
Zend Framework

 i

Zend Framework

 i

About the Tutorial

Zend is an open source PHP framework. It is pure object-oriented and built around the

MVC design pattern. Zend framework contains collection of PHP packages which can be

used to develop web applications and services. Zend was started by Andi Gutmans and

Zeev Suraski.

This tutorial will give you a quick introduction to Zend Framework and make you

comfortable with its various components.

Audience

This tutorial has been prepared for professionals who are aspiring to make a career in

Zend framework. This will give you enough understanding on how to create and develop

a website using Zend.

Prerequisites

Before proceeding with the various types of components given in this tutorial, it is being

assumed that the readers are already aware about what a Framework is. In addition to

this, it will also be very helpful if you have sound knowledge on HTML, PHP and the OOPS

concepts.

Copyright & Disclaimer

 Copyright 2017 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

Zend Framework

 ii

Table of Contents

About the Tutorial .. i

Audience .. i

Prerequisites .. i

Copyright & Disclaimer ... i

Table of Contents .. ii

1. ZEND FRAMEWORK – INTRODUCTION .. 1

2. ZEND FRAMEWORK – INSTALLATION... 3

Install Zend Framework ... 3

3. ZEND FRAMEWORK – SKELETON APPLICATION ... 4

Installation using Composer .. 4

Unit Tests .. 8

Apache Web Server ... 11

4. ZEND FRAMEWORK – MVC ARCHITECTURE ... 12

5. ZEND FRAMEWORK – CONCEPTS .. 13

6. ZEND FRAMEWORK – SERVICE MANAGER ... 14

Install Service Manager ... 14

Factory Method... 15

Abstract Factory Method .. 17

Initializer Method.. 17

Delegator Factory Method .. 18

Plugin Manager ... 18

Configuration Option .. 19

Zend Framework

 iii

7. ZEND FRAMEWORK – EVENT MANAGER ... 20

8. ZEND FRAMEWORK – MODULE SYSTEM .. 25

MVC Web Module System ... 25

Module Class ... 26

9. ZEND FRAMEWORK – APPLICATION STRUCTURE ... 27

Structure of the Application Modules ... 31

10. ZEND FRAMEWORK – CREATING A MODULE ... 33

11. ZEND FRAMEWORK – CONTROLLERS... 37

AbstractActionController .. 38

AbstractRestfulController.. 39

AbstractConsoleController .. 39

12. ZEND FRAMEWORK – ROUTING .. 40

Route & RouteStack .. 40

Type of Routes .. 41

Configuring Route in Tutorial Module ... 43

13. ZEND FRAMEWORK – VIEW LAYER .. 45

View Layer Configuration .. 45

Controllers and View Layer ... 46

Passing Data to View Layer ... 47

View Helpers ... 47

Built-in Helpers ... 48

Creating View Helpers ... 56

Zend Framework

 iv

14. ZEND FRAMEWORK – LAYOUT ... 58

Creating a new layout ... 60

15. ZEND FRAMEWORK – MODELS & DATABASE ... 62

Models in Zend Framework ... 62

Database in Zend Framework .. 62

16. ZEND FRAMEWORK – DIFFERENT DATABASES ... 70

17. ZEND FRAMEWORK – FORMS & VALIDATION .. 72

Install Form Component .. 72

Example .. 72

18. ZEND FRAMEWORK – FILE UPLOADING ... 81

FileInput Class ... 81

File Upload – Working Example ... 82

19. ZEND FRAMEWORK – AJAX .. 93

Install json component .. 93

AJAX – Working Example... 93

20. ZEND FRAMEWORK – COOKIE MANAGEMENT .. 99

Installing the HTTP Component ... 99

21. ZEND FRAMEWORK – SESSION MANAGEMENT ... 101

Install a Session Component ... 101

Session Component Example .. 101

22. ZEND FRAMEWORK – AUTHENTICATION ... 104

Install an Authentication Component.. 104

Zend Framework

 v

23. ZEND FRAMEWORK – EMAIL MANAGEMENT .. 106

Email Management Methods .. 107

SMTP Transport Layer ... 108

Mail Concept – Example .. 109

24. ZEND FRAMEWORK – UNIT TESTING ... 111

Setting up the PHPUnit .. 111

TestCase and Assertions .. 111

25. ZEND FRAMEWORK – ERROR HANDLING ... 115

26. ZEND FRAMEWORK – WORKING EXAMPLE ... 116

Zend Framework

 6

A PHP Web Framework is a collection of classes which helps to develop a web application.

