

ZooKeeper

i

About the Tutorial

ZooKeeper is a distributed co-ordination service to manage large set of hosts. Co-ordinating and

managing a service in a distributed environment is a complicated process. ZooKeeper solves this

issue with its simple architecture and API. ZooKeeper allows developers to focus on core

application logic without worrying about the distributed nature of the application.

The ZooKeeper framework was originally built at “Yahoo!” for accessing their applications in an

easy and robust manner. Later, Apache ZooKeeper became a standard for organized service

used by Hadoop, HBase, and other distributed frameworks. For example, Apache HBase uses

ZooKeeper to track the status of distributed data. This tutorial explains the basics of ZooKeeper,

how to install and deploy a ZooKeeper cluster in a distributed environment, and finally concludes

with a few examples using Java programming and sample applications.

Audience

This tutorial has been prepared for professionals aspiring to make a career in Big Data Analytics

using ZooKeeper framework. It will give you enough understanding on how to use ZooKeeper to

create distributed clusters.

Prerequisites

Before proceeding with this tutorial, you must have a good understanding of Java because the

ZooKeeper server runs on JVM, distributed process, and Linux environment.

Copyright & Disclaimer

© Copyright 2015 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I) Pvt.

Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish any

contents or a part of contents of this e-book in any manner without written consent of the

publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt. Ltd.

provides no guarantee regarding the accuracy, timeliness or completeness of our website or its

contents including this tutorial. If you discover any errors on our website or in this tutorial,

please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

ZooKeeper

ii

Table of Contents

About the Tutorial ... i

Audience.. i

Prerequisites ... i

Copyright & Disclaimer .. i

Table of Contents .. ii

1. ZOOKEEPER – OVERVIEW .. 1

Distributed Application ... 1

What is Apache ZooKeeper Meant For? ... 2

Benefits of ZooKeeper .. 3

2. ZOOKEEPER – FUNDAMENTALS .. 4

Architecture of ZooKeeper ... 4

Hierarchical Namespace ... 5

Sessions ... 7

Watches .. 7

3. ZOOKEEPER – WORKFLOW .. 8

Nodes in a ZooKeeper Ensemble .. 8

4. ZOOKEEPER – LEADER ELECTION .. 10

5. ZOOKEEPER – INSTALLATION ... 11

Step 1: Verifying Java Installation ... 11

Step 2: ZooKeeper Framework Installation .. 12

6. ZOOKEEPER – CLI .. 15

Create Znodes .. 15

Get Data .. 16

ZooKeeper

iii

Watch .. 18

Set Data .. 19

Create Children / Sub-znode .. 20

List Children ... 20

Check Status .. 21

Remove a Znode .. 22

7. ZOOKEEPER – API .. 23

Basics of ZooKeeper API .. 23

Java Binding .. 23

Connect to the ZooKeeper Ensemble ... 24

Create a Znode ... 25

Exists – Check the Existence of a Znode .. 28

getData Method .. 29

setData Method .. 32

getChildren Method ... 34

Delete a Znode ... 36

8. ZOOKEEPER – APPLICATIONS ... 38

Yahoo! ... 38

Apache Hadoop ... 38

Apache HBase ... 38

Apache Solr .. 39

ZooKeeper

1

ZooKeeper is a distributed co-ordination service to manage large set of hosts. Co-ordinating and

managing a service in a distributed environment is a complicated process. ZooKeeper solves this

issue with its simple architecture and API. ZooKeeper allows developers to focus on core

application logic without worrying about the distributed nature of the application.

The ZooKeeper framework was originally built at “Yahoo!” for accessing their applications in an

easy and robust manner. Later, Apache ZooKeeper became a standard for organized service

used by Hadoop, HBase, and other distributed frameworks. For example, Apache HBase uses

ZooKeeper to track the status of distributed data.

Before moving further, it is important that we know a thing or two about distributed applications.

So, let us start the discussion with a quick overview of distributed applications.

Distributed Application

A distributed application can run on multiple systems in a network at a given time

(simultaneously) by coordinating among themselves to complete a particular task in a fast and

efficient manner. Normally, complex and time-consuming tasks, which will take hours to

complete by a non-distributed application (running in a single system) can be done in minutes

by a distributed application by using computing capabilities of all the system involved.

The time to complete the task can be further reduced by configuring the distributed application

to run on more systems. A group of systems in which a distributed application is running is called

a Cluster and each machine running in a cluster is called a Node.

A distributed application has two parts, Server and Client application. Server applications are

actually distributed and have a common interface so that clients can connect to any server in

1. ZOOKEEPER – OVERVIEW

ZooKeeper

2

the cluster and get the same result. Client applications are the tools to interact with a distributed

application.

Benefits of Distributed Applications

 Reliability – Failure of a single or a few systems does not make the whole system to

fail.

 Scalability – Performance can be increased as and when needed by adding more

machines with minor change in the configuration of the application with no downtime.

 Transparency – Hides the complexity of the system and shows itself as a single entity

/ application.

Challenges of Distributed Applications

 Race condition - Two or more machines trying to perform a particular task, which

actually needs to be done only by a single machine at any given time. For example,

shared resources should only be modified by a single machine at any given time.

 Deadlock – Two or more operations waiting for each other to complete indefinitely.

 Inconsistency – Partial failure of data.

What is Apache ZooKeeper Meant For?

Apache ZooKeeper is a service used by a cluster (group of nodes) to coordinate between

themselves and maintain shared data with robust synchronization techniques. ZooKeeper is itself

a distributed application providing services for writing a distributed application.

