
SLF4J

 i

SLF4J

 i

About the Tutorial

SLF4J stands for Simple Logging Facade for Java. It provides a simple abstraction of all

the logging frameworks. It enables a user to work with any of the logging frameworks

such as Log4j, Logback, JUL (java.util.logging), etc. using single dependency.

Audience

This tutorial has been prepared for beginners to help them understand the basic

functionality of SLF4J logging framework.

Prerequisites

As you are going to use SLG4J logging framework in various Java-based application

development, it is imperative that you should have a good understanding of Java

programming language.

Copyright & Disclaimer

 Copyright 2019 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

SLF4J

 ii

Table of Contents

About the Tutorial .. i

Audience ... i

Prerequisites ... i

Copyright & Disclaimer ... i

Table of Contents .. ii

1. SLF4J — Overview ... 1

Advantages of SLF4J .. 1

2. SLF4J — Logging Frameworks .. 2

Logging Framework Overview ... 2

Logger Object .. 2

Severity Level ... 2

3. SLF4J — SLF4J Vs Log4j .. 4

What is log4j? .. 4

Comparison SLF4J and Log4j ... 4

4. SLF4J — Environment Setup .. 5

SLF4J Bindings .. 8

Pom.xml for SLF4J .. 9

5. SLF4J — Referenced API .. 10

Logger Interface... 10

LoggerFactory class ... 10

Profiler Class .. 11

6. SLF4J — Hello world .. 12

7. SLF4J — Error Messages .. 14

Failed to load class "org.slf4j.impl.StaticLoggerBinder". ... 14

No SLF4J providers were found ... 14

Classpath contains SLF4J bindings targeting slf4j-api versions prior to 1.8 .. 14

SLF4J

 iii

NoClassDefFoundError: org/apache/commons/logging/LogFactory .. 15

Detected both jcl-over-slf4j.jar AND bound slf4j-jcl.jar on the classpath.. ... 15

Detected logger name mismatch .. 16

Classpath contains multiple SLF4J bindings. .. 17

Detected both log4j-over-slf4j.jar AND bound slf4j-log4j12.jar on the class path .. 17

8. SLF4J — Parameterized logging ... 19

Advantage of Parameterized Logging .. 20

Two Argument Variant .. 20

Multiple Argument Variant ... 22

9. SLF4J — Migrator .. 23

Running SLF4J Migrator ... 23

Limitations of SLF4J Migrator .. 26

10. SLF4J — Profiling ... 27

Profiling ... 27

Logging the Profiler Information ... 30

SLF4J

 1

SLF4J stands for Simple Logging Facade for Java. It provides a simple abstraction of all

the logging frameworks in Java. Thus, it enables a user to work with any of the logging

frameworks such as Log4j, Logback and JUL (java.util.logging) using single dependency.

You can migrate to the required logging framework at run-time/deployment time.

Ceki Gülcü created SLF4J as an alternative to Jakarta commons-logging framework.

Advantages of SLF4J

Following are the advantages of SLF4J:

 Using SLF4J framework, you can migrate to the desired logging framework at the

time of deployment.

 Slf4J provides bindings to all popular logging frameworks such as log4j, JUL, Simple

logging and, NOP. Therefore, you can switch to any of these popular frameworks

at the time of deployment.

 SLF4J provides support to parameterized logging messages irrespective of the

binding you use.

 Since SLF4J decouples application and logging framework, you can easily write

applications independent of logging frameworks. You need not bother about the

logging framework being used to write an application.

 SLF4J provides a simple Java tool known as migrator. Using this tool, you can

migrate existing projects, which use logging frame works like Jakarta Commons

Logging (JCL) or, log4j or, Java.util.logging (JUL) to SLF4J.

1. SLF4J — Overview

SLF4J

 2

Logging in programming, refers to recording activities/events. Usually, the application

developers should take care of logging.

To make the job of logging easier, Java provides various frameworks – log4J,

java.util.logging (JUL), tiny log, logback, etc.

Logging Framework Overview

A logging framework usually contains three elements:

Logger

Captures the message along with the metadata.

Formatter

Formats the messages captured by the logger.

Handler

The Handler or appender finally dispatches the messages either by printing on the console

or, by storing in the database or, by sending through an email.

