unified modeling language

tutorialspoint

S MPLYEASYULEARNINILG

www.tutorialspoint.com

ﬁ https://www.facebook.com/tutorialspointindia j https://twitter.com/tutorialspoint

UML

About the Tutorial

UML (Unified Modeling Language) is a standard language for specifying, visualizing,
constructing, and documenting the artifacts of software systems. UML was created by the
Object Management Group (OMG) and UML 1.0 specification draft was proposed to the
OMG in January 1997.

It was initially started to capture the behavior of complex software and non-software
system and now it has become an OMG standard. This tutorial gives a complete
understanding on UML.

Audience

This tutorial has been prepared for beginners to help them understand the fundamentals
of UML. After completing this tutorial you will find yourself at a moderate level of expertise
from where you can take yourself to the next levels.

Prerequisites

No specific skill is required as a prerequisite to understand the learning material in this
tutorial. The reader must be enthusiastic to acquire knowledge on UML.

Copyright & Disclaimer

© Copyright 2017 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)
Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish
any contents or a part of contents of this e-book in any manner without written consent
of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as
possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.
Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our
website or its contents including this tutorial. If you discover any errors on our website or
in this tutorial, please notify us at contact@tutorialspoint.com

@ tutorialspoint

SIMPLYEASYLEARNING

mailto:contact@tutorialspoint.com

UML

Table of Contents

About the Tutorial
F Y Lo [T o ol OO ST UPRRUPPUORRTRN i
=T =To LT =L PP P PP PPPPPPPPPPPPPPPPRE i
Copyright & Disclaimer
BRI o (o] @oT 01 =Y o} £ PSSP i
L. UL — OVEIVIEW ..cuuuuiiiiiiiiinnniiiiiiiiesasssisssiiiessmsssssssssimssssssssssssisssassanes 1
LCTo =] Ee) 2 V1Y, PR 1
A Conceptual MOl OFf UML ...cooiiiiieeiii ettt ettt ettt st s et e sare e st esbeesabeesabeesanee s 2
(0] o] 1=Tol 2@ T g T=T | (=Te I 6fe] aTol=] o] £ OO T OO PO PP PP U P OPPORPPPTOPPRRPPRTOt 2
(010N o F= 1Y A =T a Vo 01T o RS 3
ROIE Of UML IN OO DESIZN «uveeeeueiiieeiiieeeitiee e ettt e eetteeestteeeestteeeeessaeesassaaaaastaeseassssesassasasasseseeassssssassasesssseeaans 4
2.

3.

4. UML — MOEIING TYPES ..eurrrrrrrrirsrss 10
SEFUCTUIAl IMIOTEIING ..ttt sttt st s e e st e s bt e st e e eab e e sabeesabeesabeesnneesabeesnneesn
Behavioral Modeling

Architectural Modeling

5. UML — BasiC NOtAtioNsccoiiiiiieeiciiiiiiiiieiicisirieennseieessesesnnssssssssssesnnssssssssssssnnssssssssssssnnnssssssssssnnnnnssnnns 11
(01 T3 L] = 1 4 (oY o VP PURPRNS 11
(0] o J[=Tor fl o] =14 To 1 PSSR 12
T A= = Tol S N o) = [ISP 13
(@fe] 1] oYe] =Y 4T o I8 N\] =4 o o PSR TSRNE 13
(UL O T =l o] =1 { o] o W PP RPPUPPPPROPIN 14
Fi¥ot o] gl o) -1 i o] o FS PP TTPPPPPRN 14
TaT A |y = (=l o =4 [o E SRR 14
T a I €= L= | o] 714 o o SRR 15
Y Yo AV @ - L] - | 4 o F OSSPSR 15
ComPOoNENt NOTatiON ..o 15
1 oo LI N\] =Y o o USSR 16
Tal =T Yot o]l \ Vo] - 4 o] IR PP PPP PR 17
State MacChing NOTATION ..ecieeiiee e e et e e st e e e e st e e e snte e e snseeeesstaeesansseeesnseesennseeennnnns 18
(= Tol &= =T N\ - | o o S 18
[\ Fo) =l o) 1 4 o PSPPSR 19
(DL o1l o [T o [olV AN \V[o] - | A Lo NSRRI 19
JAX e TolF-) A Te T o I\ o] -1 { o] IP PPNt 20
GENEralization NOTATION ..o e e e s e e e e e e ettt e e e e e e e seabbtaeeeaeesenasstaeeeaeesenssnrens 20
EXEENSIDIlitY NOTAtION .. .eeiiiiiee e e e e e e e et e e e e e e e s e bbb aeeeaeesesasbaeseeeeeessnssaaneaaans 21