Zend is one of the most popular PHP framework. It is an open-source MVC framework for

rapidly developing, modern web applications. Zend Framework has several loosely coupled

components, so it is referred to as “Component Library”. Zend Framework provides any PHP

stack and Zend server to run Zend framework applications.

Zend Studio is an IDE that includes features to integrate with Zend Framework. It provides

MVC view and code generation. The current Zend framework 3.0 includes new components

such as JSON RPC server, a XML to JSON converter, PSR-7 functionality, and compatibility

with PHP 7.

Zend Framework 2 is an open source framework for developing web applications and services

using PHP 5.3+. Zend Framework 2 uses 100% object oriented code and utilizes most of the

new features of PHP 5.3, namely Namespaces, Lambda Functions and Closures.

Zend Framework 2 evolved from Zend Framework 1, a successful PHP framework with over

15 million downloads. Zend Server has a free community version and a commercial version.

Zend Framework Features

Some of the salient features of Zend Framework is as follows:

 Pure object oriented web application framework

 Advanced MVC implementation

 Supports multi databases including PostgreSQL, SQLite etc.,

 Simple cloud API

 Session management

 Data encryption

 Flexible URI Routing

 Zend provides RESTful API development support.

 Code reusable and easier to maintain.

Why Zend Framework?

What makes the Zend Framework one of the premier frameworks used by PHP developers is

that – it provides clean and stable code complete with intellectual property rights. It also

makes programming easier. It is fast, easy to learn and convenient framework. Zend supports

strong cryptography tools and password hashing techniques.

1. Zend Framework – Introduction

Zend Framework

 7

Zend Goals

Following are the goals of the Zend Framework.

 Flexibility

 Simple and productive

 Compatibility

 Extensibility – Programmer can easily extend all the framework classes.

 Portability – Supports multiple environments

Zend Applications

The following popular products are developed by using the Zend Framework.

 McAfee Company website

 IBM Company website

 Magento - one of the popular shopping cart website.

Advantages of Zend Framework

Some of the advantages of the Zend Framework are listed below.

 Loosely Coupled – Zend provides the option to delete modules or components which
we don’t need in the application.

 Performance – Zend Framework is highly optimized for performance. Zend

Framework 3 is 4x faster than its previous version.

 Security – Framework supports industry standard encryption.

 Testing – PHPUnit is integrated with Zend so you can easily test the framework.

In the next chapter, we will learn how to install the Zend Framework.

Zend Framework

 8

To install the Zend Framework, we must first install the Composer and the latest version of

PHP as shown in the following steps.

 Install Composer: Zend uses Composer for managing its dependencies, so make

sure you have the Composer installed on your machine. If the Composer is not

installed, then visit the official website of Composer and install it.

 Install the latest version of PHP: To get the maximum benefit of Zend Framework,

install the latest version of PHP. The minimum required version for the Zend

Framework 3 is PHP 5.6 or later.

Install Zend Framework

Zend Framework can be installed in two ways. They are as follows:

 Manual installation

 Composer based installation

Let us discuss both these installations in detail.

Manual Installation

Download the latest version of Zend Framework by visiting the following link –

https://framework.zend.com/downloads/archives

Extract the content of the downloaded archive file to the folder you would like to keep it. Once

you have a copy of Zend Framework available in your local machine, your Zend Framework

based web application can access the framework classes. Though there are several ways to

achieve this, your PHP include_path needs to contain the path to the Zend Framework

classes under the /library directory in the distribution. This method applies to Zend Framework

version 2.4 and earlier only.

Composer Based Installation

To easily install the Zend Framework, use the Composer tool. This is the preferred method to

install the latest version of Zend Framework. To install all the components of the Zend

Framework, use the following Composer command –

$ composer require zendframework/zendframework

2. Zend Framework – Installation

https://getcomposer.org/download/
https://framework.zend.com/downloads/archives

Zend Framework

 9

Each Zend Framework module / component can be installed individually as well. For example,

to install the MVC component of the Zend Framework, use the following composer

command –

$ composer require zendframework/zend-mvc

Zend Framework

 10

Let us create a skeleton application using the Zend Framework MVC layer and module

systems.

