
TypeORM

 i

TypeORM

 ii

About the Tutorial

TypeORM is an object-relational mapper library for TypeScript and JavaScript. TypeORM

is a tool in the Micro-frameworks category of the tech stack. This tutorial walks through

the basics of TypeORM framework, how to set up entity objects, how to configure

relationship between objects, how to store/retrieve data from/to the database, how to

customize the repository instance to manipulate the given database and finally conclude

with different database operations.

Audience

This tutorial is prepared for professionals who are aspiring to make a career in the field of

back-end database development using object relation mapping. This tutorial is intended

to make you comfortable in getting started with the TypeORM concepts.

Prerequisites

Before proceeding with the various types of concepts given in this tutorial, we assume that

the readers have the basic understanding of database and objects in programming

languages. In addition to this, it will be very helpful, if the readers have a sound knowledge

on TypeScript and JavaScript.

Copyright & Disclaimer

 Copyright 2020 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

TypeORM

 iii

Table of Contents

About the Tutorial ... ii

Audience .. ii

Prerequisites .. ii

Copyright & Disclaimer .. ii

Table of Contents ... iii

1. TypeORM — Introduction ... 1

Overview.. 1

Features of TypeORM .. 1

Benefits of TypeORM ... 1

2. TypeORM — Installation ... 3

Install TypeORM .. 3

Install database driver ... 4

3. TypeORM — Creating a Simple Project ... 6

Project structure .. 6

ormconfig.json file ... 7

4. TypeORM — Connection API ... 9

Creating a new connection .. 9

5. TypeORM — Entity ... 12

Introduction ... 12

Columns ... 14

6. TypeORM — Relations .. 21

One-to-One .. 21

One-to-Many and Many-to-One.. 23

Many-to-Many ... 24

7. TypeORM — Working with Repository ... 26

Repository types .. 26

TypeORM

 iv

Repository API ... 27

8. TypeORM — Working with Entity Manager .. 30

Entity Manager API .. 30

9. TypeORM — Query Builder ... 33

Connection .. 33

Entity manager .. 33

Repository ... 33

Aliases .. 33

Parameters .. 34

Adding expression ... 34

10. TypeORM — Query Operations ... 39

Build insert query .. 39

Build update query .. 40

Build select query .. 41

Build delete query ... 42

11. TypeORM — Transactions ... 44

Creating transactions... 44

Transaction in QueryRunner .. 45

12. TypeORM — Indices .. 46

Column indices .. 46

Unique indices ... 46

Spatial indices .. 47

13. TypeORM — Entity Listener and Logging .. 48

Subscriber .. 48

Logging .. 50

Custom logger ... 51

14. TypeORM with JavaScript ... 52

15. TypeORM — Working with MongoDB ... 56

TypeORM

 v

Creating a project .. 56

Define entities and columns .. 56

MongoDB EntityManager .. 58

16. TypeORM with Express ... 59

Creating a simple application .. 59

17. TypeORM — Migrations .. 65

Creating new migration ... 65

Revert migration .. 68

18. TypeORM — Working with CLI .. 70

Create TypeORM project ... 70

Conclusion ... 71

TypeORM

 1

TypeORM framework is an Object Relational Mapping (ORM) framework. In general,

Object part refers to the domain / model in your application, Relational part refers to

the relationship between tables in Relational Database Management System (e.g. Oracle,

MySQL, MS-SQL, PostgreSQL, etc.) and finally the Mapping part refers to the act of

bridging the model and our tables.

ORM is a type of tool that maps entities with database tables. ORM provides simplified

development process by automating object-to-table and table-to-object conversion. Once

you can write your data model in one place, it becomes easier to update, maintain, and

reuse the code.

Since, the model is weakly bound to the rest of the application, you can change it without

any hard dependency with other part of the application and can be easily use it anywhere

inside the application. TypeORM is very flexible, abstracts the DB system away from the

application and allows us to benefits from the use of OOPS concept.

Overview

TypeORM is an Object Relational Mapper library running in node.js and written in

TypeScript. TypeScript is an improvement to JavaScript with optional typing. TypeScript

is a compiled language. It is not interpreted at run-time. The TypeScript compiler takes

TypeScript files (.ts) and compiles them in to JavaScript files (.js).

TypeORM supports multiple databases like MySQL, PostgreSQL, MariaDB, SQLite, MS SQL

Server, Oracle, SAP Hana and WebSQL. TypeORM is an easy-to-use ORM to scaffold new

apps that connect to databases. TypeORM functionality is RDBMS-specific concepts.

We can quickly create new projects and micro-services. It is inspired from similar tool like

Hibernate, Doctrine, Entity framework, etc., from other programming languages.

Features of TypeORM

TypeORM comes with the following features:

 Automatically create database table schemes based on your models.

 Easily insert, update and delete object in the database.

 Create mapping (one-to-one, one-to-many and many-to-many) between tables.

 Provides simple CLI commands.

Benefits of TypeORM

TypeORM is easy to use ORM framework with simple coding. It has the following benefits:

 High quality and loosely-coupled applications.

 Scalable applications.

 Easily integrate with other modules.

1. TypeORM — Introduction

TypeORM

 2

 Perfectly fits any architecture from small to enterprise apps.

TypeORM

 3

This chapter explains about how to install TypeORM on your machine. Before moving to

installation, please make sure that npm is installed. To confirm that you have npm, you

can run the following command in your terminal.

npm -v

It shows the version. If it is not installed, download the latest version and install on your

machine.

Install TypeORM

Let us install TypeORM locally using npm module:

npm install typeorm --save

After executing the above command, you will get a response as given below:

+ typeorm@0.2.24

+

added 1 package and audited 1236 packages in 4.729s

Alternatively, to install TypeORM globally, use the below command:

npm install typeorm -g

After that, install optional package reflect-metadata using npm:

npm install reflect-metadata --save

You could see the following response:

+ reflect-metadata@0.1.13

added 1 package and audited 1236 packages in 2.426s

Now, install another optional package. node typings using the below command:

npm install @types/node --save

You could see the following response:

+ @types/node@12.12.31

added 1 package and audited 1236 packages in 2.167s

2. TypeORM — Installation

TypeORM

 4

Install database driver

In this section, let us install the necessary node packages for our database.

To install MySQL or MariaDB package, use the below command:

npm install mysql --save

You could see the following response:

+ mysql@2.18.1

added 1 package and audited 1236 packages in 4.36s

To install PostgreSQL package, use the below command:

npm install pg --save

You could see the following response:

+ pg@7.18.2

added 1 package and audited 1236 packages in 2.863s

To install SQLite package, use the below command:

npm install sqlite3 --save

You could see the following response:

+ sqlite3@4.1.1

added 48 packages from 45 contributors and audited 1396 packages in 7.31s

To install Microsoft SQL Server package, use the below command:

npm install mssql --save

Your screen looks similar to this,

+ mssql@6.2.0

added 1 package and audited 1655 packages in 2.378s

To install sql.js package, use the below command:

npm install sql.js --save

You could see the following response:

+ sql.js@1.2.1

added 1 package and audited 1655 packages in 6.462s

TypeORM

 5

To install Oracle server package, use the below command:

npm install oracledb --save

You could see the following response:

+ oracledb@4.2.0

added 1 package and audited 1655 packages in 2.265s

To install mongodb package, use the below command:

npm install mongodb --save

You could see the following response:

+ mongodb@3.5.5

added 1 package and audited 1655 packages in 3.716s

TypeORM

 6

This chapter explains about how to create simple TypeORM application. Let us create a

new directory named ‘TypeORM’ and move into the directory.

cd /path/to/TypeORM/

Syntax

Use below command to create new project:

typeorm init --name <project-name> --database <database-name>

Example

typeorm init --name FirstProject --database mysql

Here,

FirstProject is your project name and sqlite3 is database name. After executing the

above command, you could see the following response,

Project created inside /path/to/TypeORM/FirstProject directory

Now, move in to our project directory and install project dependencies using npm module,

$ cd FirstProject

$ npm install

Project structure

Let us understand project structure of our newly created project, FirstProject.