i

w' tutorialspoint

SIMPLYEASYLEARNING

UML

6. UML —Standard DIaBramsccccceeiiiiiiiiinmreeiiiiiisisisneeeiiisisssssssesiiissssssssesssissssssssssesssssssssssssssssssssssssnssens 22
AU ot {0 = WD I V= =T SRS 22
ST o b= \ViTo L= LI DT = =T o TSRS 23

7. UML — Class DIQBramccccccieieeieiiiieeeeeeeeeeemeeeeeeeeeesesssssessnnnnns
Purpose of Class Diagrams
HOW tO Draw @ Class DI@gram ?coiuiiiiieiieeeieeiitee ettt sit ettt e st e st e sat e e sate e bt e e smbeesbeeesabeesneeesaneennnes 26
Where t0 Use Class DIagIramS?ccocueeiiuiiiieeiieeeitee ettt estt sttt stee sttt e sbe e e sbeesbe e e sbbesbeeesbeesbeeesaneenneeenaneenneas 28

8. UML — ODbjJECt DIQBIramscccieiiiiiereriiiiiiisissseeniiiiississseesiiissssssssseessssssssssssssessssssssssssssssssssssssssssessssssssnes 29
PUIrpPOSE Of ObBJECE DIGgIamScceiieiiieeieeiteeet ettt et et sit et sab e e sttt e sab e e sat e e sate e bt e e sabeesateesabeesneeesaneennnes 29
HOW tO Draw an ObjeCt DIagram?cciuei ittt ettt ettt ettt et e st sate e bt e e sibeesaee e sabeesneeesaneennnes 29
Where to Use ODbJECE DIagIamS?uiiiiiiieeeiiieeeeiieieeeteeeestreesetreeesssaeeesataeeeasssaeesassseeesssseesassseeesanssnsessssesanns 31

9. UML — Component DIaBramsccciiieeeeeniiiiiiiienmnniiisiiieeemssssssssissesnsssssssssssssnnssssssssssssnssssssssssssnnnssssssssases
Purpose of COmMPONENT DIAGIAMScccciuiiiiiiiieeeiiieeeecteeeeetteeeestteeeeeteeeestaeeeesataeesasseeesssaaeaastaeesessseesnsseneans
How to Draw a Component Diagram?.....

Where to Use COMPONENT DIagramS?.....cocueiiiuiiiiiieriieeiteeeitteesite ettt siee st e sieesbeeesatesnbeeesseesbeeesanesaseeesaseenneas 34

10. UML — Deployment DIiagBramscccviiiiiiiiiiiiiiiiiniiininisiiiinssisisississsssnsssssssssssmssnns 35
Purpose of DeploymMENnt DIiagramS......ccuueiiueereeerieerteesitee st e st e st e sttt e siteesabeesateesabe e st e e sabeesseeesaseessreesaneennnes 35
How to Draw a Deployment DIagram?coiiiiiiieiiee ettt ettt sit e site e site e bt e e sabeesaeeesanessbeeesaneenaees 35
Where to Use Deployment DIaBramsS?c.ceiuiiiiieriieteiieeeiteesite ettt site sttt sieesbeeesetessbeeesseesbeeesanesbeeesaneenneas 36

11. UML — USE CaSE DIaBramsS.....cccceiiiereeeniieiiiirennnnssisesiisesnmsssssssssssssnsssssssssssssnsssssssssssssnnsssssssssssnnnsssssssssssnnnnns 38
o To Y =N o NIy N O 1Y =T DI F-d = o RS 38
How to Draw @ Use Case DI@Bram?ccciiciiiiiiiiee e eeiiiiieee e e e e sttt e e e e e e s eatatae e e e e s seaaetaesaeeesesnntaaseesssesssssaneeeens 39
Where to Use a Use Case Diagram?