Some frameworks combine the logger and appender elements to speed up the operations.

Logger Object

To log a message, the application sends a logger object (sometimes along with the

exceptions if any) with name and security level.

Severity Level

The messages logged will be of various levels. The following table lists down the general

levels of logging.

Severity level Description

Fatal Severe issue that causes the application to terminate.

ERROR Runtime errors.

WARNING In most cases, the errors are due to the usage of deprecated APIs.

2. SLF4J — Logging Frameworks

SLF4J

 3

INFO Events that occur at runtime.

DEBUG Information about the flow of the system.

TRACE More detailed information about the flow of the system.

SLF4J

 4

What is log4j?

log4j is a reliable, fast and flexible logging framework (APIs) written in Java, which

is distributed under the Apache Software License.

log4j is highly configurable through external configuration files at runtime. It views the

logging process in terms of levels of priorities and offers mechanisms to direct logging

information to a great variety of destinations, such as a database, file, console, UNIX

Syslog, etc. (for more details on log4j refer our Tutorial).

Comparison SLF4J and Log4j

Unlike log4j, SLF4J (Simple Logging Facade for Java) is not an implementation of logging

framework, it is an abstraction for all those logging frameworks in Java similar to

log4J. Therefore, you cannot compare both. However, it is always difficult to prefer one

between the two.

If you have a choice, logging abstraction is always preferable than logging framework. If

you use a logging abstraction, SLF4J in particular, you can migrate to any logging

framework you need at the time of deployment without opting for single dependency.

Observe the following diagram to have a better understanding.

3. SLF4J — SLF4J Vs Log4j

http://www.tutorialspoint.com/log4j

SLF4J

 5

In this chapter, we will explain how to set SLF4J environment in Eclipse IDE. Before

proceeding with the installation, make sure that you already have Eclipse installed in your

system. If not, download and install Eclipse.

For more information on Eclipse, please refer our Eclipse Tutorial.

Step 1: Download the dependency JAR file

Open the official homepage of the SLF4J website and go to the download page.

Now, download the latest stable version of slf4j-X.X.tar.gz or slf4j-X.X.zip, according to

your operating system (if windows .zip file or if Linux tar.gz file).

Within the downloaded folder, you will find slf4j-api-X.X.jar. This is the required Jar file.

Step 2: Create a project and set build path

Open eclipse and create a sample project. Right-click on the project, select the option

Build Path -> Configure Build Path… as shown below.

4. SLF4J — Environment Setup

https://www.tutorialspoint.com/eclipse/

SLF4J

 6

In the Java Build Path frame in the Libraries tab, click Add External JARs…

SLF4J

 7

Select the slf4j-api.x.x.jar file downloaded and click Apply and Close.

SLF4J

 8

SLF4J Bindings

In addition to slf4j-api.x.x.jar file, SLF4J provides several other Jar files as shown below.

These are called SLF4J bindings.

Where each binding is for its respective logging framework.

The following table lists the SLF4J bindings and their corresponding frameworks.

Jar file Logging Framework

slf4j-nop-x.x.jar No operation, discards all loggings.

slf4j-simple-x.x.jar Simple implementation where messages for info and higher are

printed and, remaining all outputs to System.err.

slf4j-jcl-x.x.jar Jakarta Commons Logging framework.

slf4j-jdk14-x.x.jar Java.util.logging framework (JUL).

slf4j-log4j12-x.x.jar Log4J frame work. In addition, you need to have log4j.jar.

SLF4J

 9

To make SLF4J work along with slf4l-api-x.x.jar, you need to add the respective Jar file

(binding) of the desired logger framework in the classpath of the project (set build path).

To switch from one framework to other, you need to replace the respective binding. If no

bounding is found, it defaults to no-operation mode.

Pom.xml for SLF4J

If you are creating the maven project, open the pom.xml and paste the following content

in it and refresh the project.

