如何在 R 中按行创建数据框值向量?


若要按行创建数据框值向量,我们可以在使用 t 转置数据框之后使用 c 函数。例如,如果我们有一个包含许多列的数据框 df,则可以使用 c(t(df)) 将 df 值转换成一个向量,这将按行打印数据框的值。

示例 1

在线演示

set.seed(798)
x1<−rnorm(20,5,2)
x2<−rnorm(20,5,3)
df1<−data.frame(x1,x2)
df1

输出

      x1       x2
1 2.786103 −3.098242
2 8.533086 5.943967
3 10.291147 5.841057
4 5.449163 3.989173
5 5.810170 6.463880
6 4.479613 8.594108
7 7.569711 2.420207
8 8.058095 4.875600
9 3.827098 5.239763
10 5.807293 6.416752
11 4.431298 5.827411
12 4.140034 4.705993
13 6.643332 1.450062
14 1.787068 11.405792
15 5.356992 5.258035
16 5.027659 6.665030
17 3.617873 4.955072
18 8.190755 2.514271
19 4.675561 6.849762
20 10.532212 6.050328
Vector_df1<−c(t(df1))
Vector_df1
[1] 2.786103 −3.098242 8.533086 5.943967 10.291147 5.841057 5.449163
[8] 3.989173 5.810170 6.463880 4.479613 8.594108 7.569711 2.420207
[15] 8.058095 4.875600 3.827098 5.239763 5.807293 6.416752 4.431298
[22] 5.827411 4.140034 4.705993 6.643332 1.450062 1.787068 11.405792
[29] 5.356992 5.258035 5.027659 6.665030 3.617873 4.955072 8.190755
[36] 2.514271 4.675561 6.849762 10.532212 6.050328
is.vector(Vector_df1)
[1] TRUE

示例 2

在线演示

y1<−rpois(20,10)
y2<−rpois(20,5)
y3<−rpois(20,3)
df2<−data.frame(y1,y2,y3)
df2

输出

y1 y2 y3
1 6 7 1
2 7 7 4
3 16 6 3
4 12 4 4
5 9 4 3
6 10 3 4
7 8 4 1
8 12 4 0
9 9 4 4
10 15 4 5
11 4 6 5
12 10 4 2
13 8 9 2
14 7 4 5
15 9 7 3
16 8 3 7
17 9 6 3
18 6 3 3
19 11 6 7
20 7 2 0
Vector_df2<−c(t(df2))
Vector_df2
[1] 6 7 1 7 7 4 16 6 3 12 4 4 9 4 3 10 3 4 8 4 1 12 4 0 9
[26] 4 4 15 4 5 4 6 5 10 4 2 8 9 2 7 4 5 9 7 3 8 3 7 9 6
[51] 3 6 3 3 11 6 7 7 2 0
is.vector(Vector_df2)
[1] TRUE

示例 3

z1<−letters[1:20]
z2<−rexp(20,1.98)
z3<−runif(20,1,5)
df3<−data.frame(z1,z2,z3)
df3

输出

   z1       z2       z3
1 a 0.30649942 2.581508
2 b 0.49573688 1.005800
3 c 0.32632915 1.582261
4 d 0.16866850 2.364847
5 e 0.49920925 4.822604
6 f 0.48753521 2.516127
7 g 1.11453076 1.369764
8 h 0.03852521 3.055764
9 i 0.43320666 4.336745
10 j 1.53110506 1.253256
11 k 1.02885841 3.401008
12 l 0.93749136 1.272466
13 m 0.05544727 1.839311
14 n 0.06982751 3.857567
15 o 0.03554147 2.816643
16 p 0.27870340 4.920266
17 q 0.30576924 1.781030
18 r 0.13628651 2.365232
19 s 1.23068290 4.879601
20 t 0.31617628 1.026273
Vector_df3<−c(t(df3))
Vector_df3
[1] "a" "0.30649942" "2.581508" "b" "0.49573688"
[6] "1.005800" "c" "0.32632915" "1.582261" "d"
[11] "0.16866850" "2.364847" "e" "0.49920925" "4.822604"
[16] "f" "0.48753521" "2.516127" "g" "1.11453076"
[21] "1.369764" "h" "0.03852521" "3.055764" "i"
[26] "0.43320666" "4.336745" "j" "1.53110506" "1.253256"
[31] "k" "1.02885841" "3.401008" "l" "0.93749136"
[36] "1.272466" "m" "0.05544727" "1.839311" "n"
[41] "0.06982751" "3.857567" "o" "0.03554147" "2.816643"
[46] "p" "0.27870340" "4.920266" "q" "0.30576924"
[51] "1.781030" "r" "0.13628651" "2.365232" "s"
[56] "1.23068290" "4.879601" "t" "0.31617628" "1.026273"
is.vector(Vector_df3)
[1] TRUE

更新于: 07-11-2020

6K+ 浏览

开启你的 职业生涯

完成课程即可获得证书

开始入门
广告