12. UML — INteraction DIagramscccceeuiiiiiiiiinenmnnisiiniinmessssssssiiimesssssssssssisssnns 41
PUrpose Of INTEraction DIagramS.......ccicciiieiiieeeeiiieeeestiee e ettt e e e st e e e s eeeeesaaeeeessteeessseeeessaeeeansseeesssseeesnsseeenns 41
How to Draw an INteraction DIagram?cocieiiiierieeiteesieesiee et et e st sat e e st sareesae e e sabeesaeeesareesbeeesaneenanes 41
Where to Use INteraction DIagramiS?cccccuieeieiiiieiiiieeesiteeeesteeesseeeeestaeeesssteessssseeessssseesassseeesssssesssnssesenns 43

13. UML — Statechart Diagramsccceiiiiiiiiiiiiiiiiiiiiiiiiniiiiiiiiisiississsssssssissssssssesissnns
Purpose of Statechart Diagrams
How to Draw a Statechart DIagram? ...ttt e e e s et e e e e e e s e eaeba e e e e e e sesnansaaneaeens 44
Where to Use Statechart DIagrams?uiiiiieii ettt sert e e e e e s e ta e e e e e e s esaaetaeeeeeesennnstaaeeeeseannns 45

14. UML — ACtiVity DIiagramsccciiiiieeeeneiiiiiiiienmmesssesniseenmssssssssesesnnssssssssssssnnsssssssssssssnnsssssssssssnnnsssssssssssnnnnns 47
PUrpose Of ACEIVITY DIQBIAMSeeiiiiiieeeiiiieccieee et e et e e et e e ettt e e e et e e e stae e e e s taeeesnnteeesnsaeeeasssaeesaseeeesnnsenennn 47
How to Draw an ACtiVITY DIaZram? ...cciciiiiiiiiiiiee e eee ettt e s e e st re e e e e s s et et e e e e s s e anbaeeeeeesessasssnneenens 47
Where to Use ACLIVity DIiagramS?u i eieeeiieeeeeiieteeeteeeesteeeeetteeeseneeeeestaeeeasssaeesanseaeesnsseesassseeesanssnessssseeenns 49

UML 2.0 1ttt e s e s s e e e e s s s e sab e e e e e e e s s s e an e b e r e e e eeeesesanaraeaeeeeesesanarnerenenes 50

15, UML 2.0 — OVEIVIBW ..ciiiiiiiiiiiiiiiiniisnsnssns 51
New DImenSioNs iN UIML 2.0 ...ttt ettt e e ettt e e e e e s e bbb et e e e e e seaaebee et e e e sesnnbbeeeeaesesaansnnneeeens 51
Modeling DIagrams iN UIML 2.0uiiiiieiieiiiiieiee ettt e e e eeeettee e e s e e e s eabataeeeeassenastaeseeeesesssstaaaeeessessnssssseaaans 52

iii

w' tutorialspoint

SIMPLYEASYLEARNING

1. UML-Overview

UML is a standard language for specifying, visualizing, constructing, and documenting the
artifacts of software systems.

UML was created by the Object Management Group (OMG) and UML 1.0 specification draft
was proposed to the OMG in January 1997.

OMG is continuously making efforts to create a truly industry standard.

¢ UML stands for Unified Modeling Language.

e UML is different from the other common programming languages such as C++,
Java, COBOL, etc.

e UML is a pictorial language used to make software blueprints.

e UML can be described as a general purpose visual modeling language to visualize,
specify, construct, and document software system.

e Although UML is generally used to model software systems, it is not limited within
this boundary. It is also used to model non-software systems as well. For example,
the process flow in a manufacturing unit, etc.