FirstProject

├──> src

│ ├──> entity

│ │ └──> User.ts

│ ├──> migration

│ └──> index.ts

├──> node_modules

├──> ormconfig.json

├──> package.json

├──> package-lock.json

└──> tsconfig.json

Here,

3. TypeORM — Creating a Simple Project

TypeORM

 7

 src - contains source code of your application in TypeScript language. It has a file

index.ts and two sub directories entity and migration.

 index.ts - Your entry point to the application.

 entity - Contains database models.

 migration - contains database migration code.

 node_modules - locally saved npm modules.

 ormconfig.json - Main configuration file of your application. It contains database

configuration details and entities configuration.

 package.json - Contains node module dependencies.

 package-lock.json - Auto generated file and related to package.json.

 tsconfig.json - Contains TypeScript specific compiler options.

ormconfig.json file

Let us check the configuration option available for our application. Open ormconfig.json

file and it looks similar to this:

{

 "type": "mysql",

 "host": "localhost",

 "port": 3306,

 "username": "test",

 "password": "test",

 "database": "test",

 "synchronize": true,

 "logging": false,

 "entities": [

 "src/entity/**/*.ts"

],

 "migrations": [

 "src/migration/**/*.ts"

],

 "subscribers": [

 "src/subscriber/**/*.ts"

],

 "cli": {

 "entitiesDir": "src/entity",

 "migrationsDir": "src/migration",

 "subscribersDir": "src/subscriber"

 }

}

Here,

type, host, username, password, database and port options are related to database

setting. mysql can be configured using below configuration:

TypeORM

 8

{

 "type": "mysql",

 "host": "localhost",

 "port": 3306,

 "username": "db_username",

 "password": "db_password",

 "database": "db_name"

}

 entities - refers the location of your entity classes.

 migrations - refers the location of your migration classes.

 subscribers - refers the location of your subscriber classes.

 cli - refers the option used by TypeORM CLI to auto generate the code

Start MySql server

Before starting the application, start your MySQL server or any database server used by

you and make sure it is running properly.

Run application

Once everything is configured, we can execute the application using the below command:

npm start

You could see the following response:

> FirstProject@0.0.1 start /Users/../../TypeORM/FirstProject

> ts-node src/index.ts

Inserting a new user into the database...

Saved a new user with id: 1

Loading users from the database...

Loaded users: [User { id: 1, firstName: 'Timber', lastName: 'Saw', age: 25 }]

Here you can setup and run express/koa/any other framework.

The application inserted a new user into the database and then reverse load it from the

database and finally show the loaded user in the console. We have successfully created a

new TypeORM application, configured it and run the application.

We will discuss about how the data is executed elaborately in upcoming chapters.

TypeORM

 9

To interact with database, we need a connection object to the database. We need to create

a connection object before doing the database operation and has to terminate it once thee

database operations are done. Let us learn about Connection API provided by TypeORM

in this section.

Creating a new connection

Before creating a new connection, we need to configure database connection details in the

ormconfig.json configuration file. A sample connection details is shown below:

ormconfig.json

{

 name: "firstconnection",

 type: "mysql",

 host: "localhost",

 port: 3306,

 username: "root",

 password: "root",

 database: "firstDB"

}

Here,

 name - Name of the database connection.

 type - Database type.

 host - Hostname of the database server.

 port - Database server port.

 username - Account name having access to the database.

 password - Password of the above mentioned account.

 database - Name of the database to connect.

createConnection

CreateConnection method is provided by TypeORM to create a new connection. It is

defined as below,

import { createConnection, Connection } from "typeorm";

const connection = await createConnection({

});

Here, createConnection will use the configuration details specified in the

ormconfig.json file.

4. TypeORM — Connection API

TypeORM

 10

Alternatively, you can define the connection URL as arguments to the createConnection

method as specified follows:

const connection = createConnection({

 type: 'mysql',

 url: 'localhost:8888/firstDB'

})

Here,

createConnection returns an object, which can be used to open / close the connection

to the database.

Multiple connections

TypeORM provides an option to create multiple database connection as well. First, the

configuration file ormconfig.json can be used to specify the details of the multiple

database connection. Let us configure multiple databases in ormconfig.json as specified

follows,

ormconfig.json

{ name: "firstconnection",

 type: "mysql",

 host: "localhost",

 port: 3306,

 username: "root",

 password: "root",

 database: "firstDB"

},

{ name: "secondconnection",

 type: "mysql",

 host: "localhost",

 port: 3306,

 username: "root",

 password: "root",

 database: "secondDB"

},

{ name: "thirdconnection",

 type: "mysql",

 host: "localhost",

 port: 3306,

 username: "root",

 password: "root",

 database: "thirdDB"

}

Now, we can use the argument provided by the createConnection method to specify the

name of the connection to create connection object as mentioned below:

const firstconnection: Connection = await createConnection("firstconnection");

Here,

TypeORM

 11

createConnection will use the configuration details of the firstconnection specified in

the ormconfig.json file to create the connection object.

TypeORM also provides yet another API, createConnections to create multiple

connection as once and then, use it whenever necessary as specified below:

import { createConnections, Connection } from "typeorm";

const connections: Connection[] = await createConnections([

]);

Here,

connections hold all the connection objects as an array.

ConnectionManager

TypeORM also provides an another API, connectionManager to create connection. It is

defined below:

import {getConnectionManager, ConnectionManager, Connection} from "typeorm";

const connectionManager = getConnectionManager();

const connection = connectionManager.create({

});

await connection.connect();

TypeORM prefers the usage of createConnection over ConnectionManager to create

connection objects.

TypeORM

 12

An entity is a collection of fields and associated database operations. It is used to map

database table and its fields with the entities and its attributes. This chapter explains about

the TypeORM entities in detail.

Introduction

Let us create a simple Entity class in our code. Move to your project root location and go

inside src folder and move to entity folder. Now, create a TypeScript file, Student.ts and

enter below code:

Student.ts

import {Entity, PrimaryGeneratedColumn, Column} from "typeorm";

@Entity()

export class Student {

 @PrimaryGeneratedColumn()

 id: number;

 @Column()

 Name: string;

 @Column()

 age: number;

}

Here,

 Entity() decorator class is used to represent that the Student class is an entity.

 PrimaryGeneratedColumn() decorator class is used to represent that the id

column is the primary key column of the Student entity.

 Column() decorator class is used to represent other columns such as Name and

Age of the Student entity.

Now, Entity class Student is created. TypeORM will auto generate a table corresponding

to the Student entity in our database and it will be named as student. Now, move to

src/index.ts file and add the following code:

index.ts

import "reflect-metadata";

import {createConnection} from "typeorm";

5. TypeORM — Entity

TypeORM

 13

import {Student} from "./entity/Student"; //import Student entity

createConnection().then(async connection => {

 console.log("Inserting a new record into the student database...");

 //create student object

 const stud = new Student();

 //Assign student name and age here

 stud.Name = "student1";

 stud.age = 12;

 //save student object in connection

 await connection.manager.save(stud);

 console.log("Saved a new user with id: " + stud.id);

 console.log("Loading users from the database...");

 //Display student saved records

 const students = await connection.manager.find(Student);

 console.log("Loaded users: ", students);

 console.log("Here you can setup and run express/koa/any other framework.");

}).catch(error => console.log(error));

Here,

 Line 1 - 3 imports the relevant classes, createConnection and Student

 Line 5 creates a new connection to the database using createConnection and if

connection is established, it executes the code inside the then block.

 Line 10 create new Student object, stud.

 Line 13-14 set the attributes of our newly created stud object.

 Line 17 saves the entity to the database using save method available in

connection.manager object.

 Line 23 fetches the student details from the database using find method available

in connection.manager object.

Start Mysql server and run your application

We have created Student entity and create connection in index.ts. Let us start both MySql

server and your application.

npm start

This will return the following output on your screen:

TypeORM

 14

Result

Open mysql server following student table is added inside your database.

Columns

As learned earlier, Entity is actually a collection of attributes. As entity object refers the

database table. Its attributes / member variables refer the corresponding database table’s

fields / columns. TypeORM supports all type of database fields through Column class. Let

us learn the different type of column supported by TypeORM in this chapter.

@Column() decorator class is used to represent the column and its type in the entity.

For example, age attribute of the student entity and the type of the age attribute can be

defined as below:

@Column("int")

age: integer;

// OR

@Column({ type: "int" })

age: integer;

Here,

 age is the attribute of the entity. In other word, age is a field / column in the

student table in the database.

 int represent the type of the age column in the database.

TypeORM supports nearly all the types available in the popular database engine. Actually,

TypeORM enables different set of types for each database engine. We can use any

database type supported by our database engine without any issue.

For example, the type supported by TypeORM for postgresql database engine is as follows:

int, int2, int4, int8, smallint, integer, bigint, decimal, numeric,

real, float, float4, float8, double precision, money, character varying,

TypeORM

 15

varchar, character, char, text, citext, hstore, bytea, bit, varbit, bit

varying, timetz, timestamptz, timestamp, timestamp without time zone, timestamp

with time zone, date, time, time without time zone, time with time zone,

interval, bool, boolean, enum, point, line, lseg, box, path, polygon, circle,

cidr, inet, macaddr, tsvector, tsquery, uuid, xml, json, jsonb, int4range,

int8range, numrange, tsrange, tstzrange, daterange, geometry, geography, cube

Similarly, TypeORM supports a different set of datatype for MySQL.