Installation using Composer

The easiest way to create a new Zend Framework project is to use a Composer. It is defined

as below:

$ cd /path/to/install

$ composer create-project -n -sdev zendframework/skeleton-application myapp

You would see the following result on your screen:

Installing zendframework/skeleton-application (dev-master
941da45b407e4f09e264f000fb537928badb96ed)

 - Installing zendframework/skeleton-application (dev-master master)

 Cloning master

Created project in myapp

Loading composer repositories with package information

Installing dependencies (including require-dev) from lock file

 - Installing zendframework/zend-component-installer (0.3.0)

 Loading from cache

 - Installing zendframework/zend-stdlib (3.0.1)

 Loading from cache

 - Installing zendframework/zend-config (2.6.0)

 Loading from cache

 - Installing zendframework/zend-loader (2.5.1)

 Loading from cache

 - Installing zendframework/zend-eventmanager (3.0.1)

3. Zend Framework – Skeleton Application

Zend Framework

 11

 Loading from cache

 - Installing zendframework/zend-view (2.8.0)

 Loading from cache

 - Installing container-interop/container-interop (1.1.0)

 Loading from cache

 - Installing zendframework/zend-servicemanager (3.1.0)

 Loading from cache

 - Installing zendframework/zend-validator (2.8.1)

 Loading from cache

 - Installing zendframework/zend-escaper (2.5.1)

 Loading from cache

 - Installing zendframework/zend-uri (2.5.2)

 Loading from cache

 - Installing zendframework/zend-http (2.5.4)

 Loading from cache

 - Installing zendframework/zend-router (3.0.2)

 Loading from cache

 - Installing zendframework/zend-modulemanager (2.7.2)

 Loading from cache

 - Installing zendframework/zend-mvc (3.0.1)

 Loading from cache

 - Installing zendframework/zend-skeleton-installer (0.1.3)

 Loading from cache

 - Installing zfcampus/zf-development-mode (3.0.0)

Zend Framework

 12

 Loading from cache

zendframework/zend-config suggests installing zendframework/zend-filter
(Zend\Filter component)

zendframework/zend-config suggests installing zendframework/zend-i18n (Zend\I18n
component)

zendframework/zend-config suggests installing zendframework/zend-json (Zend\Json
to use the Json reader or writer classes)

zendframework/zend-view suggests installing zendframework/zend-authentication
(Zend\Authentication component)

zendframework/zend-view suggests installing zendframework/zend-feed (Zend\Feed
component)

zendframework/zend-view suggests installing zendframework/zend-filter (Zend\Filter
component)

zendframework/zend-view suggests installing zendframework/zend-i18n (Zend\I18n
component)

zendframework/zend-view suggests installing zendframework/zend-json (Zend\Json
component)

zendframework/zend-view suggests installing zendframework/zend-navigation
(Zend\Navigation component)

zendframework/zend-view suggests installing zendframework/zend-paginator
(Zend\Paginator component)

zendframework/zend-view suggests installing zendframework/zend-permissions-acl
(Zend\Permissions\Acl component)

zendframework/zend-servicemanager suggests installing ocramius/proxy-manager
(ProxyManager 1.* to handle lazy initialization of services)

zendframework/zend-validator suggests installing zendframework/zend-db (Zend\Db
component)

zendframework/zend-validator suggests installing zendframework/zend-filter
(Zend\Filter component, required by the Digits validator)

zendframework/zend-validator suggests installing zendframework/zend-i18n
(Zend\I18n component to allow translation of validation error messages as well as
to use the various Date validators)

zendframework/zend-validator suggests installing zendframework/zend-i18n-resources
(Translations of validator messages)

zendframework/zend-validator suggests installing zendframework/zend-math
(Zend\Math component)

zendframework/zend-validator suggests installing zendframework/zend-session
(Zend\Session component)

zendframework/zend-router suggests installing zendframework/zend-i18n (^2.6, if
defining translatable HTTP path segments)