<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>Sample</groupId>

 <artifactId>Sample</artifactId>

 <version>0.0.1-SNAPSHOT</version>

 <build>

 <sourceDirectory>src</sourceDirectory>

 <plugins>

 <plugin>

 <artifactId>maven-compiler-plugin</artifactId>

 <version>3.7.0</version>

 <configuration>

 <source>1.8</source>

 <target>1.8</target>

 </configuration>

 </plugin>

 </plugins>

 </build>

 <dependencies>

 <dependency>

 <groupId>org.slf4j</groupId>

 <artifactId>slf4j-api</artifactId>

 <version>1.7.25</version>

 </dependency>

 </dependencies>

</project>

SLF4J

 10

In this chapter, we will discuss the classes and methods that we will be using in the

subsequent chapters of this tutorial.

Logger Interface

The logger interface of the org.slf4j package is the entry point of the SLF4J API. The

following lists down the important methods of this interface.

S.No. Methods and Description

1 void debug(String msg)

This method logs a message at the DEBUG level.

2 void error(String msg)

This method logs a message at the ERROR level.

3 void info(String msg)

This method logs a message at the INFO level.

4 void trace(String msg)

This method logs a message at the TRACE level.

5 void warn(String msg)

This method logs a message at the WARN level.

LoggerFactory Class

The LoggerFactory class of the org.slf4j package is a utility class, which is used to

generate loggers for various logging APIs such as log4j, JUL, NOP and simple logger.

S.No. Method and Description

1
Logger getLogger(String name)

This method accepts a string value representing a name and returns a Logger

object with the specified name.

5. SLF4J — Referenced API

SLF4J

 11

Profiler Class

This class belongs to the package org.slf4j this is used for profiling purpose and it is

known as poor man’s profiler. Using this, the programmer can find out the time taken to

carry out prolonged tasks.

Following are the important methods of this class.

S.No. Methods and Description

1
void start(String name)

This method will start a new child stop watch (named) and, stops the earlier

child stopwatches (or, time instruments).

2
TimeInstrument stop()

This method will stop the recent child stopwatch and the global stopwatch

and return the current Time Instrument.

3
void setLogger(Logger logger)

This method accepts a Logger object and associates the specified logger to the

current Profiler.

4
void log()

Logs the contents of the current time instrument that is associated with a

logger.

5
void print()

Prints the contents of the current time instrument.

SLF4J

 12

In this chapter, we will see a simple basic logger program using SLF4J. Follow the steps

described below to write a simple logger.

Step 1: Create an object of the slf4j.Logger interface

Since the slf4j.Logger is the entry point of the SLF4J API, first, you need to get/create

its object.

The getLogger() method of the LoggerFactory class accepts a string value representing

a name and returns a Logger object with the specified name.

Logger logger = LoggerFactory.getLogger("SampleLogger");

Step 2: Log the required message

The info() method of the slf4j.Logger interface accepts a string value representing the

required message and logs it at the info level.

logger.info("Hi This is my first SLF4J program");

Example

Following is the program that demonstrates how to write a sample logger in Java using

SLF4J.

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

public class SLF4JExample {

 public static void main(String[] args) {

 //Creating the Logger object

 Logger logger = LoggerFactory.getLogger("SampleLogger");

 //Logging the information

 logger.info("Hi This is my first SLF4J program");

 }

}

6. SLF4J — Hello world

SLF4J

 13

Output

On running the following program initially, you will get the following output instead of the

desired message.

SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".

SLF4J: Defaulting to no-operation (NOP) logger implementation

SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further

details.

Since we have not set the classpath to any binding representing a logging framework, as

mentioned earlier in this tutorial, SLF4J defaulted to a no-operation implementation. So,

to see the message you need to add the desired binding in the project classpath. Since we

are using eclipse, set build path for respective JAR file or, add its dependency in the

pom.xml file.

For example, if we need to use JUL (Java.util.logging framework), we need to set build

path for the jar file slf4j-jdk14-x.x.jar. And if we want to use log4J logging framework,

we need to set build path or, add dependencies for the jar files slf4j-log4j12-x.x.jar and

log4j.jar.

After adding the binding representing any of the logging frameworks except slf4j-nop-

x.x.jar to the project (classpath), you will get the following output.

Dec 06, 2018 5:29:44 PM SLF4JExample main

INFO: Hi Welcome to Tutorilspoint

SLF4J

 14

In this chapter, we will discuss the various error messages or warning we get while working

with SLF4J and the causes/ meanings of those messages.

Failed to load class "org.slf4j.impl.StaticLoggerBinder".

