the wide use of World Wide Web (WWW), but it could not scale up WWW expanded. This

made it necessary to automate the approach of screen scraping and the technique called

‘Web Scraping’ came into existence.

Web Crawling v/s Web Scraping

The terms Web Crawling and Scraping are often used interchangeably as the basic concept

of them is to extract data. However, they are different from each other. We can understand

the basic difference from their definitions.

Web crawling is basically used to index the information on the page using bots aka

crawlers. It is also called indexing. On the hand, web scraping is an automated way of

extracting the information using bots aka scrapers. It is also called data extraction.

1. Python Web Scraping – Introduction

Python Web Scraping

2

To understand the difference between these two terms, let us look into the comparison

table given hereunder:

Web Crawling Web Scraping

Refers to downloading and storing the

contents of a large number of websites.

Refers to extracting individual data

elements from the website by using a

site-specific structure.

Mostly done on large scale. Can be implemented at any scale.

Yields generic information. Yields specific information.

Used by major search engines like Google,

Bing, Yahoo. Googlebot is an example of

a web crawler.

The information extracted using web

scraping can be used to replicate in

some other website or can be used to

perform data analysis. For example the

data elements can be names, address,

price etc.

Uses of Web Scraping

The uses and reasons for using web scraping are as endless as the uses of the World Wide

Web. Web scrapers can do anything like ordering online food, scanning online shopping

website for you and buying ticket of a match the moment they are available etc. just like

a human can do. Some of the important uses of web scraping are discussed here:

 E-commerce Websites: Web scrapers can collect the data specially related to the

price of a specific product from various e-commerce websites for their comparison.

 Content Aggregators: Web scraping is used widely by content aggregators like

news aggregators and job aggregators for providing updated data to their users.

 Marketing and Sales Campaigns: Web scrapers can be used to get the data like

emails, phone number etc. for sales and marketing campaigns.

 Search Engine Optimization (SEO): Web scraping is widely used by SEO tools

like SEMRush, Majestic etc. to tell business how they rank for search keywords that

matter to them.

 Data for Machine Learning Projects: Retrieval of data for machine learning

projects depends upon web scraping.

Data for Research: Researchers can collect useful data for the purpose of their research

work by saving their time by this automated process.

Python Web Scraping

3

Components of a Web Scraper

A web scraper consists of the following components:

Web Crawler Module

A very necessary component of web scraper, web crawler module, is used to navigate the

target website by making HTTP or HTTPS request to the URLs. The crawler downloads the

unstructured data (HTML contents) and passes it to extractor, the next module.

Extractor

The extractor processes the fetched HTML content and extracts the data into semi-

structured format. This is also called as a parser module and uses different parsing

techniques like Regular expression, HTML Parsing, DOM parsing or Artificial Intelligence

for its functioning.

Data Transformation and Cleaning Module

The data extracted above is not suitable for ready use. It must pass through some cleaning

module so that we can use it. The methods like String manipulation or regular expression

can be used for this purpose. Note that extraction and transformation can be performed

in a single step also.

Storage Module

After extracting the data, we need to store it as per our requirement. The storage module

will output the data in a standard format that can be stored in a database or JSON or CSV

format.

Working of a Web Scraper

Web scraper may be defined as a software or script used to download the contents of

multiple web pages and extracting data from it.

Downloading the Contents

Extracting the Data

Storing the Data

Analyzing the Data

Python Web Scraping

4

We can understand the working of a web scraper in simple steps as shown in the diagram

given above.

Step 1: Downloading Contents from Web Pages

In this step, a web scraper will download the requested contents from multiple web pages.

Step 2: Extracting Data

The data on websites is HTML and mostly unstructured. Hence, in this step, web scraper

will parse and extract structured data from the downloaded contents.

Step 3: Storing the Data

Here, a web scraper will store and save the extracted data in any of the format like CSV,

JSON or in database.

Step 4: Analyzing the Data

After all these steps are successfully done, the web scraper will analyze the data thus

obtained.

Python Web Scraping

5

In the first chapter, we have learnt what web scraping is all about. In this chapter, let us

see how to implement web scraping using Python.

Why Python for Web Scraping?

Python is a popular tool for implementing web scraping. Python programming language is

also used for other useful projects related to cyber security, penetration testing as well as

digital forensic applications. Using the base programming of Python, web scraping can be

performed without using any other third party tool.

Python programming language is gaining huge popularity and the reasons that make

Python a good fit for web scraping projects are as below:

Syntax Simplicity

Python has the simplest structure when compared to other programming languages. This

feature of Python makes the testing easier and a developer can focus more on

programming.

Inbuilt Modules

Another reason for using Python for web scraping is the inbuilt as well as external useful

libraries it possesses. We can perform many implementations related to web scraping by

using Python as the base for programming.