Zend Framework

 13

zendframework/zend-modulemanager suggests installing zendframework/zend-console
(Zend\Console component)

zendframework/zend-mvc suggests installing zendframework/zend-json ((^2.6.1 ||
^3.0) To auto-deserialize JSON body content in AbstractRestfulController
extensions, when json_decode is unavailable)

zendframework/zend-mvc suggests installing zendframework/zend-mvc-console (zend-
mvc-console provides the ability to expose zend-mvc as a console application)

zendframework/zend-mvc suggests installing zendframework/zend-mvc-i18n (zend-mvc-
i18n provides integration with zend-i18n, including a translation bridge and
translatable route segments)

zendframework/zend-mvc suggests installing zendframework/zend-mvc-plugin-fileprg
(To provide Post/Redirect/Get functionality around forms that container file
uploads)

zendframework/zend-mvc suggests installing zendframework/zend-mvc-plugin-
flashmessenger (To provide flash messaging capabilities between requests)

zendframework/zend-mvc suggests installing zendframework/zend-mvc-plugin-identity
(To access the authenticated identity (per zend-authentication) in controllers)

zendframework/zend-mvc suggests installing zendframework/zend-mvc-plugin-prg (To
provide Post/Redirect/Get functionality within controllers)

zendframework/zend-mvc suggests installing zendframework/zend-psr7bridge ((^0.2)
To consume PSR-7 middleware within the MVC workflow)

zendframework/zend-mvc suggests installing zendframework/zend-servicemanager-di
(zend-servicemanager-di provides utilities for integrating zend-di and zend-
servicemanager in your zend-mvc application)

Generating autoload files

 Removing optional packages from composer.json

 Updating composer.json

Removing zendframework/zend-skeleton-installer...

 - Removing zendframework/zend-skeleton-installer (0.1.3)

 Removed plugin zendframework/zend-skeleton-installer.

 Removing from composer.json

 Complete!

> zf-development-mode enable

You are now in development mode.

Now that the application is installed, you can test it out immediately using the PHP's built-

in web server:

$ cd path/to/install/myapp

$ composer serve

Zend Framework

 14

Then you would see the following response:

> php -S 0.0.0.0:8080 -t public/ public/index.php

This will start the PHP built-in CLI server on port 8080. Once the development server is

started, you can visit the site at (http://localhost:8080/). The built-in CLI server is for

development only.

Unit Tests

To run the skeleton unit tests, type the following command in your terminal.

$ composer require --dev zendframework/zend-test

It will produce the following response:

Using version ^3.0 for zendframework/zend-test

./composer.json has been updated

Loading composer repositories with package information

Updating dependencies (including require-dev)

 - Installing zendframework/zend-dom (2.6.0)

 Loading from cache

 - Installing zendframework/zend-console (2.6.0)

http://localhost:8080/

Zend Framework

 15

 Loading from cache

 - Installing sebastian/version (2.0.1)

 Loading from cache

 - Installing symfony/yaml (v3.2.1)

 Downloading: 100%

 - Installing sebastian/resource-operations (1.0.0)

 Loading from cache

 - Installing sebastian/recursion-context (2.0.0)

 Loading from cache

 - Installing sebastian/object-enumerator (2.0.0)

 Loading from cache

 - Installing sebastian/global-state (1.1.1)

 Loading from cache

 - Installing sebastian/exporter (2.0.0)

 Loading from cache

 - Installing sebastian/environment (2.0.0)

 Loading from cache

 - Installing sebastian/diff (1.4.1)

 Loading from cache

 - Installing sebastian/comparator (1.2.2)

 Loading from cache

 - Installing phpunit/php-text-template (1.2.1)

 Loading from cache

 - Installing doctrine/instantiator (1.0.5)

Zend Framework

 16

 Loading from cache

 - Installing phpunit/phpunit-mock-objects (3.4.3)

 Downloading: 100%

 - Installing phpunit/php-timer (1.0.8)

 Loading from cache

 - Installing phpunit/php-file-iterator (1.4.2)

 Loading from cache

 - Installing sebastian/code-unit-reverse-lookup (1.0.0)

 Loading from cache

 - Installing phpunit/php-token-stream (1.4.9)

 Loading from cache

 - Installing phpunit/php-code-coverage (4.0.4)

 Downloading: 100%

 - Installing webmozart/assert (1.2.0)

 Loading from cache

 - Installing phpdocumentor/reflection-common (1.0)

 Loading from cache

 - Installing phpdocumentor/type-resolver (0.2.1)

 Loading from cache

 - Installing phpdocumentor/reflection-docblock (3.1.1)

 Loading from cache

 - Installing phpspec/prophecy (v1.6.2)

 Loading from cache

Zend Framework

 17

 - Installing myclabs/deep-copy (1.5.5)

 Loading from cache

 - Installing phpunit/phpunit (5.7.4)

 Downloading: 100%

 - Installing zendframework/zend-test (3.0.2)