The common services provided by ZooKeeper are as follows:

ZooKeeper

3

 Naming service – Identifying the nodes in a cluster by name. It is similar to DNS, but

for nodes.

 Configuration management – Latest and up-to-date configuration information of the

system for a joining node.

 Cluster management – Joining / leaving of a node in a cluster and node status at real

time.

 Leader election – Electing a node as leader for coordination purpose.

 Locking and synchronization service – Locking the data while modifying it. This

mechanism helps you in automatic fail recovery while connecting other distributed

applications like Apache HBase.

 Highly reliable data registry – Availability of data even when one or a few nodes are

down.

Distributed applications offer a lot of benefits, but they throw a few complex and hard-to-crack

challenges as well. ZooKeeper framework provides a complete mechanism to overcome all the

challenges. Race condition and deadlock are handled using fail-safe synchronization

approach. Another main drawback is inconsistency of data, which ZooKeeper resolves with

atomicity.

Benefits of ZooKeeper

Here are the benefits of using ZooKeeper:

 Simple distributed coordination process

 Synchronization – Mutual exclusion and co-operation between server processes. This

process helps in Apache HBase for configuration management.

 Ordered Messages

 Serialization – Encode the data according to specific rules. Ensure your application runs

consistently. This approach can be used in MapReduce to coordinate queue to execute

running threads.

 Reliability

 Atomicity – Data transfer either succeed or fail completely, but no transaction is partial.

ZooKeeper

4

Before going deep into the working of ZooKeeper, let us take a look at the fundamental concepts

of ZooKeeper. We will discuss the following topics in this chapter:

 Architecture

 Hierarchical namespace

 Session

 Watches

Architecture of ZooKeeper

Take a look at the following diagram. It depicts the “Client-Server Architecture” of ZooKeeper.

2. ZOOKEEPER – FUNDAMENTALS

ZooKeeper

5

Each one of the components that is a part of the ZooKeeper architecture has been explained in

the following table.

Part Description

Client

Clients, one of the nodes in our distributed application cluster, access

information from the server. For a particular time interval, every client

sends a message to the server to let the sever know that the client is

alive.

Similarly, the server sends an acknowledgement when a client connects.

If there is no response from the connected server, the client

automatically redirects the message to another server.

Server

Server, one of the nodes in our ZooKeeper ensemble, provides all the

services to clients. Gives acknowledgement to client to inform that the

server is alive.

Ensemble
Group of ZooKeeper servers. The minimum number of nodes that is

required to form an ensemble is 3.

Leader
Server node which performs automatic recovery if any of the connected

node failed. Leaders are elected on service startup.

Follower Server node which follows leader instruction.

Hierarchical Namespace

The following diagram depicts the tree structure of ZooKeeper file system used for memory

representation. ZooKeeper node is referred as znode. Every znode is identified by a name and

separated by a sequence of path (/).

 In the diagram, first you have a root znode separated by “/”. Under root, you have two

logical namespaces config and workers.

 The config namespace is used for centralized configuration management and the

workers namespace is used for naming.

 Under config namespace, each znode can store upto 1MB of data. This is similar to UNIX

file system except that the parent znode can store data as well. The main purpose of this

structure is to store synchronized data and describe the metadata of the znode. This

structure is called as ZooKeeper Data Model.

ZooKeeper

6

Every znode in the ZooKeeper data model maintains a stat structure. A stat simply provides

the metadata of a znode. It consists of Version number, Access Control List (ACL), Timestamp,

and Data length.

 Version number: Every znode has a version number, which means every time the data

associated with the znode changes, its corresponding version number would also

increased. The use of version number is important when multiple zookeeper clients are

trying to perform operations over the same znode.

 Access Control List (ACL): ACL is basically an authentication mechanism for accessing

the znode. It governs all the znode read and write operations.

 Timestamp: Timestamp represents time elapsed from znode creation and modification.

It is usually represented in milliseconds. ZooKeeper identifies every change to the znodes

from “Transaction ID” (zxid). Zxid is unique and maintains time for each transaction so

that you can easily identify the time elapsed from one request to another request.

 Data length: Total amount of the data stored in a znode is the data length. You can

store a maximum of 1MB of data.

ZooKeeper

7

Types of Znodes

Znodes are categorized as persistence, sequential, and ephemeral.

 Persistence znode: Persistence znode is alive even after the client, which created that

particular znode, is disconnected. By default, all znodes are persistent unless otherwise

specified.

 Ephemeral znode: Ephemeral znodes are active until the client is alive. When a client

gets disconnected from the ZooKeeper ensemble, then the ephemeral znodes get deleted

automatically. For this reason, only ephemeral znodes are not allowed to have a children

further. If an ephemeral znode is deleted, then the next suitable node will fill its position.

Ephemeral znodes play an important role in Leader election.

 Sequential znode: Sequential znodes can be either persistent or ephemeral. When a

new znode is created as a sequential znode, then ZooKeeper sets the path of the znode

by attaching a 10 digit sequence number to the original name. For example, if a znode

with path /myapp is created as a sequential znode, ZooKeeper will change the path to

/myapp0000000001 and set the next sequence number as 0000000002. If two

sequential znodes are created concurrently, then ZooKeeper never uses the same number

for each znode. Sequential znodes play an important role in Locking and Synchronization.

ZooKeeper

8

End of ebook preview

If you liked what you saw…

Buy it from our store @ https://store.tutorialspoint.com