Column Options

TypeORM provides an extensive set of options other than type to describe the column.

For example, length option refers the length of the database field and it can be specified

as below:

@Column("varchar", { length: 100 })

Some of the most common column options are as follows:

 name - Name of the database field / column.

 length - Length of the database field / column.

 nullable - Specify whether the database field / column allows null or not.

 default - Default value of the database field / column.

 primary - Specify whether the database field / column is primary key of the table.

 unique - Specify whether the database field / column is unique

 *precision** - Precision of the database field / column

 scale - Scale of the database field / column

 comment - Comment or description of the database field / column

@Generated decorator

TypeORM provides additional decorator, @Generated to auto generate the column values.

For example, Universally Unique Identifier (UUID) is quite common to use in database to

store unique value in a column. The sample code to generate UUID is as follows:

@Entity()

export class Student {

 @PrimaryColumn()

 id: number;

 @Column()

 @Generated("uuid")

 uuid: string;

}

Here,

TypeORM

 16

uuid is generated automatically and stored inside the database.

Primary columns

At least one primary column field is mandatory for any entity in database. It is classified

into different types of decorators. We will discuss it one by one.

@PrimaryColumn()

@PrimaryColumn() decorator is used to create primary column for any type of data. Simple

example is shown below,

import {Entity, PrimaryColumn} from "typeorm";

@Entity()

export class Student {

 @PrimaryColumn()

 id: number;

}

Here,

id is an integer, which doesn’t accept duplicate values, but we need to assign values.

We can assign primary column for one or more fields as well, if the situation demands.

Example:

import {Entity, PrimaryColumn} from "typeorm";

@Entity()

export class Student {

 @PrimaryColumn()

 id: number;

 @PrimaryColumn()

 email: string;

 @PrimaryColumn()

 phone: number;

}

@PrimaryGeneratedColumn()

@PrimaryGeneratedColumn() field is used to specify the primary column as well as to

auto generate the column value in the database. It is shown below:

import {Entity, PrimaryGeneratedColumn} from "typeorm";

@Entity()

export class Student {

TypeORM

 17

 @PrimaryGeneratedColumn()

 id: number;

}

Here,

You don’t have to assign id value; it will be generated automatically by the TypeORM in

the database table.

@PrimaryGeneratedColumn(“uuid”)

@PrimaryGeneratedColumn also accepts an argument to specify the type of generator.

One of the main use is to generate unique id based on UUID.

import {Entity, PrimaryGeneratedColumn} from "typeorm";

@Entity()

export class Student {

 @PrimaryGeneratedColumn("uuid")

 id: string;

}

simple-array column type

Advanced relational database supports array datatype. To support the array datatype,

TypeORM provides a special column type, *simple-array" to store primitive array values.

A sample code to use it is as follows:

@Entity()

export class Student {

 @PrimaryGeneratedColumn()

 id: number;

 @Column("simple-array")

 names: string[];

}

simple-json column type

Lot of modern database engine supports JSON database. To use JSON datatype, TypeORM

provides a special type, single-json. The sample code to use it is as follows:

@Entity()

export class Student {

 @PrimaryGeneratedColumn()

 id: number;

 @Column("simple-json")

TypeORM

 18

 info: { firstName: string, middleName: string, lastName: string };

}

This value can be defined in index.ts as,

index.ts

const stud = new Student();

stud.info = { firstName: "John", middleName: "peter", lastName: "Michael" };

Special columns

TypeORM supports the following special columns

 @CreateDateColumn - It is a special column to set entity’s insertion date

automatically.

 @UpdateDateColumn - It is used to set the entity’s update time automatically.

 @VersionColumn - Set version number for entity automatically.

Entity Inheritance

Entity inheritance is use to reduce duplication of entities. Consider the below entities:

Result.ts

@Entity()

export class Result {

 @PrimaryGeneratedColumn()

 id: number;

 @Column()

 title: string;

 @Column()

 description: string;

 @Column()

 eligible: string

}

Grade.ts

The code for grade.ts is as follows:

@Entity()

export class Grade {

TypeORM

 19

 @PrimaryGeneratedColumn()

 id: number;

 @Column()

 name: string;

 @Column()

 title: string;

 @Column()

 description: string;

 @Column()

 grading : string;

}

Here,

The above two entities have columns id, title and description. Using entity inheritance,

we create one base class Details and combine the above two entities as specified below.

Details.ts

export abstract class Details {

 @PrimaryGeneratedColumn()

 id: number;

 @Column()

 title: string;

 @Column()

 description: string;

}

@Entity()

export class Result extends Details {

 @Column()

 eligible: string

}

@Entity()

export class Grade extends Details {

 @Column()

 name : string;

 @Column()

 grading : string;

}

TypeORM

 20

Now start your server, you could see the below response,

Now open your mysql server and move to your database, you could see the following

tables,

Grade table

Result table

TypeORM

 21

Relations are used to refer the relationship between table in database. In general, a

relationship exists between two tables when one of them has a foreign key that references

the primary key of the other table. This feature makes relational database more powerful

and efficiently store information.

TypeORM allows the entities to be related to each other and subsequently database tables.

In general, relationship can be classified into four broader categories. They are as follows,

one-to-one: One object of the given entity relates to only one object of the target entity

and vice versa. For example, a country will have only one capital city and similarly a city

will be capital of only one country.

many-to-one: Multiple object of the given entity relates to one object of the target entity.

For example, city comes under only one country but country can have multiple cities.

one-to-many: Same as many-to-one except the relationship is reversed.

many-to-many: Multiple object of the given entity relates to multiple object of the target

entity. For example, an article may be tagged under multiple topic like programming

language, finance, etc., and at the same time a particular tag may have multiple articles

as well.

TypeORM also provides options to enhance the relationship of the entities. They are as

follows:

 eager - Source entity object loads the target entity objects as well.

 cascade - Target entity object gets inserted or updated while the source entity

object is inserted or updated.

 onDelete - Target entity objects get deleted as well while the source entity object

is deleted.

 primary - Used to specify that the relation column is primary key or not.

 nullable - Used to specify that the relation column is nullable or not.

Let us go through different types of relation mapping in detail.

One-to-One

As we learned earlier, it is referred by the instance of one table field contains the instance

of another table field and vice versa. Let us create a Details table:

Details.ts

import {Entity, PrimaryGeneratedColumn, Column} from "typeorm";

6. TypeORM — Relations

TypeORM

 22

@Entity()

export class Details {

 @PrimaryGeneratedColumn()

 id: number;

 @Column()

 gender: string;

 @Column()

 country: string;

}

Let’s create an another entity Customer as follows:

Customer.ts

import {Entity, PrimaryGeneratedColumn, Column, OneToOne, JoinColumn} from

"typeorm";

import {Details} from "./Details";

@Entity()

export class Customer {

 @PrimaryGeneratedColumn()

 id: number;

 @Column()

 name: string;

 @OneToOne(type => Details)

 @JoinColumn()

 details: Details;

}

Here,

We have added mapping OneToOne to Details table. @JoinColumn() contain a “relation

id” and foreign key to Customer table. We can save the relation in index.ts as follows:

const details = new Details();

details.gender = "female";

details.country = "india"

await connection.manager.save(details);

const customer = new Customer();

customer.name = 'customer1';

customer.details = Details;

await connection.manager.save(Customer);

TypeORM

 23

One-to-Many and Many-to-One

As we learned earlier, it is referred by the instance of first table field contains the multiple

instances of second table field called One-to-Many mapping and multiple instances of

first table contains only one instance of second table called Many-to-One mapping.

Consider an example of Student and project entities whereas, student can work on more

than one project but each project is handled by only one student.

Let’s create a Project entity as follows:

Project

import {Entity, PrimaryGeneratedColumn, Column, ManyToOne} from "typeorm";

import {Student} from "./Student";

@Entity()

export class Project {

 @PrimaryGeneratedColumn()

 id: number;

 @Column()

 projects: string;

 @ManyToOne(type => Student, student => student.projects)

 student: Student;

}

Now, we create Student entity as below:

import {Entity, PrimaryGeneratedColumn, Column, OneToMany} from "typeorm";

import {Project} from "./Project";

@Entity()

export class User {

 @PrimaryGeneratedColumn()

 id: number;

 @Column()

 name: string;

 @OneToMany(type => Project, project => project.student)

 projects: Project[];

}

Here,

@OneToMany property mapped Project and @ManyToOne property mapped to

Student. However, @OneToMany cannot exist without @ManyToOne and

@ManyToOne property contain “relation id” and foreign key.