 Loading from cache

zendframework/zend-console suggests installing zendframework/zend-filter (To
support DefaultRouteMatcher usage)

symfony/yaml suggests installing symfony/console (For validating YAML files using
the lint command)

sebastian/global-state suggests installing ext-uopz (*)

phpunit/phpunit-mock-objects suggests installing ext-soap (*)

phpunit/php-code-coverage suggests installing ext-xdebug (>=2.4.0)

phpunit/phpunit suggests installing phpunit/php-invoker (~1.1)

phpunit/phpunit suggests installing ext-xdebug (*)

zendframework/zend-test suggests installing zendframework/zend-mvc-console
(^1.1.8, to test MVC <-> console integration)

Writing lock file

Generating autoload files

Now the testing support is enabled so you can run the test using the following command.

$./vendor/bin/phpunit

Apache Web Server

Hosting the Zend Framework based application in the production environment is very simple

and straight-forward. Just create a VirtualHost in the Apache configuration file and point the

DocumentRoot to the Public folder of the Zend Framework application.

A sample configuration (myapp) is given below:

<VirtualHost *:80>

 ServerName myapp.localhost

 DocumentRoot /path/to/install/myapp/public

 <Directory /path/to/install/myapp/public>

 DirectoryIndex index.php

 AllowOverride All

Zend Framework

 18

 Order allow,deny

 Allow from all

 <IfModule mod_authz_core.c>

 Require all granted

 </IfModule>

 </Directory>

</VirtualHost>

Zend Framework

 19

Before proceeding with this chapter, let us have a brief understanding of MVC. A Model View

Controller is a software approach that separates the application logic from the presentation.

In practice, it permits the webpages to contain minimal PHP scripting since the presentation

is separate from it.

The short description of the MVC Components is as follows

 Model: Model represents the structure of the application data. Typically, model classes

contain functions that helps to retrieve, insert and update business data in the

back-end database (MySQL, PostgreSQL, etc.).

 View: View is the presentation layer of the MVC Application. It gets the models data

through the Controller and display it as needed. It is loosely coupled to the Controller

and the Model and so, it can be changed without affecting either the Model and the

Controller.

 Controller: The Controller is the main component of the MVC architecture. Every

request first hits the controller. In other words, the controller processes all the request

and serves as an intermediary between the Model, View, and any other resources

needed to process the HTTP request and to generate the response.

In the next chapter, we will understand the different concepts of the Zend Framework.

4. Zend Framework – MVC Architecture

Zend Framework

 20

Zend Framework is a collection of 60+ components. They are loosely connected with each

other. They can be used as both stand-alone component as well as a group of components

working as a single unit.

Zend Framework provides three most important components, which are –

 zend-servicemanager

 zend-eventmanager and

 zend-modulemanager.

They provide Zend components the ability to integrate with other components efficiently.

 Event Manager – It gives the ability to create event based programming. This helps

to create, inject and manage new events.

 Service Manager – It gives the ability to consume any services (PHP classes) from

anywhere with a little effort.

 Module Manager – Ability to convert a collection of PHP classes with similar

functionality into a single unit called as a module. The newly created modules can be

used, maintained and configured as a single unit.

We will cover these concepts in detail in the subsequent chapters.

5. Zend Framework – Concepts

Zend Framework

 21

The Zend Framework includes a powerful service locator pattern implementation called zend-

servicemanager. Zend framework extensively uses the service manager for all its

functionalities. The Service Manager provides a high-level abstraction for the Zend

Framework. It also integrates nicely with all the other components of the Zend Framework.

Install Service Manager

The Service Manager component can be installed using the composer tool.

composer require zendframework/zend-servicemanager

Example

First, all the services need to be registered into the service manager. Once the services are

registered into the server manager system, it can be accessed at any time with minimal

efforts. The service manager provides a lot of options to register the service. A simple example

is as follows:

use Zend\ServiceManager\ServiceManager;

use Zend\ServiceManager\Factory\InvokableFactory;

use stdClass;

$serviceManager = new ServiceManager([

 'factories' => [

 stdClass::class => InvokableFactory::class,

],

]);

The above code registers the stdClass into the system using the Factory option. Now, we

can get an instance of the stdClass at any time using the get() method of the service manager

as shown below.

use Zend\ServiceManager\ServiceManager;

$object = $serviceManager->get(stdClass::class);

6. Zend Framework – Service Manager

Zend Framework

 22

The get() method shares the retrieved object and so, the object returned by calling the get()

method multiple times is one and the same instance. To get a different instance every time,

the service manager provides another method, which is the build() method.

use Zend\ServiceManager\ServiceManager;

$a = $serviceManager->build(stdClass::class);

$b = $serviceManager->build(stdClass::class);

Service Manager Registration

The service manager provides a set of methods to register a component. Some of the most

important methods are as given below:

 Factory method

 Abstract factory method

 Initializer method

 Delegator factory method

We will discuss each of these in detail in the upcoming chapters.