This is a warning which is caused when there are no SLF4J bindings provided in the

classpath.

Following is the complete warning:

SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".

SLF4J: Defaulting to no-operation (NOP) logger implementation

SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further

details.

To resolve this, you need to add either of the logging framework bindings. This is explained

in the Hello world chapter of this tutorial.

Note: This occurs in versions of SLF4J which are between 1.6.0 and 1.8.0-beta2.

No SLF4J providers were found

In slf4j-1.8.0-beta2, the above warning is more clear saying “No SLF4J providers were

found”.

Following is the complete warning:

SLF4J: No SLF4J providers were found.

SLF4J: Defaulting to no-operation (NOP) logger implementation

SLF4J: See http://www.slf4j.org/codes.html#noProviders for further details.

Classpath contains SLF4J bindings targeting slf4j-api versions prior to
1.8

If you are using SLF4J 1.8 version and you have the bindings of previous versions in the

classpath but not the bindings of 1.8 you will see a warning as shown below.

SLF4J: No SLF4J providers were found.

SLF4J: Defaulting to no-operation (NOP) logger implementation

SLF4J: See http://www.slf4j.org/codes.html#noProviders for further details.

7. SLF4J — Error Messages

http://tutorialspoint.com/slf4j/slf4j_hello_world

SLF4J

 15

SLF4J: Class path contains SLF4J bindings targeting slf4j-api versions prior to

1.8.

SLF4J: Ignoring binding found at

[jar:file:/C:/Users/Tutorialspoint/Desktop/Latest%20Tutorials/SLF4J%20Tutorial/

slf4j-1.7.25/slf4j-jdk14-1.7.25.jar!/org/slf4j/impl/StaticLoggerBinder.class]

SLF4J: See http://www.slf4j.org/codes.html#ignoredBindings for an explanation.

NoClassDefFoundError: org/apache/commons/logging/LogFactory

If you are working with slf4j-jcl and if you have only slf4j-jcl.jar in your classpath, you

will get an exception such as the one given below.

Exception in thread "main" java.lang.NoClassDefFoundError:

org/apache/commons/logging/LogFactory

 at org.slf4j.impl.JCLLoggerFactory.getLogger(JCLLoggerFactory.java:77)

 at org.slf4j.LoggerFactory.getLogger(LoggerFactory.java:358)

 at SLF4JExample.main(SLF4JExample.java:8)

Caused by: java.lang.ClassNotFoundException:

org.apache.commons.logging.LogFactory

 at java.net.URLClassLoader.findClass(Unknown Source)

 at java.lang.ClassLoader.loadClass(Unknown Source)

 at sun.misc.Launcher$AppClassLoader.loadClass(Unknown Source)

 at java.lang.ClassLoader.loadClass(Unknown Source)

 ... 3 more

To resolve this, you need to add commons-logging.jar to your classpath.

Detected both jcl-over-slf4j.jar AND bound slf4j-jcl.jar on the classpath..

The binding slf4j-jcl.jar redirects calls of the slf4j logger to JCL and the jcl-over-slf4j.jar

redirects calls of JCL logger to slf4j. Therefore, you cannot have both in the classpath of

your project. If you do so, you will get an exception such as the one given below.

SLF4J: Detected both jcl-over-slf4j.jar AND bound slf4j-jcl.jar on the class

path, preempting StackOverflowError.

SLF4J: See also http://www.slf4j.org/codes.html#jclDelegationLoop for more

details.

Exception in thread "main" java.lang.ExceptionInInitializerError

 at org.slf4j.impl.StaticLoggerBinder.<init>(StaticLoggerBinder.java:71)

 at org.slf4j.impl.StaticLoggerBinder.<clinit>(StaticLoggerBinder.java:42)

 at org.slf4j.LoggerFactory.bind(LoggerFactory.java:150)

 at org.slf4j.LoggerFactory.performInitialization(LoggerFactory.java:124)

SLF4J

 16

 at org.slf4j.LoggerFactory.getILoggerFactory(LoggerFactory.java:412)

 at org.slf4j.LoggerFactory.getLogger(LoggerFactory.java:357)

 at SLF4JExample.main(SLF4JExample.java:8)

Caused by: java.lang.IllegalStateException: Detected both jcl-over-slf4j.jar

AND bound slf4j-jcl.jar on the class path, preempting StackOverflowError. See

also http://www.slf4j.org/codes.html#jclDelegationLoop for more details.

 at org.slf4j.impl.JCLLoggerFactory.<clinit>(JCLLoggerFactory.java:54)

 ... 7 more

To resolve this, delete either of the jar files.

