

RSpec

i

About the Tutorial

RSpec is a unit test framework for the Ruby programming language. RSpec is different

than traditional xUnit frameworks like JUnit because RSpec is a Behavior driven

development tool. What this means is that, tests written in RSpec focus on the "behavior"

of an application being tested. RSpec does not put emphasis on, how the application works

but instead on how it behaves, in other words, what the application actually does.

This tutorial will show you, how to use RSpec to test your code when building applications

with Ruby.

Audience

This tutorial is for beginners who want to learn how to write better code in Ruby. After

finishing this tutorial, you will be able to incorporate RSpec tests into your daily coding

practices.

Prerequisites

In order to benefit from reading this tutorial, you should have some experience with

programming, specifically with Ruby.

Disclaimer & Copyright

 Copyright 2015 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute, or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness, or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

RSpec

ii

Table of Contents

About the Tutorial .. i

Audience... i

Prerequisites ... i

Disclaimer & Copyright ... i

Table of Contents... ii

1. RSPEC – INTRODUCTION .. 1

RSpec Environment .. 1

2. RSPEC – BASIC SYNTAX ... 4

The describe Keyword ... 4

The context Keyword ... 4

The it Keyword .. 5

The expect Keyword .. 5

3. RSPEC – WRITING SPECS .. 6

4. RSPEC – MATCHERS ... 11

Equality/Identity Matchers .. 11

Comparison Matchers .. 12

Class/Type Matchers ... 13

True/False/Nil Matchers .. 14

Error Matchers ... 15

5. RSPEC – TEST DOUBLES .. 17

6. RSPEC – STUBS ... 19

7. RSPEC – HOOKS .. 22

8. RSPEC – TAGS ... 25

RSpec

iii

9. RSPEC – SUBJECTS .. 26

10. RSPEC – HELPERS .. 28

11. RSPEC – METADATA .. 30

12. RSPEC – FILTERING .. 33

RSpec Formatters .. 34

Failed Examples ... 37

13. RSPEC – EXPECTATIONS .. 38

RSpec

 1

RSpec is a unit test framework for the Ruby programming language. RSpec is different

than traditional xUnit frameworks like JUnit because RSpec is a Behavior driven

development tool. What this means is that, tests written in RSpec focus on the “behavior”

of an application being tested. RSpec does not put emphasis on, how the application works

but instead on how it behaves, in other words, what the application actually does.

RSpec Environment

First of all, you will need to install Ruby on your computer. However, if you haven’t already

done earlier, then you can download and install Ruby from the main Ruby website:

https://www.ruby-lang.org/en/documentation/installation.

If you are installing Ruby on Windows, you should have the Ruby installer for Windows

here at: http://www.rubyinstaller.org

For this tutorial, you will only need text editor, such as Notepad and a command line

console. The examples here will use cmd.exe on Windows.

To run cmd.exe, simply click on the Start menu and type “cmd.exe”, then hit the Return

key.

At the command prompt in your cmd.exe window, type the following command to see

what version of Ruby you are using:

ruby -v

You should see the below output that looks similar to this:

ruby 2.2.3p173 (2015-08-18 revision 51636) [x64-mingw32]

The examples in this tutorial will use Ruby 2.2.3 but any version of Ruby higher than 2.0.0

will suffice. Next, we need to install the RSpec gem for your Ruby installation. A gem is

a Ruby library which you can use in your own code. In order to install a gem, you need

to use the gem command.

Let’s install the Rspec gem now. Go back to your cmd.exe Window and type the following:

gem install rspec

You should have a list of dependent gems that were installed, these are gems that the

rspec gem needs to function correctly. At the end of the output, you should see something

that looks like this:

Done installing documentation for diff-lcs, rspec-support, rspec-mocks, rspec-

expectations, rspec-core, rspec after 22 seconds

6 gems installed

1. RSpec – Introduction

RSpec

 2

Do not worry, if your output does not look exactly the same. Also, if you are using a Mac

or Linux computer, you may need to either run gem install rspec command using sudo

or use a tool like HomeBrew or RVM to install the rspec gem.

Hello World

To get started, let’s create a directory (folder) to store our RSpec files. In your cmd.exe

window, type the following:

cd \

Then type:

mkdir rspec_tutorial

And finally, type:

cd rspec_tutorial

From here, we’re going to create another directory named spec, do that by typing:

mkdir spec

We are going to store our RSpec files in this folder. RSpec files are known as “specs”. If

this seems confusing to you, you can think of a spec file as a test file. RSpec uses the

term “spec” which is a short form for “specification”.