UML is not a programming language but tools can be used to generate code in various
languages using UML diagrams. UML has a direct relation with object oriented analysis and
design. After some standardization, UML has become an OMG standard.

Goals of UML

A picture is worth a thousand words, this idiom absolutely fits describing UML. Object-
oriented concepts were introduced much earlier than UML. At that point of time, there
were no standard methodologies to organize and consolidate the object-oriented
development. It was then that UML came into picture.

There are a number of goals for developing UML but the most important is to define some
general purpose modeling language, which all modelers can use and it also needs to be
made simple to understand and use.

UML diagrams are not only made for developers but also for business users, common
people, and anybody interested to understand the system. The system can be a software
or non-software system. Thus it must be clear that UML is not a development method
rather it accompanies with processes to make it a successful system.

In conclusion, the goal of UML can be defined as a simple modeling mechanism to model
all possible practical systems in today’s complex environment.

i tutorialspoint

SIMPLYEASYLEARNING

UML

A Conceptual Model of UML

To understand the conceptual model of UML, first we need to clarify what is a conceptual
model? and why a conceptual model is required?

e A conceptual model can be defined as a model which is made of concepts and their
relationships.

e A conceptual model is the first step before drawing a UML diagram. It helps to
understand the entities in the real world and how they interact with each other.

As UML describes the real-time systems, it is very important to make a conceptual model
and then proceed gradually. The conceptual model of UML can be mastered by learning
the following three major elements:

e UML building blocks
e Rules to connect the building blocks

¢ Common mechanisms of UML

Object-Oriented Concepts

UML can be described as the successor of object-oriented (OO) analysis and design.

An object contains both data and methods that control the data. The data represents the
state of the object. A class describes an object and they also form a hierarchy to model
the real-world system. The hierarchy is represented as inheritance and the classes can
also be associated in different ways as per the requirement.

Objects are the real-world entities that exist around us and the basic concepts such as
abstraction, encapsulation, inheritance, and polymorphism all can be represented using
UML.

UML is powerful enough to represent all the concepts that exist in object-oriented analysis
and design. UML diagrams are representation of object-oriented concepts only. Thus,
before learning UML, it becomes important to understand OO concept in detail.

Following are some fundamental concepts of the object-oriented world:

e Objects: Objects represent an entity and the basic building block.
e Class: Class is the blueprint of an object.
e Abstraction: Abstraction represents the behavior of a real world entity.

e Encapsulation: Encapsulation is the mechanism of binding the data together and
hiding them from the outside world.

e Inheritance: Inheritance is the mechanism of making new classes from existing
ones.

e Polymorphism: It defines the mechanism to exist in different forms.

w' tutorialspoint

S M LYEASYLEARMNINEG

UML

OO Analysis and Design

00 can be defined as an investigation and to be more specific, it is the investigation of
objects. Design means collaboration of identified objects.

Thus, it is important to understand the OO analysis and design concepts. The most
important purpose of OO analysis is to identify objects of a system to be designed. This
analysis is also done for an existing system. Now an efficient analysis is only possible when
we are able to start thinking in a way where objects can be identified. After identifying the
objects, their relationships are identified and finally the design is produced.

The purpose of OO analysis and design can described as:

o Identifying the objects of a system.
e Identifying their relationships.

e Making a design, which can be converted to executables using OO languages.

There are three basic steps where the OO concepts are applied and implemented. The
steps can be defined as

00 Analysis --> 00 Design --> 00 implementation using 00 languages

The above three points can be described in detail as:

e During 00 analysis, the most important purpose is to identify objects and describe
them in a proper way. If these objects are identified efficiently, then the next job
of design is easy. The objects should be identified with responsibilities.
Responsibilities are the functions performed by the object. Each and every object
has some type of responsibilities to be performed. When these responsibilities are
collaborated, the purpose of the system is fulfilled.

e The second phase is OO design. During this phase, emphasis is placed on the
requirements and their fulfiiment. In this stage, the objects are collaborated
according to their intended association. After the association is complete, the
design is also complete.

e The third phase is OO implementation. In this phase, the design is implemented
using OO languages such as Java, C++, etc.