Open Source Programming Language

Python has huge support from the community because it is an open source programming

language.

Wide range of Applications

Python can be used for various programming tasks ranging from small shell scripts to

enterprise web applications.

Installation of Python

Python distribution is available for platforms like Windows, MAC and Unix/Linux. We need

to download only the binary code applicable for our platform to install Python. But in case

if the binary code for our platform is not available, we must have a C compiler so that

source code can be compiled manually.

2. Python Web Scraping – Getting Started with
Python

Python Web Scraping

6

We can install Python on various platforms as follows:

Installing Python on Unix and Linux

You need to followings steps given below to install Python on Unix/Linux machines:

Step1: Go to the link https://www.python.org/downloads/.

Step2: Download the zipped source code available for Unix/Linux on above link.

Step3: Extract the files onto your computer.

Step4: Use the following commands to complete the installation:

run ./configure script

make

make install

You can find installed Python at the standard location /usr/local/bin and its libraries

at /usr/local/lib/pythonXX, where XX is the version of Python.

Installing Python on Windows

You need to followings steps given below to install Python on Windows machines:

Step1: Go to the link https://www.python.org/downloads/.

Step2: Download the Windows installer python-XYZ.msi file, where XYZ is the version

we need to install.

Step3: Now, save the installer file to your local machine and run the MSI file.

Step4: At last, run the downloaded file to bring up the Python install wizard.

Installing Python on Macintosh

We must use Homebrew for installing Python 3 on Mac OS X. Homebrew is easy to install

and a great package installer.

Homebrew can also be installed by using the following command:

$ ruby -e "$(curl -fsSL

https://raw.githubusercontent.com/Homebrew/install/master/install)"

For updating the package manager, we can use the following command:

$ brew update

With the help of the following command, we can install Python3 on our MAC machine:

$ brew install python3

https://www.python.org/downloads/
https://www.python.org/downloads/

Python Web Scraping

7

Setting Up the PATH

You can use the following instructions to set up the path on various environments:

Setting Up the Path on Unix/Linux

Use the following commands for setting up paths using various command shells:

For csh shell

setenv PATH "$PATH:/usr/local/bin/python".

For bash shell (Linux)

 ATH="$PATH:/usr/local/bin/python".

For sh or ksh shell

 PATH="$PATH:/usr/local/bin/python".

Setting Up the Path on Windows

 For setting the path on Windows, we can use the path %path%;C:\Python at the

command prompt and then press Enter.

Running Python

We can start Python using any of the following three ways:

Interactive Interpreter

An operating system such as UNIX and DOS that is providing a command-line interpreter

or shell can be used for starting Python.

We can start coding in interactive interpreter as follows:

Step 1: Enter python at the command line.

Step 2: Then, we can start coding right away in the interactive interpreter.

$python # Unix/Linux

or

python% # Unix/Linux

or

C:> python # Windows/DOS

Python Web Scraping

8

Script from the Command-line

We can execute a Python script at command line by invoking the interpreter. It can be

understood as follows −

$python script.py # Unix/Linux

or

python% script.py # Unix/Linux

or

C: >python script.py # Windows/DOS

Integrated Development Environment

We can also run Python from GUI environment if the system is having GUI application that

is supporting Python. Some IDEs that support Python on various platforms are given

below:

IDE for UNIX: UNIX, for Python, has IDLE IDE.

IDE for Windows: Windows has PythonWin IDE which has GUI too.

IDE for Macintosh: Macintosh has IDLE IDE which is downloadable as either MacBinary

or BinHex'd files from the main website.

Python Web Scraping

9

In this chapter, let us learn various Python modules that we can use for web scraping.

Python Development Environments using virtualenv

Virtualenv is a tool to create isolated Python environments. With the help of virtualenv,

we can create a folder that contains all necessary executables to use the packages that

our Python project requires. It also allows us to add and modify Python modules without

access to the global installation.

You can use the following command to install virtualenv:

(base) D:\ProgramData>pip install virtualenv

Collecting virtualenv

 Downloading

https://files.pythonhosted.org/packages/b6/30/96a02b2287098b23b875bc8c2f58071c3

5d2efe84f747b64d523721dc2b5/virtualenv-16.0.0-py2.py3-none-any.whl

(1.9MB)

 100% |¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦| 1.9MB 86kB/s

Installing collected packages: virtualenv

Successfully installed virtualenv-16.0.0

Now, we need to create a directory which will represent the project with the help of

following command:

(base) D:\ProgramData>mkdir webscrap

Now, enter into that directory with the help of this following command:

(base) D:\ProgramData>cd webscrap

Now, we need to initialize virtual environment folder of our choice as follows:

(base) D:\ProgramData\webscrap>virtualenv websc

Using base prefix 'd:\\programdata'

New python executable in D:\ProgramData\webscrap\websc\Scripts\python.exe

Installing setuptools, pip, wheel...done.