Detected logger name mismatch

You can create a Logger object by -

 Passing the name of the logger to be created as an argument to the getLogger()

method.

 Passing a class as an argument to this method.

If you are trying to create the logger factory object by passing a class as an argument,

and if you have set the system property slf4j.detectLoggerNameMismatch to true,

then the name of the class you pass as an argument to the getLogger() method and the

class you use should be the same otherwise you will receive the following warning –

“Detected logger name mismatch.

Consider the following example.

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

public class SLF4JExample {

 public static void main(String[] args) {

 System.setProperty("slf4j.detectLoggerNameMismatch", "true");

 //Creating the Logger object

 Logger logger = LoggerFactory.getLogger(Sample.class);

 //Logging the information

 logger.info("Hi Welcome to Tutorilspoint");

 }

}

SLF4J

 17

Here, we have set the slf4j.detectLoggerNameMismatch property to true. The name of the

class we used is SLF4JExample and the class name we have passed to the getLogger()

method is Sample since they both are not equal we will get the following warning.

SLF4J: Detected logger name mismatch. Given name: "Sample"; computed name:

"SLF4JExample".

SLF4J: See http://www.slf4j.org/codes.html#loggerNameMismatch for an

explanation

Dec 10, 2018 12:43:00 PM SLF4JExample main

INFO: Hi Welcome to Tutorilspoint

 Note: This occurs after slf4j 1.7.9

Classpath contains multiple SLF4J bindings.

You should have only one binding in the classpath. If you have more than one binding,

you will get a warning listing the bindings and the locations of them.

For suppose, if we have the bindings slf4j-jdk14.jar and slf4j-nop.jar in the classpath

we will get the following warning.

SLF4J: Class path contains multiple SLF4J bindings.

SLF4J: Found binding in

[jar:file:/C:/Users/Tutorialspoint/Desktop/Latest%20Tutorials/SLF4J%20Tutorial/

slf4j-1.7.25/slf4j-nop-1.7.25.jar!/org/slf4j/impl/StaticLoggerBinder.class]

SLF4J: Found binding in

[jar:file:/C:/Users/Tutorialspoint/Desktop/Latest%20Tutorials/SLF4J%20Tutorial/

slf4j-1.7.25/slf4j-jdk14-1.7.25.jar!/org/slf4j/impl/StaticLoggerBinder.class]

SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an

explanation.

SLF4J: Actual binding is of type [org.slf4j.helpers.NOPLoggerFactory]

Detected both log4j-over-slf4j.jar AND bound slf4j-log4j12.jar on the
class path

To redirect the log4j logger calls to slf4j, you need to use log4j-over-slf4j.jar binding

and if you want to redirect slf4j calls to log4j, you need to use slf4j-log4j12.jar binding.

Therefore, you cannot have both in the classpath. If you do, you will get the following

exception.

SLF4J: Detected both log4j-over-slf4j.jar AND bound slf4j-log4j12.jar on the

class path, preempting StackOverflowError.

SLF4J: See also http://www.slf4j.org/codes.html#log4jDelegationLoop for more

details.

SLF4J

 18

Exception in thread "main" java.lang.ExceptionInInitializerError

 at org.slf4j.impl.StaticLoggerBinder.<init>(StaticLoggerBinder.java:72)

 at org.slf4j.impl.StaticLoggerBinder.<clinit>(StaticLoggerBinder.java:45)

 at org.slf4j.LoggerFactory.bind(LoggerFactory.java:150)

 at org.slf4j.LoggerFactory.performInitialization(LoggerFactory.java:124)

 at org.slf4j.LoggerFactory.getILoggerFactory(LoggerFactory.java:412)

 at org.slf4j.LoggerFactory.getLogger(LoggerFactory.java:357)

 at org.slf4j.LoggerFactory.getLogger(LoggerFactory.java:383)

 at SLF4JExample.main(SLF4JExample.java:8)

Caused by: java.lang.IllegalStateException: Detected both log4j-over-slf4j.jar

AND bound slf4j-log4j12.jar on the class path, preempting StackOverflowError.