We can save the connection in index.ts as follows:

TypeORM

 24

const proj1 = new Project();

proj1.projects = "database management";

await connection.manager.save(proj1);

const proj2 = new Project();

proj2.projects = "web application";

await connection.manager.save(proj2);

const stud = new Student();

stud.name = "Student1";

stud.projects = [proj1, proj2];

await connection.manager.save(stud);

Many-to-Many

As we learned earlier, it is referred by multiple records in one table are related to multiple

records in another table. Consider an example, University student can be enrolled in

multiple classes at a time which means student may have four or five classes per semester

and a class can have many students.

We can simply conclude, a student has many classes, and a class has many students. Let’s

create an entity for Classes as follows:

import {Entity, PrimaryGeneratedColumn, Column} from "typeorm";

@Entity()

export class Classes {

 @PrimaryGeneratedColumn()

 id: number;

 @Column()

 name: string;

}

Now, we create Student entity as below:

import {Entity, PrimaryGeneratedColumn, Column, ManyToMany, JoinTable} from

"typeorm";

import {Classes} from "./Classes";

@Entity()

export class Student {

 @PrimaryGeneratedColumn()

 id: number;

 @Column()

 name: string;

TypeORM

 25

 @Column()

 subjects: string;

 @ManyToMany(type => Classes)

 @JoinTable()

 classes: Classes[];

}

TypeORM

 26

Repository is specific to an entity. In other words, each entity will have its own, build-in

repository and it can be accessed using getRepository() method of connection object as

specified below:

const studRepository = manager.getRepository(Student);

Once the student repository object is created, it can be used to do all database operation

of student object.

Repository types

Repository is classified into four categories. They are as follows:

Repository

Default repository of an entity and it can be accessed using getRepository() method as

specified below:

const studRepository = manager.getRepository(Student);

Now, studRepository can be used to query student table

TreeRepository

Used for tree like structure entities and it can be accessed using getTreeRepository()

method as specified below:

const studcaRepository = manager.getTreeRepository(Student);

MongoRepository

Used inside mongoDB operation entities and it can be accessed using

getMongoRepository() method as specified below:

const detailsRepository = manager.getMongoRepository(Details);

CustomRepository

Used to customize the repository and it can be accessed using getCustomRepository()

method as specified below,

const myUserRepository = manager.getCustomRepository(UserRepository);

7. TypeORM — Working with Repository

TypeORM

 27

Repository API

Let us learn most important method of the EntityManager in this chapter.

manager

We can access EntityManager using manager method as specified below:

const manager = repository.manager;

queryRunner

queryRunner method returns custom query runner object and it is used for database

operations by repository. The sample code is as follows:

const queryRunner = repository.queryRunner;

metadata

metadata returns repository’s metadata. The sample code is as follows:

const metadata = repository.metadata;

query

query method executes SQL queries. Simple select query as shown below:

const qur = await repository.query(`select * from students`);

insert

insert method is used to insert a new entity or array of entities to the database. The

sample code is as follows:

await repository.insert({

 Name: "Student3",

 Age: 14

});

The above query is equivalent to,

insert into student(Name,age) values("Student3",14)

update

update is used to update the existing records in the database.

await repository.update(1, { Name: "Adam" });

This query works similar to the one mentioned below:

TypeORM

 28

update student SET Name = "Adam" where id = 1

delete

delete method will delete the specified record from the table,

await repository.delete(Student, 1);

This will delete student with id 1 from the student table. It is equivalent to,

delete from student where id=1;

If you want to delete by name then use the below query,

await repository.delete({ Name: "Student1" });

This query will delete all the student having name, Student1

** softDelete and restore **

It is used to soft delete the data and you can restore the record based on the id of the

student. The sample code is as follows:

await repository.softDelete(1);

You can restore the student record using below command:

await repository.restore(1);

An alternative option to delete and restore is to use softRemove and recover methods.

The sample code is as follows:

//find the entities

const enty = await repository.find();

//soft removed entity

const entySoftRemove = await repository.softRemove(enty);

And, you can recover them using recover method as specified below,

await repository.recover(entySoftRemove);

save

save is used to save the given entity into the database. Simple Student entity can be save

as shown below:

import {Student} from "./entity/Student";

createConnection().then(async connection => {

 console.log("Inserting a new record into the student database...");

 const stud = new Student();

TypeORM

 29

 stud.Name = "student1";

 stud.age = 12;

 await repository.save(stud);

This will add new student record into the database.

remove

remove is used to delete the given entity from the database. Simple Student entity can

be deleted as shown below:

await repository.remove(stud);

count

count method will return the number of records available in the table and you can use it

pagination purposes. The sample code is as follows:

const cnt = await repository.count(Student, { age: 12 });

find

find method is used for searching purposes. It fetches all the record from database as

shown below:

const result = await repository.find({ id: 1 });

findOne

Similar to find method, but returns the first matched record. The sample code is as

follows:

const result = await repository.findOne({ id: 1 });

clear

clear method clears all the data from the table. The sample code is as follows:

await repository.clear();

TypeORM

 30

EntityManager is similar to Repository and used to manage database operations such

as insert, update, delete and load data. While Repository handles single entity,

EntityManager is common to all entities and able to do operations on all entities.

Entity Manager API

We can access EntityManager using getManager() method as specified below:

import { getManager } from "typeorm";

const entityManager = getManager();

Let us learn most important method of the EntityManager in this chapter.

connection

connection method returns database ORM connection to specific databases. The sample

code is as follows:

const connection = manager.connection;

QueryRunner

queryRunner method returns custom query runner object and it is used for database

operations by entity manager. The sample code is as follows:

const queryRunner = manager.queryRunner;

transaction

If multiple database requests are called, transaction will execute in a single database

transaction. The sample code to get the transaction is as follows:

await manager.transaction(async manager => {

});

query

query method executes sql queries. Simple insert query as shown below:

const qur = await manager.query(`insert into student(name,age)

values('stud2',13)`);

insert

8. TypeORM — Working with Entity Manager

TypeORM

 31

insert method is used to insert a new entity or array of entities to the database. The

sample code is as follows:

await manager.insert(Student, {

 Name: "Student3",

 Age: 14

});

update

update is used to update the existing records in the database.

await manager.update(User, 1, { Name: "Adam" });

This query works similar to the below SQL query,

UPDATE student SET Name = "Adam" WHERE id = 1

delete

delete method will delete the specified record from the table,

await manager.delete(Student, 1);

This will delete with id 1 of student record.

save

save is used to save the given entity into the database. Simple Student entity can be

save as shown below:

import {Student} from "./entity/Student";

createConnection().then(async connection => {

 console.log("Inserting a new record into the student database...");

 const stud = new Student();

 stud.Name = "student1";

 stud.age = 12;

 await connection.manager.save(stud);

}

This will add new student record into the database. save method will insert the student,

if the given student does not exist in the database. Otherwise, save will update existing

student record in the database.

remove

remove is used to delete the given entity from the database. Simple Student entity can

be deleted as shown below:

await manager.remove(stud);

TypeORM

 32

count

count method will return the number of records available in the table and you can use it

pagination purposes. The sample code is as follows:

const cnt = await manager.count(Student, { age: 12 });

find

find method is used for searching purposes. It fetches all the record from database as

shown below:

console.log("Loading users from the database...");

const students = await connection.manager.find(Student);

console.log("Loaded users: ", students);

findOne

Similar to find method, but returns the first matched record. The sample code is as

follows:

const stud = await manager.findOne(Student, 1);

clear

clear method clears all the data from the table. The sample code is as follows:

await manager.clear(Student);

TypeORM

 33

Query builder is used build complex SQL queries in an easy way. It is initialized from

Connection method and QueryRunner objects.

We can create QueryBuilder in three ways.

Connection

Consider a simple example of how to use QueryBuilder using connection method.

import {getConnection} from "typeorm";

const user = await getConnection()

 .createQueryBuilder()

 .select("user")

 .from(User, "user")

 .where("user.id = :id", { id: 1 })

 .getOne();

Entity manager

Let’s create a query builder using entity manager as follows:

import {getManager} from "typeorm";

const user = await getManager()

 .createQueryBuilder(User, "user")

 .where("user.id = :id", { id: 1 })

 .getOne();

Repository

We can use repository to create query builder. It is described below,

import {getRepository} from "typeorm";

const user = await getRepository(User)

 .createQueryBuilder("user")

 .where("user.id = :id", { id: 1 })

 .getOne();

Aliases

Aliases are same as SQL alias. We create alias for Student table using QueryBuilder as

described below:

9. TypeORM — Query Builder

TypeORM

 34

import {getConnection} from "typeorm";

const user = await getConnection()

 .createQueryBuilder()

 .select("stud")

 .from(Student, "stud")

This query is equivalent to,

select * from students as stud

Parameters

Parameters are used as placeholders for the dynamic values in the query. In many cases,

the query to find different entity object will be same except values. For example, the query

to find different student is same except the Student ID data. In this case, we can use

parameter for Student ID and then change the parameter to get the different student

objects.

