如何在 Python 中将列表作为行附加到 Pandas DataFrame?
要打开列表,我们可以使用 append() 方法。有了它,我们还可以使用 loc() 方法。首先,让我们导入所需的库 -
import pandas as pd
以下是按团队排名组织的数据 -
Team = [['India', 1, 100],['Australia', 2, 85],['England', 3, 75],['New Zealand', 4 , 65],['South Africa', 5, 50]]
使用上述数据并添加列来创建 DataFrame -
dataFrame = pd.DataFrame(Team, columns=['Country', 'Rank', 'Points'])
假设以下是要附加的行 -
myList = [["Sri Lanka", 6, 40]]
以列表的形式附加上述行 -
dataFrame = dataFrame.append(pd.DataFrame(myList, columns=['Country', 'Rank', 'Points']), ignore_index=True)
示例
以下是使用 append() 附加的代码 -
import pandas as pd # data in the form of list of team rankings Team = [['India', 1, 100],['Australia', 2, 85],['England', 3, 75],['New Zealand', 4 , 65],['South Africa', 5, 50]] # Creating a DataFrame and adding columns dataFrame = pd.DataFrame(Team, columns=['Country', 'Rank', 'Points']) print"DataFrame...\n",dataFrame # row to be appended myList = [["Sri Lanka", 6, 40]] # append the above row in the form of list dataFrame = dataFrame.append(pd.DataFrame(myList, columns=['Country', 'Rank', 'Points']), ignore_index=True) # display the update dataframe print"\nUpdated DataFrame after appending a row...\n",dataFrame
输出
这将产生以下输出 -
DataFrame... Country Rank Points 0 India 1 100 1 Australia 2 85 2 England 3 75 3 New Zealand 4 65 4 South Africa 5 50 Updated DataFrame after appending a row... Country Rank Points 0 India 1 100 1 Australia 2 85 2 England 3 75 3 New Zealand 4 65 4 South Africa 5 50 5 Sri Lanka 6 40
让我们看另一个例子 -
示例
以下是使用 loc() 方法附加的代码 -
import pandas as pd # data in the form of list of team rankings Team = [['India', 1, 100],['Australia', 2, 85],['England', 3, 75],['New Zealand', 4 , 65],['South Africa', 5, 50],['Bangladesh', 6, 40]] # Creating a DataFrame and adding columns dataFrame = pd.DataFrame(Team, columns=['Country', 'Rank', 'Points']) print"DataFrame...\n",dataFrame # row to be appended myList = ["Sri Lanka", 7, 30] # append the above row in the form of list using loc() dataFrame.loc[len(dataFrame)] = myList # display the update dataframe print"\nUpdated DataFrame after appending a row using loc...\n",dataFrame
输出
这将产生以下输出 -
DataFrame... Country Rank Points 0 India 1 100 1 Australia 2 85 2 England 3 75 3 New Zealand 4 65 4 South Africa 5 50 5 Bangladesh 6 40 Updated DataFrame after appending a row using loc... Country Rank Points 0 India 1 100 1 Australia 2 85 2 England 3 75 3 New Zealand 4 65 4 South Africa 5 50 5 Bangladesh 6 40 6 Sri Lanka 7 30
广告