@ tutorialspoint

SIMPLYEASYLEARNING

UML

Role of UML in OO Design

UML is a modeling language used to model software and non-software systems. Although
UML is used for non-software systems, the emphasis is on modeling OO software
applications. Most of the UML diagrams discussed so far are used to model different
aspects such as static, dynamic, etc. Now whatever be the aspect, the artifacts are nothing
but objects.

If we look into class diagram, object diagram, collaboration diagram, interaction diagrams
all would basically be designed based on the objects.

Hence, the relation between OO design and UML is very important to understand. The OO
design is transformed into UML diagrams according to the requirement. Before
understanding the UML in detail, the OO concept should be learned properly. Once the OO
analysis and design is done, the next step is very easy. The input from OO analysis and
design is the input to UML diagrams.

@ tutorialspoint

SIMPLYEASYLEARNING

2. UML —Building Blocks

As UML describes the real-time systems, it is very important to make a conceptual model
and then proceed gradually. The conceptual model of UML can be mastered by learning
the following three major elements:

e UML building blocks
e Rules to connect the building blocks

e Common mechanisms of UML

This chapter describes all the UML building blocks. The building blocks of UML can be
defined as:

e Things
e Relationships

¢ Diagrams

Things

Things are the most important building blocks of UML. Things can be:
e Structural
e Behavioral
e Grouping

¢ Annotational

Structural Things

Structural things define the static part of the model. They represent the physical and
conceptual elements. Following are the brief descriptions of the structural things.

Class: Class represents a set of objects having similar responsibilities.

Class
Aftributes
Operdions

Interface: Interface defines a set of operations, which specify the responsibility of a class.

Interface

i tutorialspoint

SIMPLYEASYLEARMNING

UML

Collaboration: Collaboration defines an interaction between elements.

Use case: Use case represents a set of actions performed by a system for a specific goal.

Use case

Component: Component describes the physical part of a system.

omponent

Node: A node can be defined as a physical element that exists at run time.

MNode

Behavioral Things
A behavioral thing consists of the dynamic parts of UML models. Following are the
behavioral things:

Interaction: Interaction is defined as a behavior that consists of a group of messages
exchanged among elements to accomplish a specific task.

Message
B —

State machine: State machine is useful when the state of an object in its life cycle is
important. It defines the sequence of states an object goes through in response to events.
Events are external factors responsible for state change.

State

@ tutorialspoint

SIMPLYEASYLEARNING

UML

Grouping Things

Grouping things can be defined as a mechanism to group elements of a UML model
together. There is only one grouping thing available:

Package: Package is the only one grouping thing available for gathering structural and
behavioral things.

[1

Package

Annotational Things

Annotational things can be defined as a mechanism to capture remarks, descriptions,
and comments of UML model elements. Note: It is the only one Annotational thing
available. A note is used to render comments, constraints, etc. of an UML element.

note

Relationships

Relationship is another most important building block of UML. It shows how the elements
are associated with each other and this association describes the functionality of an
application.

There are four kinds of relationships available.

Dependency

Dependency is a relationship between two things in which change in one element also
affects the other.

Dependency

—————— >

Association

Association is basically a set of links that connects the elements of a UML model. It also
describes how many objects are taking part in that relationship.

= =SSO ==

m tutorialspoint

SIMPLYEASYLEARNING

UML

Generalization

Generalization can be defined as a relationship which connects a specialized element with
a generalized element. It basically describes the inheritance relationship in the world of
objects.

Generalization D

Realization

Realization can be defined as a relationship in which two elements are connected. One
element describes some responsibility, which is not implemented and the other one
implements them. This relationship exists in case of interfaces.

@ tutorialspoint

SIMPLYEASYLEARNING

UML

End of ebook preview
If you liked what you saw...

Buy it from our store @ https://store.tutorialspoint.com

@ tutorialspoint

SIMPLYEASYLEARNING