Another important use of parameter is to prevent SQL injection. It is one of the important

security breach in the modern web application. By using parameter in the query, we can

survive the SQL injection attacks.

For example,

"student.id = :id", { id: 1 }

Here,

 :id - parameter name.

 { id: 1 } - value of the parameter

Adding expression

This section explains about how to use expressions.

where

where is used to filter the records if the condition is matched.

createQueryBuilder("student")

 .where("student.id = :id", { id: 1 })

This query is equivalent to,

select * from students student where student.id=1;

We can also use AND, OR, NOT, IN conditions inside.

having

Simple having expression is defined below:

TypeORM

 35

createQueryBuilder("student")

 .having("student.id = :id", { id: 1 })

This query is equivalent to,

select * from students student having student.id=1;

orderBy

orderby is used to sort the records based on the field.

createQueryBuilder("student")

 .orderBy("student.name")

This query is equivalent to,

select * from students student order by student.name;

groupBy

It is used to group the records based on the specified column.

createQueryBuilder("student")

 .groupBy("student.id")

This query is equivalent to,

select * from students student group by student.id;

limit

It is used to limit the selection of rows. Below, example shows how to use limit in query

builder,

createQueryBuilder("student")

 .limit(5)

This query is equivalent to,

select * from students student limit 5;

offset

Offset is used to specify, how many rows to skip the result. It is defined below:

createQueryBuilder("student")

 .offset(5)

This query is equivalent to,

TypeORM

 36

select * from students student offset 5;

joins

join clause is used to combine rows from two or more tables, based on a related column.

Consider the two entities:

Student.ts

import {Entity, PrimaryGeneratedColumn, Column, OneToMany} from "typeorm";

import {Project} from "./Project";

@Entity()

export class User {

 @PrimaryGeneratedColumn()

 id: number;

 @Column()

 name: string;

 @OneToMany(type => Project, project => project.student)

 projects: project[];

}

Project.ts

import {Entity, PrimaryGeneratedColumn, Column, ManyToOne} from "typeorm";

import {Student} from "./Student";

@Entity()

export class Project {

 @PrimaryGeneratedColumn()

 id: number;

 @Column()

 title: string;

 @ManyToOne(type => Student, student => student.projects)

 student: Student;

}

Let us perform simple left join using the below query:

const student = await createQueryBuilder("student")

 .leftJoinAndSelect("student.projects", "project")

 .where("student.name = :name", { name: "Student1" })

 .getOne();

This query is equivalent to,

TypeORM

 37

SELECT student.*, project.* FROM students student

 LEFT JOIN projects project ON project.student = student.id

 WHERE student.name = 'Student1'

Similarly, we can try inner join as well.

Join without selection

We can join data without using select. Let us try this example using Inner join as follows:

const student = await createQueryBuilder("student")

 .innerJoin("student.projects", "project")

 .where("student.name = :name", { name: "student1" })

 .getOne();

The above query is equivalent to:

SELECT student.* FROM students student

 INNER JOIN projects project ON project.student = student.id

 WHERE student.name = 'Student1';

Pagination

If you have more data in your application, you need pagination, page slider or scrolling

functionalities.

For example, if you want to show first five students projects in your application,

const students = await getRepository(Student)

 .createQueryBuilder("student")

 .leftJoinAndSelect("student.projects", "project")

 .take(5)

 .getMany();

If you want to skip five students’ projects in your application,

const students = await getRepository(Student)

 .createQueryBuilder("student")

 .leftJoinAndSelect("student.projects", "project")

 .skip(5)

 .getMany();

subqueries

It is called query within another query or nested query. We use subqueries in FROM,

WHERE and JOIN expressions.

Simple example is shown below:

const projects = await connection

 .createQueryBuilder()

 .select("project.id", "id")

TypeORM

 38

 .addSelect(subQuery => {

 return subQuery

 .select("student.name", "name")

 .from(Student, "student")

 .limit(1);

 }, "name")

 .from(Project, "project")

 .getMany();

Hidden field

If any of your column field is marked as {select: false} then that column is considered as

hidden column. Consider the below entity:

import {Entity, PrimaryGeneratedColumn, Column} from "typeorm";

@Entity()

export class Student {

 @PrimaryGeneratedColumn()

 id: number;

 @Column()

 name: string;

 @Column({select: false})

 address: string;

}

Here,

address field is marked as hidden. We can use addSelect method to retrieve the

information from the column. It is defined below,

const student = await connection.getRepository(Student)

 .createQueryBuilder()

 .select("student.id", "student")

 .addSelect("student.address")

 .getMany();

getSql()

This method is used to get the generated SQL query by query builder. It is defined below:

const sql = createQueryBuilder("student")

 .where("student.name = :name", { name: "Student1" })

 .orWhere("student.age = :age", { age: 14 })

 .getSql();

TypeORM

 39

Data manipulation is used to manage and view data. This section explains about how to

access database queries like insert, update, select and delete queries using QueryBuilder.

Let’s go through one by one in detail.

Build insert query

Let us create a Customer entity as follows:

Customer.ts

import {Entity, PrimaryGeneratedColumn, Column} from "typeorm";

@Entity()

export class Customer {

 @PrimaryGeneratedColumn()

 id: number;

 @Column()

 name: string;

 @Column()

 age: number;

}

Let’s add the following changes in index.ts as follows:

index.ts

import "reflect-metadata";

import {createConnection} from "typeorm";

import {Customer} from "./entity/Customer";

import {getConnection} from "typeorm";

createConnection().then(async connection => {

 await getConnection().createQueryBuilder()

 .insert()

 .into(Customer)

 .values([

 { name: "Adam",age:11},

 { name: "David",age:12}

])

 .execute();

}).catch(error => console.log(error));

Now, start your application using the below command:

10. TypeORM — Query Operations

TypeORM

 40

npm start

Result

You could see the following output on your screen:

Now open your mysql server, table inserted with two fields as shown below:

Build update query

Last section, we have inserted two rows of data. Let’s check how update query works. Add

the following changes in index.ts as follows:

import "reflect-metadata";

import {createConnection} from "typeorm";

import {Customer} from "./entity/Customer";

import {getConnection} from "typeorm";

createConnection().then(async connection => {

await getConnection()

 .createQueryBuilder()

 .update(Customer)

 .set({ name: "Michael" })

 .where("id = :id", { id: 1 })

 .execute();

 console.log("data updated");

}).catch(error => console.log(error));

Now, start your application using the below command:

npm start

TypeORM

 41

You could see the following output on your screen:

Mysql table is modified as shown below:

Build select query

select query is used to display the records from the table. Let’s add the following code in

index.ts as follows:

index.ts

import "reflect-metadata";

import {createConnection} from "typeorm";

import {Customer} from "./entity/Customer";

createConnection().then(async connection => {

 console.log("Display records from Customer table...");

 const cus = new Customer();

 console.log("Loading customers from the database...");

 const customers = await connection.manager.find(Customer);

 console.log("Loaded users: ", customers);

}).catch(error => console.log(error));

You could see the following output on your screen:

TypeORM

 42

where expression

Let us add where expression in the query to filter the customers. The sample code is as

follows:

import "reflect-metadata";

import {createConnection} from "typeorm";

import {Customer} from "./entity/Customer";

import {getConnection} from "typeorm";

createConnection().then(async connection => {

 const customer = await getConnection()

 .createQueryBuilder()

 .select("cus")

 .from(Customer, "cus")

 .where("cus.id = :id", { id: 1 })

 .getOne();

 console.log(customer);

}).catch(error => console.log(error));

The above program will return first id records. You could see the following output on your

screen,

Similarly, you can try other expressions as well.

Build delete query

Last section, we have inserted, updated and select data. Let’s check how delete query

works. Add the following changes in index.ts as follows:

import "reflect-metadata";

import {createConnection} from "typeorm";

import {Customer} from "./entity/Customer";

import {getConnection} from "typeorm";

createConnection().then(async connection => {

 await getConnection()

 .createQueryBuilder()

 .delete()

 .from(Customer)

 .where("id = :id", { id: 1 })

 .execute();

TypeORM

 43

 console.log("data deleted");

}).catch(error => console.log(error));

You could see the following output on your screen:

And your mysql table is modified as follows:

TypeORM

 44

Generally, transaction is a logic unit responsible for execution of data retrieval and

updates. This section explains about Transactions in detail.