See also http://www.slf4j.org/codes.html#log4jDelegationLoop for more details.

SLF4J

 19

As discussed earlier in this tutorial SLF4J provides support for parameterized log

messages.

You can use parameters in the messages and pass values to them later in the same

statement.

Syntax

As shown below, you need to use placeholders ({}) in the message (String) wherever you

need and later you can pass value for place holder in object form, separating the message

and value with comma.

Integer age;

Logger.info("At the age of {} ramu got his first job", age);

Example

The following example demonstrates parameterized logging (with single parameter) using

SLF4J.

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

public class PlaceHolders {

 public static void main(String[] args) {

 //Creating the Logger object

 Logger logger = LoggerFactory.getLogger(PlaceHolders.class);

 Integer age = 23;

 //Logging the information

 logger.info("At the age of {} ramu got his first job", age);

 }

}

Output

Upon execution, the above program generates the following output:

Dec 10, 2018 3:25:45 PM PlaceHolders main

8. SLF4J — Parameterized logging

SLF4J

 20

INFO: At the age of 23 Ramu got his first job

Advantage of Parameterized Logging

In Java, if we need to print values in a statement, we will use concatenation operator as -

System.out.println("At the age of "+23+" ramu got his first job");

This involves the conversion of the integer value 23 to string and concatenation of this

value to the strings surrounding it.

And if it is a logging statement, and if that particular log level of your statement is disabled

then, all this calculation will be of no use.

In such circumstances, you can use parameterized logging. In this format, initially SLF4J

confirms whether the logging for particular level is enabled. If so then, it replaces the

placeholders in the messages with the respective values.

For example, if we have a statement as

Integer age;

Logger.debug("At the age of {} ramu got his first job", age);

Only if debugging is enabled then, SLF4J converts the age into integer and concatenates

it with the strings otherwise, it does nothing. Thus incurring the cost of parameter

constructions when logging level is disabled.

Two Argument Variant

You can also use two parameters in a message as -

logger.info("Old weight is {}. new weight is {}.", oldWeight, newWeight);

Example

The following example demonstrates the usage of two placeholders in parametrized

logging.

import java.util.Scanner;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

public class PlaceHolders {

 public static void main(String[] args) {

SLF4J

 21

 Integer oldWeight;

 Integer newWeight;

 Scanner sc = new Scanner(System.in);

 System.out.println("Enter old weight:");

 oldWeight = sc.nextInt();

 System.out.println("Enter new weight:");

 newWeight = sc.nextInt();

 //Creating the Logger object

 Logger logger = LoggerFactory.getLogger(Sample.class);

 //Logging the information

 logger.info("Old weight is {}. new weight is {}.", oldWeight, newWeight);

 //Logging the information

 logger.info("After the program weight reduced is: "+(oldWeight-newWeight));

 }

}

Output

Upon execution, the above program generates the following output.

Enter old weight:

85

Enter new weight:

74

Dec 10, 2018 4:12:31 PM PlaceHolders main

INFO: Old weight is 85. new weight is 74.

Dec 10, 2018 4:12:31 PM PlaceHolders main

INFO: After the program weight reduced is: 11

SLF4J

 22

Multiple Argument Variant

You can also use more than two placeholders as shown in the following example:

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

public class PlaceHolders {

 public static void main(String[] args) {

 Integer age = 24;

 String designation = "Software Engineer";

 String company = "Infosys";

 //Creating the Logger object

 Logger logger = LoggerFactory.getLogger(Sample.class);

 //Logging the information

 logger.info("At the age of {} ramu got his first job as a {} at {}", age,

designation, company);

 }

}

Output

Upon execution, the above program generates the following output:

Dec 10, 2018 4:23:52 PM PlaceHolders main

INFO: At the age of 24 ramu got his first job as a Software Engineer at Infosys

SLF4J

 23

If you have a project in Jakarta Commons Logging (JCL) or, log4j or, java.util.logging

(JUL) and you want to convert these projects to SLF4J, you can do so using the migrator

tool provided in the SLF4J distribution.