Factory Method

A factory is basically any callable or any class that implements the FactoryInterface

(Zend\ServiceManager\Factory\FactoryInterface).

The FactoryInterface has a single method:

public function __invoke(ContainerInterface $container, $requestedName, array
$options = null)

The arguments details of the FactoryInterface is as follows:

 container (ContainerInterface) – It is the base interface of the ServiceManager. It

provides an option to get other services.

 requestedName – It is the service name.

 options – It gives additional options needed for the service.

Let us create a simple class implementing the FactoryInterface and see how to register the

class.

Class: Test - Object to be Retrieved

use stdClass;

Zend Framework

 23

class Test

{

 public function __construct(stdClass $sc)

 {

 // use $sc

 }

}

The Test class depends on the stdClass.

Class: TestFactory - Class to Initialize Test Object

class TestFactory implements FactoryInterface

{

 public function __invoke(ContainerInterface $container, $requestedName, array
$options = null)

 {

 $dep = $container->get(stdClass::class);

 return new Test($dep);

 }

}

The TestFactory uses a container to retrieve the stdClass, creates the instance of the Test

class, and returns it.

Registration and Usage of the Zend Framework

Let us now understand how to register and use the Zend Framework.

serviceManager $sc = new ServiceManager([

 'factories' => [

 stdClass::class => InvokableFactory::class,

 Test::class => TestFactory::class

]

]);

Zend Framework

 24

$test = $sc->get(Test::class);

The service manager provides a special factory called InvokableFactory to retrieve any class

which has no dependency. For example, the stdClass can be configured using the

InvokableFactory since the stdClass does not depend on any other class.

serviceManager $sc = new ServiceManager([

 'factories' => [

 stdClass::class => InvokableFactory::class

]

]);

$stdC = $sc->get(stdClass::class);

Another way to retrieve an object without implementing the FactoryInterfac or using the

InvokableFactory is using the inline method as given below.

$serviceManager = new ServiceManager([

 'factories' => [

 stdClass::class => InvokableFactory::class,

 Test::class => function(ContainerInterface $container, $requestedName) {

 $dep= $container->get(stdClass::class);

 return new Test($dep);

 },

],

]);

Abstract Factory Method

Sometimes, we may need to create objects, which we come to know only at runtime. This

situation can be handled using the AbstractFactoryInterface, which is derived from the

FactoryInterface.

The AbstractFactoryInterface defines a method to check whether the object can be created at

the requested instance or not. If object creation is possible, it will create the object using the

__invokemethod of the FactoryInterface and return it.

The signature of the AbstractFactoryInterface is as follows:

Zend Framework

 25

public function canCreate(ContainerInterface $container, $requestedName)

Initializer Method

The Initializer Method is a special option to inject additional dependency for already created

services. It implements the InitializerInterface and the signature of the sole method

available is as follows:

public function(ContainerInterface $container, $instance)

function(ContainerInterface $container, $instance) {

 if (! $instance instanceof EventManagerAwareInterface) {

 return;

 }

 $instance->setEventManager($container->get(EventManager::class));

}

In the above example, the method checks whether the instance is of type

EventManagerAwareInterface. If it is of type EventManagerAwareInterface, it sets the

event manager object, otherwise not. Since, the method may or may not set the dependency,

it is not reliable and produces many runtime issues.

Delegator Factory Method

Zend Framework supports delegators pattern through DelegatorFactoryInterface. It can

be used to decorate the service.

The signature of this function is as follows:

public function __invoke(ContainerInterface $container,

 $name, callable $callback, array $options = null

);

Here, the $callback is responsible for decorating the service instance.

Lazy Services

Lazy service is one of those services which will not be fully initialized at the time of creation.

They are just referenced and only initialized when it is really needed. One of the best example

is database connection, which may not be needed in all places. It is an expensive resource as

well as have time-consuming process to create. Zend framework provides

LazyServiceFactory derived from the DelegatorFactoryInterface, which can produce lazy

Zend Framework

 26

service with the help of the Delegator concept and a 3rd party proxy manager, which is called

as the ocramius proxy manager.

