如何将 R 数据框中的行转换为列表?
有时需要对每一行进行不同的处理,因此,可能需要将这些行转换为列表。这将帮助我们对每一行元素进行单独的操作。如要将行转换为列表,我们可以使用 split 函数通过定义数据框中的行数。
考虑以下数据框 -
示例
set.seed(101) x1<-rnorm(20,5,1) x2<-rnorm(20,5,2) x3<-rnorm(20,5,1.5) x4<-rnorm(20,3,0.096) df1<-data.frame(x1,x2,x3,x4) df1
输出
x1 x2 x3 x4 1 4.673964 4.672489 5.723688 2.975059 2 5.552462 6.417044 6.137321 2.864527 3 4.325056 4.464039 1.521009 2.938430 4 5.214359 2.072156 4.310743 3.010796 5 5.310769 6.488872 3.341924 3.040570 6 6.173966 2.179220 5.604392 3.037136 7 5.618790 5.934135 5.853402 2.933971 8 4.887266 4.761360 3.940875 3.014295 9 5.917028 5.934478 4.564864 2.994466 10 4.776741 5.996271 2.774183 2.992817 11 5.526448 6.789874 3.274617 3.144950 12 4.205156 5.558304 4.588293 3.155514 13 6.427756 7.015732 5.866852 3.110703 14 3.533180 0.853787 2.904646 2.992550 15 4.763317 7.379707 6.123587 2.825382 16 4.806662 3.551252 3.423220 2.900405 17 4.150245 5.335968 5.248071 3.029039 18 5.058465 6.840670 6.694714 2.877317 19 4.182330 1.656790 6.760584 3.013281 20 2.949692 5.896938 4.358205 2.995106
将 df1 的行转换为列表 -
df1_row_list<-split(df1,1:nrow(df1))
df1_row_list
$`1`
x1 x2 x3 x4 1 4.673964 4.672489 5.723688 2.975059
$`2`
x1 x2 x3 x4 2 5.552462 6.417044 6.137321 2.864527
$`3`
x1 x2 x3 x4 3 4.325056 4.464039 1.521009 2.93843
$`4`
x1 x2 x3 x4 4 5.214359 2.072156 4.310743 3.010796
$`5`
x1 x2 x3 x4 5 5.310769 6.488872 3.341924 3.04057
$`6`
x1 x2 x3 x4 6 6.173966 2.17922 5.604392 3.037136
$`7`
x1 x2 x3 x4 7 5.61879 5.934135 5.853402 2.933971
$`8`
x1 x2 x3 x4 8 4.887266 4.76136 3.940875 3.014295
$`9`
x1 x2 x3 x4 9 5.917028 5.934478 4.564864 2.994466
$`10`
x1 x2 x3 x4 10 4.776741 5.996271 2.774183 2.992817
$`11`
x1 x2 x3 x4 11 5.526448 6.789874 3.274617 3.14495
$`12`
x1 x2 x3 x4 12 4.205156 5.558304 4.588293 3.155514
$`13`
x1 x2 x3 x4 13 6.427756 7.015732 5.866852 3.110703
$`14`
x1 x2 x3 x4 14 3.53318 0.853787 2.904646 2.99255
$`15`
x1 x2 x3 x4 15 4.763317 7.379707 6.123587 2.825382
$`16`
x1 x2 x3 x4 16 4.806662 3.551252 3.42322 2.900405
$`17`
x1 x2 x3 x4 17 4.150245 5.335968 5.248071 3.029039
$`18`
x1 x2 x3 x4 18 5.058465 6.84067 6.694714 2.877317
$`19`
x1 x2 x3 x4 19 4.18233 1.65679 6.760584 3.013281
$`20`
x1 x2 x3 x4 20 2.949692 5.896938 4.358205 2.995106
is.list(df1_row_list) [1] TRUE
我们来看另一个示例 -
Explore our latest online courses and learn new skills at your own pace. Enroll and become a certified expert to boost your career.
示例
y1<-LETTERS[1:20] y2<-1:20 y3<-sample(0:9,20,replace=TRUE) y4<-rpois(20,3) y5<-rexp(20,3) df2<-data.frame(y1,y2,y3,y4,y5) df2
输出
y1 y2 y3 y4 y5 1 A 1 6 1 0.12535201 2 B 2 1 4 0.04849127 3 C 3 7 4 0.10894953 4 D 4 0 4 0.32620261 5 E 5 3 7 0.04711375 6 F 6 5 2 0.10263975 7 G 7 3 1 0.35080088 8 H 8 2 4 0.25617221 9 I 9 0 0 0.31124956 10 J 10 0 5 0.07771391 11 K 11 7 2 0.02583599 12 L 12 2 2 0.06699178 13 M 13 3 3 0.04767600 14 N 14 1 4 0.11942077 15 O 15 6 4 0.62873345 16 P 16 3 6 0.08066371 17 Q 17 3 3 0.58563662 18 R 18 9 0 0.00548393 19 S 19 0 2 0.01171107 20 T 20 0 1 0.10728116
将 df2 的行转换为列表 -
df2_row_list<-split(df2,1:nrow(df2))
df2_row_list
$`1`
y1 y2 y3 y4 y5 1 A 1 4 2 0.02331396
$`2`
y1 y2 y3 y4 y5 2 B 2 6 2 0.2343971
$`3`
y1 y2 y3 y4 y5 3 C 3 1 5 0.022928
$`4`
y1 y2 y3 y4 y5 4 D 4 3 2 0.009332871
$`5`
y1 y2 y3 y4 y5 5 E 5 3 4 0.3321631
$`6`
y1 y2 y3 y4 y5 6 F 6 8 5 0.6256276
$`7`
y1 y2 y3 y4 y5 7 G 7 8 2 0.03358184
$`8`
y1 y2 y3 y4 y5 8 H 8 2 3 0.2089223
$`9`
y1 y2 y3 y4 y5 9 I 9 6 3 0.5231238
$`10`
y1 y2 y3 y4 y5 10 J 10 7 3 0.01456478
$`11`
y1 y2 y3 y4 y5 11 K 11 2 2 0.670605
$`12`
y1 y2 y3 y4 y5 12 L 12 1 2 0.1021066
$`13`
y1 y2 y3 y4 y5 13 M 13 5 7 0.2673457
$`14`
y1 y2 y3 y4 y5 14 N 14 0 1 0.442615
$`15`
y1 y2 y3 y4 y5 15 O 15 3 5 0.2244831
$`16`
y1 y2 y3 y4 y5 16 P 16 7 2 0.2897614
$`17`
y1 y2 y3 y4 y5 17 Q 17 2 4 0.4671283
$`18`
y1 y2 y3 y4 y5 18 R 18 7 3 0.274696
$`19`
y1 y2 y3 y4 y5 19 S 19 0 2 0.1120801
$`20`
y1 y2 y3 y4 y5 20 T 20 8 5 0.2727685
is.list(df2_row_list) [1] TRUE
广告