Running SLF4J Migrator

SLF4J is a simple single jar file (slf4j-migrator.jar) and you can run it using the java –jar

command.

To run it, in command prompt, browse through the directory where you have this jar file

and execute the following command.

java -jar slf4j-migrator-1.8.0-beta2.jar

Starting SLF4J Migrator

This starts the migrator and you can see a standalone java application as:

9. SLF4J — Migrator

SLF4J

 24

As specified in the window, you need to check the type of migration you want to do and

select the project directory and click on the button Migrate Project to SLF4J.

This tool goes to the source files you provide and performs simple modifications like

changing the import lines and logger declarations from the current logging framework to

SLF4j.

Example

For example, let us suppose we have a sample log4j(2) project in eclipse with a single

file as follows:

import org.apache.log4j.Logger;

import java.io.*;

import java.sql.SQLException;

import java.util.*;

public class Sample{

 /* Get actual class name to be printed on */

 static Logger log = Logger.getLogger(Sample.class.getName());

 public static void main(String[] args)throws IOException,SQLException{

 log.debug("Hello this is a debug message");

 log.info("Hello this is an info message");

 }

SLF4J

 25

}

To migrate the sample log4j(2) project to slf4j, we need to check the radio button from

log4j to slf4j and select the directory of the project and click Exit to migrate.

The migrator changed the above code as follows. Here if you observe the import and logger

statements have been modified.

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import java.io.*;

import java.sql.SQLException;

import java.util.*;

public class Sample{

 static Logger log = LoggerFactory.getLogger(Sample.class.getName());

 public static void main(String[] args)throws IOException,SQLException{

 log.debug("Hello this is a debug message");

 log.info("Hello this is an info message");

 }

}

SLF4J

 26

Since you already have log4j.jar in your project, you need to add slf4j-api.jar and slf4j-

log12.jar files to the project to execute it.

Limitations of SLF4J Migrator

Following are the limitations of the SLF4J migrator.

 Migrator will not modify build scripts like ant, maven and, ivy you need to do it

yourself.

 Migrator does not support messages other than the String type.

 Migrator does not support the FATAL level.

 While working with log4j, migrator will not migrate calls to PropertyConfigurator or

DomConfigurator.

SLF4J

 27

SLF4J Distribution provides slf4j-ext.jar this contains APIs for the functionalities such as

profiling, Extended logging, Event logging and, logging with java agent.

Profiling

Sometimes the programmer wants to measure some attributes like the use of memory,

time complexity or usage of particular instructions about the programs to measure the

real capability of that program. Such kind of measuring about the program is called

profiling. Profiling uses dynamic program analysis to do such measuring.

SLF4J provides a class named Profiler in the org.slf4j.profiler package for profiling

purpose. This is known as the poor man’s profiler. Using this, the programmer can find

out the time taken to carry out prolonged tasks.

Profiling Using the Profiler class

The profiler contains stopwatches and child stopwatches and we can start and stop these

using the methods provided by the profiler class.

To carry on with profiling using the profiler class, follow the steps given below.

Step 1: Instantiate the profiler class

Instantiate the Profiler class by passing a String value representing the name of the

profiler. When we instantiate a Profiler class, a global stopwatch will be started.

//Creating a profiler

Profiler profiler = new Profiler("Sample");

Step 2: Start a child stopwatch

When we invoke the start() method it will start a new child stopwatch (named) and, stops

the earlier child stopwatches (or, time instruments).

Invoke the start() method of the Profiler class by passing a String value representing

the name of the child stopwatch to be created.

//Starting a child stopwatch and stopping the previous one.

profiler.start("Task 1");

obj.demoMethod1();

After creating these stopwatches, you can perform your tasks or, invoke those methods,

which run your tasks.

10. SLF4J — Profiling

SLF4J

 28

Step 3: Start another child stopwatch (if you wish to)

If you need, create another stopwatch using the start() method and perform the required

tasks. If you do so, it will start a new stop watch and stops the previous one (i.e. task 1).

//Starting another child stopwatch and stopping the previous one.

profiler.start("Task 2");

obj.demoMethod2();

Step 4: Stop the watches

When we invoke the stop() method, it will stop the recent child stopwatch and the global

stopwatch and returns the current Time Instrument.