Creating transactions

We can create a transaction using either connection or EntityManage. Below example

is used to specify create connection and save data inside it.

import {getConnection} from "typeorm";

await getConnection().transaction(async transactionalEntityManager => {

await connection.manager.save(students);

});

EntityManager is shown below:

import {getManager} from "typeorm";

await getManager().transaction(async transactionalEntityManager => {

 await transactionalEntityManager.save(students);

});

Decorators

We have three types of transaction related decorators in TypeORM.

 @Transaction - Wraps all the execution in single database transcation.

 @TransactionManager - Used to execute queries inside transaction. It is defined

below,

@Transaction({ isolation: "SERIALIZABLE" })

save(@TransactionManager() manager: EntityManager, student: Student) {

 return manager.save(student);

}

Here,

We used SERIALIZABLE isolation level for transaction.

 @TransactionRepository - Used to inject transaction in repository. It is defined

below,

11. TypeORM — Transactions

TypeORM

 45

@Transaction()

save(student: Student, @TransactionRepository(Student) studentRepository:

Repository<Student>) {

 return studentRepository.save(student);

}

Transaction in QueryRunner

QueryRunner is used to execute all database queries. It has single database connection.

Database transaction can be organized using QueryRunner. Let’s perform single

transaction using QueryRunner.

import {getConnection} from "typeorm";

// get a connection and create a new query runner

const connection = getConnection();

const queryRunner = connection.createQueryRunner();

// establish real database connection using our new query runner

await queryRunner.connect();

// now we can execute any queries on a query runner, for example:

await queryRunner.query("SELECT * FROM students");

Now, start transaction using the below statement:

await queryRunner.startTransaction();

Then, commit and rollback the transaction using the below statement,

try {

 await queryRunner.commitTransaction();

}

If there is any error, it is handled by catch(),

catch (err) {

 // since we have errors lets rollback changes we made

 await queryRunner.rollbackTransaction();

}

Now, release the queryRunner as below:

finally {

 // you need to release query runner which is manually created:

 await queryRunner.release();

}

TypeORM

 46

In general, Indexing is a process to optimize the performance of a database by optimizing

the data storage. It is used to quickly locate and access the data in a database. This section

explains about how to use index in TypeORM. Indices are classified into different types.

Let’s go through one by one in detail.

Column indices

We can create index for particular column using @Index. Consider an example of

Customer entity as shown below and index defined for firstName column,

import {Entity, PrimaryGeneratedColumn, Column} from "typeorm";

@Entity()

export class Student {

 @PrimaryGeneratedColumn()

 id: number;

 @Index()

 @Column()

 firstName: string;

 @Column()

 lastName: string;

 @Column()

 age: number;

 @Column()

 address: string;

}

@Index allow to specify name for an index as well:

@Index("Name-idx")

@Column()

firstName: string;

Unique indices

To specify Unique constraints in your column, use the below property:

{ unique: true }

For example, below is the code to specify unique index for Name column:

12. TypeORM — Indices

TypeORM

 47

@Index({ unique: true })

@Column()

firstName: string;

To apply indices for more than one columns, we can directly specify it after @Entity().

The sample code is as follows:

@Entity()

@Index(["firstName", "lastName"])

@Index(["firstName", "lastName"], { unique: true })

Spatial indices

Spatial index allows to access spatial objects. MySQL and PostgreSQL supports spacial

indices. To enable spatial indices in your column, add the following property:

{ spatial: true }

Spatial type has multiple sub types such as, geometry, point, line string, polygon etc., For

example, if you want to add point spatial type in your column, use below code:

@Column("point")

@Index({ spatial: true })

point: string;

Disable synchronization

To disable synchronization, use the below option on @Index decorator:

{ synchronize: false }

TypeORM

 48

Entity listener is used in entities which supports custom method and listen specific events.

We can define any entity custom method using decorators. Let’s understand decorators in

brief.

 @AfterLoad: When the entity is loaded using QueryBuilder or repository/manager,

this method will be called.

 @BeforeInsert: This method will call before the entity is inserted using

repository/manager.

 @AfterInsert: This method will call after the entity is inserted using

repository/manager.

 @BeforeUpdate: This method will call it before an existing entity is updated using

repository/manager.

 @AfterUpdate: It will call after an entity is updated.

 @BeforeRemove: It will call before an entity is removed.

 @AfterRemove: It will call after an entity is removed.

Subscriber

Subscriber is used to listen specific entity events. It is implemented from

EntitySubscriberInterface. Let’s understand a simple example for how to use entity

listener in subscriber. Consider the Student entity is shown below:

Student.ts

import {Entity, PrimaryGeneratedColumn, Column} from "typeorm";

@Entity()

export class Student {

 @PrimaryGeneratedColumn()

 id: number;

 @Column()

 Name: string;

 @Column()

 age: number;

}

Create student subscriber

Subscriber is created using the below command:

13. TypeORM — Entity Listener and Logging

TypeORM

 49

typeorm subscriber:create -n StudentSubscriber

The above command creates a subscriber directory inside your project src. Then,

StudentSubscriber.ts file is created inside your subscriber. You could see the following

response,

Subscriber

/Users/workspace/TypeORM/FirstProject/src/subscriber/StudentSubscriber.ts has

been created successfully.

Now move to file, you could see the below coding:

StudentSubscriber.ts

import {EventSubscriber, EntitySubscriberInterface} from "typeorm";

@EventSubscriber()

export class StudentSubscriber implements EntitySubscriberInterface<any> {

}

Now, add the following changes in the file,

import {EventSubscriber, EntitySubscriberInterface,InsertEvent} from "typeorm";

import {Student} from "../entity/Student";

@EventSubscriber()

export class StudentSubscriber implements EntitySubscriberInterface<any> {

 listenTo()

 {

 return Student;

 }

 afterInsert(event: InsertEvent<Student>) {

 console.log(event);

 }

}

Here,

We have used afterInsert() method to call the entity event. Similarly, you can use other

events as well. We have already configured ormconfig.json file. Now, add the below

changes in index.ts file as follows:

index.ts

import "reflect-metadata";

import {createConnection} from "typeorm";

import {Student} from "./entity/Student";

createConnection().then(async connection => {

TypeORM

 50

 console.log('connection established');

}).catch(error => console.log(error));

After executing the application, you could see the below output on your screen,

Logging

Database logging is an important part of your highly available database solution design

because database logs make it possible to recover from a failure, and they make it possible

to synchronize primary and secondary databases.

All databases have logs associated with them. These logs keep records of database

changes. If a database needs to be restored to a point beyond the last full, off-line backup,

logs are required to roll the data forward to the point of failure.

Logging options

Logging is enabled by adding {logging: true} in database connection. Logging options are

classified into different types. They are as follows:

query - return all log queries. It is defined as given below:

{

 host: "localhost",

 ...

 logging: ["query"]

}

error - return logs for all failed queries and errors. It is defined below:

{

 host: "localhost",

 ...

 logging: ["error"]

}

schema - return logs for the schema.

warn - return internal ORM warnings.

info - return logs internal ORM informative messages.

log - return internal ORM log messages.

TypeORM

 51

Custom logger

Custom logging is simple and highly customizable logging option. We can create our own

logger class using the below code:

import {Logger} from "typeorm";

export class MyCustomLogger implements Logger {

 // implement all methods from logger class

}

Connection option is specified in ormconfig.json as follows:

name: "mysql",

type: "mysql",

host: "localhost",

port: 3306,

username: "root",

password: "root",

database: "test",

logger: new MyCustomLogger()

TypeORM

 52

The default language supported by TypeORM is TypeScript. Since, TypeScript supports

static typing, classes and decorators, it is easy to define the entity and its attributes. At

the same time, JavaScript is necessary as well in certain project where the preferred

language is JavaScript. TypeORM provides full support for JavaScript language as well.

TypeORM support both es5 and es6 flavors of JavaScript.

In this chapter, let us learn how to write TypeORM application in JavaScript ES5

(ECMAScript 5).

Open a command prompt and go to your workspace.

cd /path/to/workspace/

Run below command to create a TypeORM project.

typeorm init --name typeorm-javascript-student-app --database mysql

Open package.json file to remove the typescipt references.

original

{

 "name": "typeorm-javascript-student-app",

 "version": "0.0.1",

 "description": "Awesome project developed with TypeORM.",

 "devDependencies": {

 "ts-node": "3.3.0",

 "@types/node": "^8.0.29",

 "typescript": "3.3.3333"

 },

 "dependencies": {

 "typeorm": "0.2.24",

 "reflect-metadata": "^0.1.10",

 "mysql": "^2.14.1"

 },

 "scripts": {

 "start": "ts-node src/index.ts"

 }

}

updated

{

 "name": "typeorm-javascript-student-app",

 "version": "0.0.1",

 "description": "Awesome project developed with TypeORM.",

 "dependencies": {

 "typeorm": "0.2.24",

14. TypeORM with JavaScript

TypeORM

 53

 "mysql": "^2.14.1"

 },

 "scripts": {

 "start": "node src/index.js"

 }

}

Here,

 Removed the devDependencies section and typescript related package in

dependences section.