Plugin Manager

Plugin Manager extends the service manager and provides additional functionality like

instance validation. Zend Framework extensively uses the plugin manager.

For example, all the validation services come under the ValidationPluginManager.

Configuration Option

The service manager provides some options to extend the feature of a service manager. They

are shared, shared_by_default and aliases. As we discussed earlier, retrieved objects are

shared among requested objects by default and we can use the build() method to get a

distinct object. We can also use the shared option to specify which service to be shared. The

shared_by_default is same as the shared feature, except that it applies for all services.

$serviceManager = new ServiceManager([

 'factories' => [

 stdClass::class => InvokableFactory::class

],

 'shared' => [

 stdClass::class => false // will not be shared

],

 'shared_by_default' => false, // will not be shared and applies to all

service

]);

The aliases option can be used to provide an alternative name to the registered services.

This have both advantages and disadvantages. On the positive side, we can provide

alternative short names for a service. But, at the same time, the name may become out of

context and introduce bugs.

aliases' => [

 'std' => stdClass::class,

 'standard' => 'std'

]

Zend Framework

 27

All modern applications need solid and flexible event components. Zend Framework provides

one such component, zend-eventmanager. The zend-eventmanager helps to design high

level architecture and supports subject/observer pattern and aspect oriented programming.

Install Event Manager

The event manager can be installed using the Composer as specified below:

composer require zendframework/zend-eventmanager

Concepts of the Event Manager

The core concepts of the event manager are as follows:

 Event - Event is arbitrarily named action, say greet.

 Listener - Any PHP callback. They are attached to the events and gets called when

the event is triggered. The default signature of Listener is –

 function(EventInterface $e)

 EventInterface Class - Used to specify the event itself. It has methods to set and

get event information like name (set/getName), target (get/setTarget) and parameter

(get/setParams).

 EventManager class - The instance of the EventManager tracks all the defined events

in an application and its corresponding listeners. The EventManager provides a

method, attach to attach listener to an event and it provides a method, trigger to

trigger any pre-defined event. Once trigger is called, EventManager calls the listener

attached to it.

 EventManagerAwareInterface - For a class to support event based programming,

it needs to implement the EventManagerAwareInterface. It provides two methods,

setEventManager and getEventManager to get and set the event manager.

Example

Let us write a simple PHP console application to understand the event manager concept.

Follow the steps given below.

 Create a folder “eventapp”.

 Install zend-eventmanager using the composer.

7. Zend Framework – Event Manager

Zend Framework

 28

 Create a PHP file Greeter.php inside the “eventapp” folder.

 Create class Greeter and implement the EventManagerAwareInterface.

require __DIR__ . '/vendor/autoload.php';

class Greeter implements EventManagerAwareInterface

 {

 // code

 }

Here, require is used to autoload all composer installed components.

Write the setEventManager method in class Greeter as shown below:

 public function setEventManager(EventManagerInterface $events)

 {

 $events->setIdentifiers([

 __CLASS__,

 get_called_class(),

]);

 $this->events = $events;

 return $this;

 }

This method sets the current class into the given event manager ($events argument) and

then sets the event manager in local variable $events.

The next step is to write the getEventManager method in class Greeter as shown below:

 public function getEventManager()

 {

 if (null === $this->events) {

 $this->setEventManager(new EventManager());

 }

 return $this->events;

 }

The method gets the event manager from a local variable. if it is not available, then it creates

an instance of event manager and returns it.

Zend Framework

 29

Write a method, greet, in class Greeter.

 public function greet($message)

 {

 printf("\"%s\" from class\n", $message);

 $this->getEventManager()->trigger(__FUNCTION__, $this,

 [$message]);

 }

This method gets the event manager and fires / triggers events attached to it.

The next step is to create an instance of the Greeter class and attach a listener to its method,

greet.

 $greeter = new Greeter();

 $greeter->getEventManager()->attach('greet', function($e) {

 $event_name = $e->getName();

 $target_name = get_class($e->getTarget());

 $params_json = json_encode($e->getParams());

 printf("\"%s\" event of class \"%s\" is called." .

 " The parameter supplied is %s\n",

 $event_name,

 $target_name,

 $params_json);

 });

The listener callback just prints the name of the event, target and the supplied parameters.

