如何在R数据框的特定列中删除包含NA值的行?


如果我们的数据框中存在缺失数据,如果我们有足够的信息了解信息缺失的情况的特征,则可以替换其中一些数据。但是,如果这些信息不可用,并且我们找不到合适的替换缺失值的方法,则可以使用`complete.cases`函数以及包含缺失值的列。

示例

考虑以下数据框

在线演示

> set.seed(19991)
> x1<-sample(c(NA,rnorm(5,2,1)),20,replace=TRUE)
> x2<-sample(c(NA,rnorm(5,40,0.87)),20,replace=TRUE)
> x3<-sample(c(NA,rnorm(5,1,0.015)),20,replace=TRUE)
> x4<-sample(c(NA,rnorm(10,5,1.27)),20,replace=TRUE)
> x5<-sample(c(NA,rnorm(8,1,0.20)),20,replace=TRUE)
> df1<-data.frame(x1,x2,x3,x4,x5)
> df1

输出

     x1        x2       x3        x4        x5
1 0.8287962 39.74094 0.9983586 6.338327 0.8692225
2 1.3167347 NA NA 4.133738 0.8692225
3 3.9911408 38.84212 1.0047761 5.825111 0.8423061
4 0.6426335 39.74094 1.0047761 5.177329 NA
5 1.3167347 NA 0.9963252 5.073915 0.8423061
6 0.8287962 38.84212 0.9963252 5.154073 1.0566156
7 NA 40.36844 0.9927987 NA 0.8423061
8 0.1952913 40.36844 1.0047761 6.338327 NA
9 3.9911408 NA 1.0366262 5.154073 1.1936387
10 0.6426335 39.77818 0.9927987 5.177329 0.8557775
11 NA NA 1.0047761 7.216787 0.9506370
12 NA 38.84212 0.9983586 NA 0.8423061
13 1.3167347 39.77818 0.9963252 5.825111 0.8557775
14 0.8287962 39.77818 1.0366262 5.177329 NA
15 0.1952913 NA 0.9927987 5.073915 0.8692225
16 0.1952913 38.84212 1.0366262 5.154073 0.8286973
17 0.1952913 38.84212 1.0366262 NA 0.9506370
18 1.3167347 40.36844 0.9983586 NA 1.0566156
19 0.1952913 39.80231 NA 5.073915 NA
20 NA NA 0.9983586 5.073915 0.8557775

删除df1中第3到5列包含NA的行

示例

> df1[complete.cases(df1[3:5]),]

输出

       x1       x2      x3        x4      x5
1 0.8287962 39.74094 0.9983586 6.338327 0.8692225
3 3.9911408 38.84212 1.0047761 5.825111 0.8423061
5 1.3167347 NA 0.9963252 5.073915 0.8423061
6 0.8287962 38.84212 0.9963252 5.154073 1.0566156
9 3.9911408 NA 1.0366262 5.154073 1.1936387
10 0.6426335 39.77818 0.9927987 5.177329 0.8557775
11 NA NA 1.0047761 7.216787 0.9506370
13 1.3167347 39.77818 0.9963252 5.825111 0.8557775
15 0.1952913 NA 0.9927987 5.073915 0.8692225
16 0.1952913 38.84212 1.0366262 5.154073 0.8286973
20 NA NA 0.9983586 5.073915 0.8557775

删除df1中第1到3列包含NA的行

示例

> df1[complete.cases(df1[1:3]),]

输出

      x1        x2        x3      x4        x5
1 0.8287962 39.74094 0.9983586 6.338327 0.8692225
3 3.9911408 38.84212 1.0047761 5.825111 0.8423061
4 0.6426335 39.74094 1.0047761 5.177329 NA
6 0.8287962 38.84212 0.9963252 5.154073 1.0566156
8 0.1952913 40.36844 1.0047761 6.338327 NA
10 0.6426335 39.77818 0.9927987 5.177329 0.8557775
13 1.3167347 39.77818 0.9963252 5.825111 0.8557775
14 0.8287962 39.77818 1.0366262 5.177329 NA
16 0.1952913 38.84212 1.0366262 5.154073 0.8286973
17 0.1952913 38.84212 1.0366262 NA 0.9506370
18 1.3167347 40.36844 0.9983586 NA 1.0566156

删除df1中第2到4列包含NA的行

示例

> df1[complete.cases(df1[2:4]),]

输出

       x1        x2      x3         x4      x5
1 0.8287962 39.74094 0.9983586 6.338327 0.8692225
3 3.9911408 38.84212 1.0047761 5.825111 0.8423061
4 0.6426335 39.74094 1.0047761 5.177329 NA
6 0.8287962 38.84212 0.9963252 5.154073 1.0566156
8 0.1952913 40.36844 1.0047761 6.338327 NA
10 0.6426335 39.77818 0.9927987 5.177329 0.8557775
13 1.3167347 39.77818 0.9963252 5.825111 0.8557775
14 0.8287962 39.77818 1.0366262 5.177329 NA
16 0.1952913 38.84212 1.0366262 5.154073 0.8286973

让我们来看另一个例子

示例

在线演示

> y1<-sample(c(NA,rpois(5,2)),20,replace=TRUE)
> y2<-sample(c(NA,rpois(5,5)),20,replace=TRUE)
> y3<-sample(c(NA,rpois(5,1)),20,replace=TRUE)
> y4<-sample(c(NA,rpois(5,2)),20,replace=TRUE)
> df2<-data.frame(y1,y2,y3,y4)
> df2

输出

y1 y2 y3 y4
1 0 2 0 NA
2 6 NA NA NA
3 0 9 1 1
4 6 4 NA 1
5 2 2 0 2
6 2 9 NA NA
7 6 2 0 1
8 2 4 1 NA
9 2 2 1 1
10 6 4 1 2
11 2 2 0 NA
12 6 2 3 1
13 0 4 1 1
14 2 4 1 0
15 2 9 0 1
16 2 2 1 1
17 2 9 NA 1
18 2 9 0 1
19 2 9 1 0
20 NA 2 3 1

示例

> df2[complete.cases(df2[1:3]),]

输出

y1 y2 y3 y4
1 0 2 0 NA
3 0 9 1 1
5 2 2 0 2
7 6 2 0 1
8 2 4 1 NA
9 2 2 1 1
10 6 4 1 2
11 2 2 0 NA
12 6 2 3 1
13 0 4 1 1
14 2 4 1 0
15 2 9 0 1
16 2 2 1 1
18 2 9 0 1
19 2 9 1 0

示例

> df2[complete.cases(df2[2:4]),]

输出

y1 y2 y3 y4
3 0 9 1 1
5 2 2 0 2
7 6 2 0 1
9 2 2 1 1
10 6 4 1 2
12 6 2 3 1
13 0 4 1 1
14 2 4 1 0
15 2 9 0 1
16 2 2 1 1
18 2 9 0 1
19 2 9 1 0
20 NA 2 3 1

示例

> df2[complete.cases(df2[c(1,3)]),]

输出

y1 y2 y3 y4
1 0 2 0 NA
3 0 9 1 1
5 2 2 0 2
7 6 2 0 1
8 2 4 1 NA
9 2 2 1 1
10 6 4 1 2
11 2 2 0 NA
12 6 2 3 1
13 0 4 1 1
14 2 4 1 0
15 2 9 0 1
16 2 2 1 1
18 2 9 0 1
19 2 9 1 0

更新于:2020年11月21日

1K+ 次浏览

启动您的职业生涯

完成课程获得认证

开始学习
广告