//Stopping the current child stopwatch and the global stopwatch.

TimeInstrument tm = profiler.stop();

Step 5: Print the contents of the time instrument.

Print the contents of the current time instrument using the print() method.

 //printing the contents of the time instrument

 tm.print();

Example

The following example demonstrates the profiling using Profiler class of SLF4J. Here we

have taken two sample tasks, printing the sum of squares of the numbers from 1 to 10000,

printing the sum of the numbers from 1 to 10000. We are trying to get the time taken for

these two tasks.

import org.slf4j.profiler.Profiler;

import org.slf4j.profiler.TimeInstrument;

public class ProfilerExample {

 public void demoMethod1(){

 double sum = 0;

 for(int i=0; i< 1000; i++){

 sum = sum+(Math.pow(i, 2));

 }

 System.out.println("Sum of squares of the numbers from 1 to 10000: "+sum);

 }

SLF4J

 29

 public void demoMethod2(){

 int sum = 0;

 for(int i=0; i< 10000; i++){

 sum = sum+i;

 }

 System.out.println("Sum of the numbers from 1 to 10000: "+sum);

 }

 public static void main(String[] args) {

 ProfilerExample obj = new ProfilerExample();

 //Creating a profiler

 Profiler profiler = new Profiler("Sample");

 //Starting a child stop watch and stopping the previous one.

 profiler.start("Task 1");

 obj.demoMethod1();

 //Starting another child stop watch and stopping the previous one.

 profiler.start("Task 2");

 obj.demoMethod2();

 //Stopping the current child watch and the global watch.

 TimeInstrument tm = profiler.stop();

 //printing the contents of the time instrument

 tm.print();

 }

}

Output:

Upon execution, the above program generates the following output:

Sum of squares of the numbers from 1 to 10000: 3.328335E8

Sum of the numbers from 1 to 10000: 49995000

+ Profiler [BASIC]

SLF4J

 30

|-- elapsed time [Task 1] 2291.827 microseconds.

|-- elapsed time [Task 2] 225.802 microseconds.

|-- Total [BASIC] 3221.598 microseconds.

Logging the Profiler Information

Instead of printing the result of a profiler to log this information, you need to:

 Create a logger using the LoggerFactory class.

 Create a profiler by instantiating the Profiler class.

 Associate the logger to profiler by passing the logger object created to the

setLogger() method of the Profiler class.

 Finally, instead of printing log the information of the profiler using the log()

method.

Example

In the following example, unlike the previous one (instead of printing), we are trying to

log the contents of the time instrument.

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import org.slf4j.profiler.Profiler;

import org.slf4j.profiler.TimeInstrument;

public class ProfilerExample_logger {

 public void demoMethod1(){

 double sum = 0;

 for(int i=0; i< 1000; i++){

 sum = sum+(Math.pow(i, 2));

 }

 System.out.println("Sum of squares of the numbers from 1 to 10000:

"+sum);

 }

 public void demoMethod2(){

 int sum = 0;

 for(int i=0; i< 10000; i++){

SLF4J

 31

 sum = sum+i;

 }

 System.out.println("Sum of the numbers from 1 to 10000: "+sum);

 }

 public static void main(String[] args) {

 ProfilerExample_logger obj = new ProfilerExample_logger();

 //Creating a logger

 Logger logger = LoggerFactory.getLogger(ProfilerExample_logger.class);

 //Creating a profiler

 Profiler profiler = new Profiler("Sample");

 //Adding logger to the profiler

 profiler.setLogger(logger);

 //Starting a child stop watch and stopping the previous one.

 profiler.start("Task 1");

 obj.demoMethod1();

 //Starting another child stop watch and stopping the previous one.

 profiler.start("Task 2");

 obj.demoMethod2();

 //Stopping the current child watch and the global watch.

 TimeInstrument tm = profiler.stop();

 //Logging the contents of the time instrument

 tm.log();

 }

}

Output

SLF4J

 32

Upon execution, the above program generates the following output.

Sum of squares of the numbers from 1 to 10000: 3.328335E8

Sum of the numbers from 1 to 10000: 49995000