The complete listing of the Greeter.php is as follows:

 <?php

 require __DIR__ . '/vendor/autoload.php';

 use Zend\EventManager\EventManagerInterface;

 use Zend\EventManager\EventManager;

 use Zend\EventManager\EventManagerAwareInterface;

Zend Framework

 30

 class Greeter implements EventManagerAwareInterface

 {

 protected $events;

 public function setEventManager(EventManagerInterface $events)

 {

 $events->setIdentifiers([

 __CLASS__,

 get_called_class(),

]);

 $this->events = $events;

 return $this;

 }

 public function getEventManager()

 {

 if (null === $this->events) {

 $this->setEventManager(new EventManager());

 }

 return $this->events;

 }

 public function greet($message)

 {

 printf("\"%s\" from class\n", $message);

 $this->getEventManager()->trigger(__FUNCTION__, $this,

 [$message]);

 }

 }

 $greeter = new Greeter();

 $greeter->greet("Hello");

 $greeter->getEventManager()->attach('greet', function($e) {

 $event_name = $e->getName();

 $target_name = get_class($e->getTarget());

 $params_json = json_encode($e->getParams());

Zend Framework

 31

 printf("\"%s\" event of class \"%s\" is called." .

 " The parameter supplied is %s\n",

 $event_name,

 $target_name,

 $params_json);

 });

 $greeter->greet("Hello");

Now, run the application in the command prompt php Greeter.php and the result will be as

follows:

 "Hello" from class

 "Hello" from class

 "greet" event of class "Greeter" is called. The parameter supplied is ["Hello"]

The above sample application explains only the basics of an event manager. The Event

manager provides many more advanced options such as Listener Priority, Custom

Callback Prototype / Signature, Short Circuiting, etc. The Event manager is used

extensively in the Zend MVC framework.

Zend Framework

 32

The Zend Framework provides a powerful module system. The module system has three

components. They are as follows:

 Module Autoloader – A Module Autoloader is responsible for locating and loading of

modules from variety of sources. It can load modules packaged as Phar archives as

well. The implementation of the Module Autoloader is located at
myapp/vendor/zendframework/zend-loader/src/ModuleAutoloader.php.

 Module Manager – Once the Module Autoloader locates the modules, the module

manager fires a sequence of events for each module. The implementation of the

Module Manager is located at myapp/vendor/zendframework/zend-
modulemanager/src/ModuleManager.php.

 Module Manager Listeners – They can be attached to the events fired by the Module

Manager. By attaching to the events of module manager, they can do everything from
resolving and loading modules to performing complex work for each modules.

MVC Web Module System

The MVC Web Application in the Zend Framework is usually written as Modules. A single

website can contain one or more modules grouped by functionality. The recommended

structure for MVC-Oriented module is as follows:

module_root/

 Module.php

 autoload_classmap.php

 autoload_function.php

 autoload_register.php

 config/

 module.config.php

 public/

 images/

 css/

 js/

 src/

 <module_namespace>/

 <code files>

 test/

8. Zend Framework – Module System

Zend Framework

 33

 phpunit.xml

 bootstrap.php

 <module_namespace>/

 <test code files>

 view/

 <dir-named-after-module-namespace>/

 <dir-named-after-a-controller>/

 <.phtml files>

The structure is same as discussed in the previous chapter, but here it is generic. The

autoload_ files can be used as a default mechanism for autoloading the classes available in

the module without using the advanced Module Manager available in the

zend-modulemanager.

 autoload_classmap.php – Returns an array of class name and its corresponding
filename.

 autoload_function.php – Returns a PHP callback. This can utilize classes returned

by autoload_classmap.php.

 autoload_register.php – Registers the PHP callback that is returned by the
autoload_function.php.

These autoload files are not required but recommended. In the skeleton application, we have

not used the autoload_ files.

Module Class

The Module class should be named Module and the namespace of the module class should

be Module name. This will help the Zend Framework to resolve and load the module easily.

The Application module code in the skeleton(myapp)

application,myapp/module/Application/src/Module.php is as follows:

namespace Application;

class Module

{

 const VERSION = '3.0.2dev';

 public function getConfig()

 {

 return include __DIR__ . '/../config/module.config.php';

Zend Framework

 34

 }

}

The Zend Framework module manager will call the getConfig() function automatically and

will do the necessary steps.

Zend Framework

 35

End of ebook preview

If you liked what you saw…

Buy it from our store @ https://store.tutorialspoint.com