 Changed the start script to point javascript code instead of typescript code.

Run below command to install necessary packages.

npm install

Remove tsconfig.json and index.ts file.

Remove User.ts file inside entity folder and then create student entity in json format,

student.json as specified below:

{

 "name": "Student",

 "columns": {

 "id": {

 "primary": true,

 "type": "int",

 "generated": true

 },

 "name": {

 "type": "varchar"

 },

 "age": {

 "type": "integer"

 }

 }

}

Create a new file, src/index.js and put the below code:

var typeorm = require("typeorm");

var EntitySchema = typeorm.EntitySchema;

typeorm.createConnection({

 "type": "mysql",

 "host": "localhost",

 "port": 3306,

 "username": "root",

 "password": "123456",

 "database": "typeorm_test_db",

TypeORM

 54

 "synchronize": true,

 "logging": false,

 entities: [

 new EntitySchema(require("./entity/student.json"))

]

})

.then(function(connection) {

 return connection.getRepository("Student");

})

.then(function(studentRepository) {

 var student = {

 name: "Student1",

 age: 18

 };

 return studentRepository.save(student)

 .then(function(savedStudent) {

 console.log("Student has been successfully saved: ", savedStudent);

 return studentRepository.find();

 })

 .then(function(students) {

 console.log("All students: ", students);

 return;

 })

 .catch(function(error) {

 console.log("Error: ", error);

 return;

 })

})

.catch(function(error) {

 console.log("Error: ", error)

 return;

});

Here,

We have used the same typeORM methods except the below mentioned changes,

 Used EntitySchema to configure the student entity.

 Used JavaScript Promise concept (then / catch / finally) blocks.

Now, run the application using below command:

npm start

The application inserts the student information into the database and then fetch all student

in the database and show it in the console as shown below:

> typeorm-javascript-student-app@0.0.1 start /path/to/workspace/typeorm-

javascript-student-app

TypeORM

 55

> node src/index.js

Student has been successfully saved: { name: 'Student1', age: 18, id: 1 }

All students: [{ id: 1, name: 'Student1', age: 18 }]

TypeORM

 56

This chapter explains the extensive MongoDB database support provided by TypeORM.

Hopefully, we have installed mongodb using npm. If it is not installed, use the below

command to install MongoDB driver,

npm install mongodb --save

Creating a project

Let’s create a new project using MongoDB as follows:

typeorm init --name MyProject --database mongodb

Configure ormconfig.json

Let’s configure MongoDB host, port and database options in ormconfig.json file as

specified below:

ormconfig.json

{

 "type": "mongodb",

 "host": "localhost",

 "port": 27017,

 "database": "test",

 "synchronize": true,

 "logging": false,

 "entities": [

 "src/entity/**/*.ts"

],

 "migrations": [

 "src/migration/**/*.ts"

],

 "subscribers": [

 "src/subscriber/**/*.ts"

],

 "cli": {

 "entitiesDir": "src/entity",

 "migrationsDir": "src/migration",

 "subscribersDir": "src/subscriber"

 }

}

Define entities and columns

Let us create a new entity named Student inside your src directory. Entities and columns

are same. To generate primary key column, we use @PrimaryColumn or

15. TypeORM — Working with MongoDB

TypeORM

 57

@PrimaryGeneratedColumn. This can be defined as @ObjectIdColumn. Simple

example is shown below:

Student.ts

import {Entity, ObjectID, ObjectIdColumn, Column} from "typeorm";

@Entity()

export class Student {

 @ObjectIdColumn()

 id: ObjectID;

 @Column()

 Name: string;

 @Column()

 Country: string;

}

To save this entity, open index.ts file and add the following changes:

index.ts

import "reflect-metadata";

import {createConnection} from "typeorm";

import {Student} from "./entity/Student";

createConnection().then(async connection => {

 console.log("Inserting a new Student into the database...");

 const std = new Student();

 std.Name = "Student1";

 std.Country = "India";

 await connection.manager.save(std);

 console.log("Saved a new user with id: " + std.id);

 console.log("Loading users from the database...");

 const stds = await connection.manager.find(Student);

 console.log("Loaded users: ", stds);

 console.log("TypeORM with MongoDB");

}).catch(error => console.log(error));

Now, start your server and you will get the following response:

npm start

TypeORM

 58

MongoDB EntityManager

We can also use EntityManager to fetch data. Simple example is shown below:

import {getManager} from "typeorm";

const manager = getManager();

const result = await manager.findOne(Student, { id:1 });

Similarly, we can also use repository to access data.

import {getMongoRepository} from "typeorm";

const studentRepository = getMongoRepository(Student);

const result = await studentRepository.findOne({ id:1 });

If you want to filter the data using equal option as follows:

import {getMongoRepository} from "typeorm";

const studentRepository = getMongoRepository(Student);

const result = await studentRepository.find({

 where: {

 Name: {$eq: "Student1"},

 }

});

As we seen in this chapter, TypeORM makes it easy to work with MongoDB database

engine.

TypeORM

 59

Express is one of the popular JavaScript framework to create web application. Let us learn

how to use TypeORM along with express framework in this chapter.

Creating a simple application

TypeORM CLI provides an easy option to create a complete working express web

application (Restful API application) integrated with TypeORM. The CLI command to

create the application is as follows:

cd /path/to/workspace

typeorm init --express --name typeorm-express-sample --database mysql

Above command will create a new web application under typeorm-express-sample

folder. The structure of the application is as follows:

│ .gitignore

│ ormconfig.json

│ package.json

│ README.md

│ tsconfig.json

│

└───src

 │ index.ts

 │ routes.ts

 │

 ├───controller

 │ UserController.ts

 │

 ├───entity

 │ User.ts

 │

 └───migration

Here,

As we know, ormconfig.json is the TypeORM configuration file. The code is as follows,

{

 "type": "mysql",

 "host": "localhost",

 "port": 3306,

 "username": "test",

 "password": "test",

 "database": "test",

 "synchronize": true,

 "logging": false,

 "entities": [

16. TypeORM with Express

TypeORM

 60

 "src/entity/**/*.ts"

],

 "migrations": [

 "src/migration/**/*.ts"

],

 "subscribers": [

 "src/subscriber/**/*.ts"

],

 "cli": {

 "entitiesDir": "src/entity",

 "migrationsDir": "src/migration",

 "subscribersDir": "src/subscriber"

 }

}

Here, change the database setting to match your local database setting.

package.json file is the main configuration of the application.

tsconfig.json file contains the configuration related to TypeScript.

entity folder contains the TypeORM models. A default User model will be created by CLI

and it is as follows:

import {Entity, PrimaryGeneratedColumn, Column} from "typeorm";

@Entity()

export class User {

 @PrimaryGeneratedColumn()

 id: number;

 @Column()

 firstName: string;

 @Column()

 lastName: string;

 @Column()

 age: number;

}

controller folder contains the express controllers. CLI create a default user API controller

with add / list / delete user details. The code is as follows:

import {getRepository} from "typeorm";

import {NextFunction, Request, Response} from "express";

import {User} from "../entity/User";

export class UserController {

TypeORM

 61

 private userRepository = getRepository(User);

 async all(request: Request, response: Response, next: NextFunction) {

 return this.userRepository.find();

 }

 async one(request: Request, response: Response, next: NextFunction) {

 return this.userRepository.findOne(request.params.id);

 }

 async save(request: Request, response: Response, next: NextFunction) {

 return this.userRepository.save(request.body);

 }

 async remove(request: Request, response: Response, next: NextFunction) {

 let userToRemove = await this.userRepository.findOne(request.params.id);

 await this.userRepository.remove(userToRemove);

 }

}

Here,

all method is used to fetch all users from the database.

one method is used to fetch a single user from the database using user id

save method is used to save the user information into the database.

delete method is used to delete the user from the database using user id

routes.ts file maps the user controller methods to proper URL and the code is as follows:

import {UserController} from "./controller/UserController";

export const Routes = [{

 method: "get",

 route: "/users",

 controller: UserController,

 action: "all"

}, {

 method: "get",

 route: "/users/:id",

 controller: UserController,

 action: "one"

}, {

 method: "post",

 route: "/users",

 controller: UserController,

 action: "save"

}, {

 method: "delete",

 route: "/users/:id",

 controller: UserController,

TypeORM

 62

 action: "remove"

}];

Here,

/users url is mapped to user controller. Each verb post, get and delete are mapped to

different methods.