3. Python Web Scraping – Python Modules for Web
Scraping

Python Web Scraping

10

Now, activate the virtual environment with the command given below. Once successfully

activated, you will see the name of it on the left hand side in brackets.

(base) D:\ProgramData\webscrap>websc\scripts\activate

We can install any module in this environment as follows:

(websc) (base) D:\ProgramData\webscrap>pip install requests

Collecting requests

 Downloading

https://files.pythonhosted.org/packages/65/47/7e02164a2a3db50ed6d8a6ab1d6d60b69

c4c3fdf57a284257925dfc12bda/requests-2.19.1-py2.py3-none-any.whl (9

1kB)

 100% |¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦| 92kB 148kB/s

Collecting chardet<3.1.0,>=3.0.2 (from requests)

 Downloading

https://files.pythonhosted.org/packages/bc/a9/01ffebfb562e4274b6487b4bb1ddec7ca

55ec7510b22e4c51f14098443b8/chardet-3.0.4-py2.py3-none-any.whl (133

kB)

 100% |¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦| 143kB 369kB/s

Collecting certifi>=2017.4.17 (from requests)

 Downloading

https://files.pythonhosted.org/packages/df/f7/04fee6ac349e915b82171f8e23cee6364

4d83663b34c539f7a09aed18f9e/certifi-2018.8.24-py2.py3-none-any.whl

(147kB)

 100% |¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦| 153kB 527kB/s

Collecting urllib3<1.24,>=1.21.1 (from requests)

 Downloading

https://files.pythonhosted.org/packages/bd/c9/6fdd990019071a4a32a5e7cb78a1d92c5

3851ef4f56f62a3486e6a7d8ffb/urllib3-1.23-py2.py3-none-any.whl (133k

B)

 100% |¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦| 143kB 517kB/s

Collecting idna<2.8,>=2.5 (from requests)

 Downloading

https://files.pythonhosted.org/packages/4b/2a/0276479a4b3caeb8a8c1af2f8e4355746

a97fab05a372e4a2c6a6b876165/idna-2.7-py2.py3-none-any.whl (58kB)

 100% |¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦| 61kB 339kB/s

Installing collected packages: chardet, certifi, urllib3, idna, requests

Successfully installed certifi-2018.8.24 chardet-3.0.4 idna-2.7 requests-2.19.1

urllib3-1.23

Python Web Scraping

11

For deactivating the virtual environment, we can use the following command:

(websc) (base) D:\ProgramData\webscrap>deactivate

(base) D:\ProgramData\webscrap>

You can see that (websc) has been deactivated.

Python Modules for Web Scraping

Web scraping is the process of constructing an agent which can extract, parse, download

and organize useful information from the web automatically. In other words, instead of

manually saving the data from websites, the web scraping software will automatically load

and extract data from multiple websites as per our requirement.

In this section, we are going to discuss about useful Python libraries for web scraping.

Requests

It is a simple python web scraping library. It is an efficient HTTP library used for accessing

web pages. With the help of Requests, we can get the raw HTML of web pages which can

then be parsed for retrieving the data. Before using requests, let us understand its

installation.

Installing Requests

We can install it in either on our virtual environment or on the global installation. With the

help of pip command, we can easily install it as follows:

(base) D:\ProgramData> pip install requests

Collecting requests

Using cached

https://files.pythonhosted.org/packages/65/47/7e02164a2a3db50ed6d8a6ab1d6d60b69

c4c3fdf57a284257925dfc12bda/requests-2.19.1-py2.py3-none-any.whl

Requirement already satisfied: idna<2.8,>=2.5 in d:\programdata\lib\site-

packages (from requests) (2.6)

Requirement already satisfied: urllib3<1.24,>=1.21.1 in

d:\programdata\lib\site-packages (from requests) (1.22)

Requirement already satisfied: certifi>=2017.4.17 in d:\programdata\lib\site-

packages (from requests) (2018.1.18)

Requirement already satisfied: chardet<3.1.0,>=3.0.2 in

d:\programdata\lib\site-packages (from requests) (3.0.4)

Installing collected packages: requests

Successfully installed requests-2.19.1

Python Web Scraping

12

Example

In this example, we are making a GET HTTP request for a web page. For this we need to

first import requests library as follows:

In [1]: import requests

In this following line of code, we use requests to make a GET HTTP requests for the url:

https://authoraditiagarwal.com/ by making a GET request.

In [2]: r = requests.get('https://authoraditiagarwal.com/')

Now we can retrieve the content by using .text property as follows:

In [5]: r.text[:200]

Observe that in the following output, we got the first 200 characters.