Since, RSpec is a BDD test tool, the goal is to focus on what the application does and

whether or not it follows a specification. In behavior driven development, the specification

is often described in terms of a “User Story”. RSpec is designed to make it clear whether

the target code is behaving correctly, in other words following the specification.

Let’s return to our Hello World code. Open a text editor and add the following code:

class HelloWorld

def say_hello

 "Hello World!"

 end

end

describe HelloWorld do

 context “When testing the HelloWorld class” do

 it "should say 'Hello World' when we call the say_hello method" do

 hw = HelloWorld.new

 message = hw.say_hello

 expect(message).to eq "Hello World!"

 end

 end

RSpec

 3

end

Next, save this to a file named hello_world_spec.rb in the spec folder that you created

above. Now back in your cmd.exe window, run this command:

rspec spec spec\hello_world_spec.rb

When the command completes, you should see output that looks like this:

Finished in 0.002 seconds (files took 0.11101 seconds to load)

1 example, 0 failures

Congratulations, you just created and ran your first RSpec unit test!

In the next section, we will continue to discuss the syntax of RSpec files.

RSpec

 4

Let’s take a closer look at the code of our HelloWorld example. First of all, in case it isn’t

clear, we are testing the functionality of the HelloWorld class. This of course, is a very

simple class that contains only one method say_hello().

Here is the RSpec code again:

describe HelloWorld do

 context “When testing the HelloWorld class” do

 it "The say_hello method should return 'Hello World'" do

 hw = HelloWorld.new

 message = hw.say_hello

 expect(message).to eq "Hello World!"

 end

 end

end

The describe Keyword

The word describe is an RSpec keyword. It is used to define an “Example Group”. You

can think of an “Example Group” as a collection of tests. The describe keyword can take

a class name and/or string argument. You also need to pass a block argument to

describe, this will contain the individual tests, or as they are known in RSpec, the

“Examples”. The block is just a Ruby block designated by the Ruby do/end keywords

The context Keyword

The context keyword is similar to describe. It too can accept a class name and/or string

argument. You should use a block with context as well. The idea of context is that it

encloses tests of a certain type.

For example, you can specify groups of Examples with different contexts like this:

context “When passing bad parameters to the foobar() method”

context “When passing valid parameters to the foobar() method”

context “When testing corner cases with the foobar() method”

The context keyword is not mandatory, but it helps to add more details about the

examples that it contains.

2. RSpec – Basic Syntax

RSpec

 5

The it Keyword

The word it is another RSpec keyword which is used to define an “Example”. An example

is basically a test or a test case. Again, like describe and context, it accepts both class

name and string arguments and should be used with a block argument, designated with

do/end. In the case of it, it is customary to only pass a string and block argument. The

string argument often uses the word “should” and is meant to describe what specific

behavior should happen inside the it block. In other words, it describes that expected

outcome is for the Example.

Note the it block from our HelloWorld Example:

it "The say_hello method should return 'Hello World'" do

The string makes it clear what should happen when we call say hello on an instance of the

HelloWorld class. This part of the RSpec philosophy, an Example is not just a test, it’s also

a specification (a spec). In other words, an Example both documents and tests the

expected behavior of your Ruby code.

The expect Keyword

The expect keyword is used to define an “Expectation” in RSpec. This is a verification

step where we check, that a specific expected condition has been met.

From our HelloWorld Example, we have:

expect(message).to eql "Hello World!"

The idea with expect statements is that they read like normal English. You can say this

aloud as “Expect the variable message to equal the string ‘Hello World’”. The idea is that

its descriptive and also easy to read, even for non-technical stakeholders such as project

managers.

The to keyword

The to keyword is used as part of expect statements. Note that you can also use the

not_to keyword to express the opposite, when you want the Expectation to be false. You

can see that to is used with a dot, expect(message).to, because it actually just a regular

Ruby method. In fact, all of the RSpec keywords are really just Ruby methods.

The eql keyword

The eql keyword is a special RSpec keyword called a Matcher. You use Matchers to specify

what type of condition you are testing to be true (or false).

In our HelloWorld expect statement, it is clear that eql means string equality. Note that,

there are different types of equality operators in Ruby and consequently different

corresponding Matchers in RSpec. We will explore the many different types of Matchers

in a later section.

RSpec

 6

End of ebook preview

If you liked what you saw…

Buy it from our store @ https://store.tutorialspoint.com