Finally, index.ts is our main web application entry point. The source code is as follows:

import "reflect-metadata";

import {createConnection} from "typeorm";

import * as express from "express";

import * as bodyParser from "body-parser";

import {Request, Response} from "express";

import {Routes} from "./routes";

import {User} from "./entity/User";

createConnection().then(async connection => {

 // create express app

 const app = express();

 app.use(bodyParser.json());

 // register express routes from defined application routes

 Routes.forEach(route => {

 (app as any)[route.method](route.route, (req: Request, res: Response, next:

Function) => {

 const result = (new (route.controller as any))[route.action](req, res,

next);

 if (result instanceof Promise) {

 result.then(result => result !== null && result !== undefined ?

res.send(result) : undefined);

 } else if (result !== null && result !== undefined) {

 res.json(result);

 }

 });

 });

 // setup express app here

 // ...

 // start express server

 app.listen(3000);

 // insert new users for test

 await connection.manager.save(connection.manager.create(User, {

 firstName: "Timber",

 lastName: "Saw",

 age: 27

 }));

TypeORM

 63

 await connection.manager.save(connection.manager.create(User, {

 firstName: "Phantom",

 lastName: "Assassin",

 age: 24

 }));

 console.log("Express server has started on port 3000. Open

http://localhost:3000/users to see results");

}).catch(error => console.log(error));

Here, the application configures the routes, insert two users and then start the web

application at port 3000. We can access the application at http://localhost:3000

To run the application, follow below steps:

Let us install the necessary packages using below command:

npm install

Output

npm notice created a lockfile as package-lock.json. You should commit this

file.

npm WARN typeorm-express-sample@0.0.1 No repository field.

npm WARN typeorm-express-sample@0.0.1 No license field.

added 176 packages from 472 contributors and audited 351 packages in 11.965s

3 packages are looking for funding

 run `npm fund` for details

found 0 vulnerabilities

Run the below command to start the application.

npm start

Output

> typeorm-express-sample@0.0.1 start /path/to/workspace/typeorm-express-sample

> ts-node src/index.ts

Express server has started on port 3000. Open http://localhost:3000/users to

see results

Let us access our web application API using curl command as below:

curl http://localhost:3000/users

Here,

TypeORM

 64

curl is a command line application to access web application from command prompt. It

supports all the HTTP verbs such as get, post, delete, etc.,

Output

[{"id":1,"firstName":"Timber","lastName":"Saw","age":27},{"id":2,"firstName":"P

hantom","lastName":"Assassin","age":24}]

To fetch the first record, we can use below command:

curl http://localhost:3000/users/1

Output

{"id":1,"firstName":"Timber","lastName":"Saw","age":27}

To delete a user record, we can use below command:

curl -X DELETE http://localhost:3000/users/1

As we seen in this chapter, TypeORM can be easily integrated into express application.

TypeORM

 65

Migrations are like version control for your database. It is used to modify and share
application’s database schema. This section explains about how migrations works in
TypeORM.

Creating new migration

To create a new migration, first we need to setup connection in ormconfig.json. It is

defined below:

ormconfig.json

"type": "mysql",

"host": "localhost",

"port": 8889,

"username": "root",

"password": "root",

"database": "Library",

"entities": ["entity/*.js"],

"migrationsTableName": "student_migration_table",

"migrations": ["migration/*.js"],

"cli": {

 "migrationsDir": "migration"

 }

Here,

 migrationsTableName - it refers the migration table name.

 migrations - TypeORM loads migrations from given directory.

 cli - indicates migration will create inside the specific directory.

Create Book entity

Let’s create an entity named Book entity inside src/entity/Book.ts as follows:

import { Entity, Column, PrimaryGeneratedColumn } from 'typeorm';

@Entity()

export class Book {

 @PrimaryGeneratedColumn()

 id: number;

 @Column()

 title: string;

17. TypeORM — Migrations

TypeORM

 66

 @Column()

 text: string;

}

Execute CLI to create new migration

Now, we can execute new migration using CLI as follows:

Syntax

typeorm migration:create -n <migration-name>

Example

typeorm migration:create -n myMigration

After executing the above command, you could see the below response:

Migration /path/to/project/src/migration/1587101104904-myMigration.ts has been

generated successfully.

Now, move inside src/migration/1587101104904-myMigration.ts file looks similar

to this.

import {MigrationInterface, QueryRunner} from "typeorm";

export class myMigration1587101104904 implements MigrationInterface {

 public async up(queryRunner: QueryRunner): Promise<any> {

 }

 public async down(queryRunner: QueryRunner): Promise<any> {

 }

}

Here,

We have two methods up and down. up method is used to add changes to the migration

and down method is used to revert changes in your migration.

Let us add up method inside myMigration.ts file as specified below:

import {MigrationInterface, QueryRunner} from "typeorm";

export class Book1587131893261 implements MigrationInterface {

 public async up(queryRunner: QueryRunner): Promise<any> {

 await queryRunner.query(`ALTER TABLE book ADD COLUMN price int`);

 }

TypeORM

 67

 public async down(queryRunner: QueryRunner): Promise<any> {

 }

}

Here,

We have added a new column price inside book table. Now, execute the CLI to add the

above changes.

ts-node ./node_modules/typeorm/cli.js migration:run

The above command executes migrations and run them in a sequence. Now, you could

see the below changes in your screen:

Output

Now open your mysql server, new column is added. It is shown below:

Similarly, We can modify column title datatype to varchar(30) as follows,

import {MigrationInterface, QueryRunner} from "typeorm";

export class Book1587131893261 implements MigrationInterface {

 public async up(queryRunner: QueryRunner): Promise<any> {

 await queryRunner.query(`ALTER TABLE book MODIFY COLUMN title

varchar(30)`);

 }

 public async down(queryRunner: QueryRunner): Promise<any> {

 }

}

Now, execute the same command and you could the below changes:

ts-node ./node_modules/typeorm/cli.js migration:run

TypeORM

 68

Output

Book table is modified as,

Revert migration

Let’s add the below code inside down method to revert migration:

import {MigrationInterface, QueryRunner} from "typeorm";

export class Book1587131893261 implements MigrationInterface {

 public async up(queryRunner: QueryRunner): Promise<any> {

 }

 public async down(queryRunner: QueryRunner): Promise<any> {

 await queryRunner.query(`ALTER TABLE book drop column price`); //

reverts things made in "up" method

 }

}

Now, execute the below command to revert all the changes:

ts-node ./node_modules/typeorm/cli.js migration:revert

You could see the following response:

Output

TypeORM

 69

Book table is modified as,

Output

As we seen in this chapter, TypeORM makes it easy to write database migration script.

TypeORM

 70

This section explains about TypeORM CLI commands in detail.

Create TypeORM project

typeorm init is the easiest and fastest way to setup a TypeORM project. You can create

a new project as,

typeorm init --name Demoproject --database mysql

After executing the command, you will get the following output on your screen:

Project created inside /Users/workspace/TypeORM/Demoproject directory.

Create an entity

To create a new entity using CLI as,

typeorm entity:create -n Person

Now, Person entity is created inside your project src directory.

Entity /Users/workspace/TypeORM/Demoproject/src/entity/Person.ts has been

created successfully.

If you have a multi-module project structure with multiple entities in different directories,

you can use the below command,

typeorm entity:create -n Person -d src/Person/entity

Create a new subscriber

To create a new subscriber using CLI as follows:

typeorm subscriber:create -n PersonSubscriber

You could see the following response:

Subscriber /path/to/TypeORM/Demoproject/src/subscriber/PersonSubscriber.ts has

been created successfully.

Create migrations

You can create a new migration using CLI as mentioned below:

typeorm migration:create -n PersonMigration

18. TypeORM — Working with CLI

TypeORM

 71

The above command created a migration directory inside your project src. Migration files

are stored inside it.

Migration /path/to/TypeORM/Demoproject/src/migration/1587395030750-

PersonMigration.ts has been generated successfully.

Database schema

To synchronize a database schema, use the below command:

typeorm schema:sync

To completely drop a database schema, use the below command:

typeorm schema:drop

Sql queries

If you want to execute any sql queries, we can execute directly from here. For example,

to display all the records of customers, use the below query:

typeorm query "select * from customers"

If you want to clear everything stored in the cache. You can do it using the following

command:

typeorm cache:clear

Conclusion

TypeORM is an excellent open source ORM framework to create high quality and scalable

applications from small scale applications to large scale enterprise applications with

multiple databases.