Out[5]: '<!DOCTYPE html>\n<html lang="en-US"\n\titemscope

\n\titemtype="http://schema.org/WebSite" \n\tprefix="og: http://ogp.me/ns#"

>\n<head>\n\t<meta charset

="UTF-8" />\n\t<meta http-equiv="X-UA-Compatible" content="IE'

Urllib3

It is another Python library that can be used for retrieving data from URLs similar to the

requests library. You can read more on this at its technical documentation at

https://urllib3.readthedocs.io/en/latest/.

Installing Urllib3

Using the pip command, we can install urllib3 either in our virtual environment or in

global installation.

(base) D:\ProgramData>pip install urllib3

Collecting urllib3

Using cached

https://files.pythonhosted.org/packages/bd/c9/6fdd990019071a4a32a5e7cb78a1d92c5

3851ef4f56f62a3486e6a7d8ffb/urllib3-1.23-py2.py3-none-any.whl

Installing collected packages: urllib3

Successfully installed urllib3-1.23

https://authoraditiagarwal.com/
https://urllib3.readthedocs.io/en/latest/

Python Web Scraping

13

Example: Scraping using Urllib3 and BeautifulSoup

In the following example, we are scraping the web page by using Urllib3 and

BeautifulSoup. We are using Urllib3 at the place of requests library for getting the raw

data (HTML) from web page. Then we are using BeautifulSoup for parsing that HTML

data.

import urllib3

from bs4 import BeautifulSoup

http = urllib3.PoolManager()

r = http.request('GET', 'https://authoraditiagarwal.com')

soup = BeautifulSoup(r.data, 'lxml')

print (soup.title)

print (soup.title.text)

This is the output you will observe when you run this code:

<title>Learn and Grow with Aditi Agarwal</title>

Learn and Grow with Aditi Agarwal

Selenium

It is an open source automated testing suite for web applications across different browsers

and platforms. It is not a single tool but a suite of software. We have selenium bindings

for Python, Java, C#, Ruby and JavaScript. Here we are going to perform web scraping by

using selenium and its Python bindings. You can learn more about Selenium with Java on

the link https://www.tutorialspoint.com/selenium.

Selenium Python bindings provide a convenient API to access Selenium WebDrivers like

Firefox, IE, Chrome, Remote etc. The current supported Python versions are 2.7, 3.5 and

above.

Installing Selenium

Using the pip command, we can install urllib3 either in our virtual environment or in

global installation.

pip install selenium

As selenium requires a driver to interface with the chosen browser, we need to download

it. The following table shows different browsers and their links for downloading the same.

Chrome https://sites.google.com/a/chromium.org/chromedriver/downloads

Edge https://developer.microsoft.com/en-us/microsoft-edge/tools/webdriver/

Firefox https://github.com/mozilla/geckodriver/releases

Safari https://webkit.org/blog/6900/webdriver-support-in-safari-10/

https://www.tutorialspoint.com/selenium
https://sites.google.com/a/chromium.org/chromedriver/downloads
https://developer.microsoft.com/en-us/microsoft-edge/tools/webdriver/
https://github.com/mozilla/geckodriver/releases
https://webkit.org/blog/6900/webdriver-support-in-safari-10/

Python Web Scraping

14

Example

This example shows web scraping using selenium. It can also be used for testing which is

called selenium testing.

After downloading the particular driver for the specified version of browser, we need to do

programming in Python.

First, need to import webdriver from selenium as follows:

from selenium import webdriver

Now, provide the path of web driver which we have downloaded as per our requirement:

path = r'C:\\Users\\gaurav\\Desktop\\Chromedriver'

browser = webdriver.Chrome(executable_path = path)

Now, provide the url which we want to open in that web browser now controlled by our

Python script.

browser.get('https://authoraditiagarwal.com/leadershipmanagement')

We can also scrape a particular element by providing the xpath as provided in lxml.

browser.find_element_by_xpath('/html/body').click()

You can check the browser, controlled by Python script, for output.

Scrapy

Scrapy is a fast, open-source web crawling framework written in Python, used to extract

the data from the web page with the help of selectors based on XPath. Scrapy was first

released on June 26, 2008 licensed under BSD, with a milestone 1.0 releasing in June

2015. It provides us all the tools we need to extract, process and structure the data from

websites.

Installing Scrapy

Using the pip command, we can install urllib3 either in our virtual environment or in

global installation.

pip install scrapy

For more detail study of Scrapy you can go to the link

https://www.tutorialspoint.com/scrapy/index.htm.

https://www.tutorialspoint.com/scrapy/index.htm

Python Web Scraping

15

End of ebook preview

If you liked what you saw…

Buy it from our store @ https://store.tutorialspoint.com

https://store.tutorialspoint.com/

