Express the following linear equations in the form \( a x+b y+c=0 \) and indicate the values of \( a, b \) and \( c \) in each case:(i) \( 2 x+3 y=9.3 \overline{5} \)(ii) \( x-\frac{y}{5}-10=0 \)(iii) \( -2 x+3 y=6 \)(iv) \( x=3 y \)(v) \( 2 x=-5 y \)(vi) \( 3 x+2=0 \)(vii) \( y-2=0 \)(viii) \( 5=2 x \)
To do:
We have to express the given linear equations in the form $ax+by+c=0$ and indicate the values of $a, b$ and $c$ in each of the given cases.
Solution:
(i) Given,
$2x+3y=9.3\overline{5}$
We get,
The linear equation in the form $ax+by+c=0$ as,
$2x+3y-9.3\overline{5}=0$
This implies,
$2x+3y+(-9.3\overline{5})=0$
Comparing, $2x+3y+(-9.3\overline{5})=0$ with $ax+by+c=0$
We get,
$a=2$,
$b=3$ and
$c=-9.3\overline{5}$.
(ii) Given,
$x-\frac{y}{5}-10=0$
This implies,
$x+(-\frac{y}{5})+(-10)=0$
Comparing $x+(-\frac{y}{5})+(-10)=0$ with $ax+by+c=0$
We get,
$a=1$,
$b=\frac{-1}{5}$ and
$c=-10$.
(iii) Given,
$-2x+3y=6$
We get,
The linear equation in the form $ax+by+c=0$ as,
$-2x+3y-6=0$
This implies,
$(-2)x+3y+(-6)=0$
Comparing $(-2)x+3y+(-6)=0$ with $ax+by+c=0$
We get,
$a=-2$,
$b=3$ and
$c=-6$.
(iv) Given,
$x=3y$
We get,
The linear equation in the form $ax+by+c=0$ as,
$x-3y=0$
This implies,
$x+(-3y)+(0)c=0$
Comparing $x+(-3y)+(0)c=0$ with $ax+by+c=0$
We get,
$a=1$,
$b=-3$ and
$c=0$.
(v) Given,
$2x=-5y$
We get,
The linear equation in the form $ax+by+c=0$ as,
$2x+5y=0$
This implies,
$2x+5y+(0)c=0$
Comparing $2x+5y+(0)c=0$ with $ax+by+c=0$
We get,
$a=2$,
$b=5$ and
$c=0$.
(vi) Given,
$3x+2=0$
This implies,
$3x+(0)y+2=0$
Comparing $3x+(0)y+2=0$ with $ax+by+c=0$
We get,
$a=3$,
$b=0$ and
$c=2$.
(vii) Given,
$y-2=0$
This implies,
$(0)x+y+(-2)=0$
Comparing $(0)x+y+(-2)=0$ with $ax+by+c=0$
We get,
$a=0$,
$b=1$ and
$c=-2$.
(viii) Given,
$5=2x$
We get,
The linear equation in the form $ax+by+c=0$ as,
$2x-5=0$
This implies,
$2x+(0)y+(-5)=0$
Comparing $2x+(0)y+(-5)=0$ with $ax+by+c=0$
We get,
$a=2$,
$b=0$ and
$c=-5$.
Related Articles A pair of linear equations which has a unique solution \( x=2, y=-3 \) is(A) \( x+y=-1 \)\( 2 x-3 y=-5 \)(B) \( 2 x+5 y=-11 \)\( 4 x+10 y=-22 \)(C) \( 2 x-y=1 \)\( 3 x+2 y=0 \)(D) \( x-4 y-14=0 \)\( 5 x-y-13=0 \)
Subtract:(i) $-5xy$ from $12xy$(ii) $2a^2$ from $-7a^2$(iii) \( 2 a-b \) from \( 3 a-5 b \)(iv) \( 2 x^{3}-4 x^{2}+3 x+5 \) from \( 4 x^{3}+x^{2}+x+6 \)(v) \( \frac{2}{3} y^{3}-\frac{2}{7} y^{2}-5 \) from \( \frac{1}{3} y^{3}+\frac{5}{7} y^{2}+y-2 \)(vi) \( \frac{3}{2} x-\frac{5}{4} y-\frac{7}{2} z \) from \( \frac{2}{3} x+\frac{3}{2} y-\frac{4}{3} z \)(vii) \( x^{2} y-\frac{4}{5} x y^{2}+\frac{4}{3} x y \) from \( \frac{2}{3} x^{2} y+\frac{3}{2} x y^{2}- \) \( \frac{1}{3} x y \)(viii) \( \frac{a b}{7}-\frac{35}{3} b c+\frac{6}{5} a c \) from \( \frac{3}{5} b c-\frac{4}{5} a c \)
Solve the following pairs of equations:\( \frac{2 x y}{x+y}=\frac{3}{2} \)\( \frac{x y}{2 x-y}=\frac{-3}{10}, x+y ≠ 0,2 x-y ≠ 0 \)
Add the following algebraic expressions(i) \( 3 a^{2} b,-4 a^{2} b, 9 a^{2} b \)(ii) \( \frac{2}{3} a, \frac{3}{5} a,-\frac{6}{5} a \)(iii) \( 4 x y^{2}-7 x^{2} y, 12 x^{2} y-6 x y^{2},-3 x^{2} y+5 x y^{2} \)(iv) \( \frac{3}{2} a-\frac{5}{4} b+\frac{2}{5} c, \frac{2}{3} a-\frac{7}{2} b+\frac{7}{2} c, \frac{5}{3} a+ \) \( \frac{5}{2} b-\frac{5}{4} c \)(v) \( \frac{11}{2} x y+\frac{12}{5} y+\frac{13}{7} x,-\frac{11}{2} y-\frac{12}{5} x-\frac{13}{7} x y \)(vi) \( \frac{7}{2} x^{3}-\frac{1}{2} x^{2}+\frac{5}{3}, \frac{3}{2} x^{3}+\frac{7}{4} x^{2}-x+\frac{1}{3} \) \( \frac{3}{2} x^{2}-\frac{5}{2} x-2 \)
Solve the following pairs of equations by reducing them to a pair of linear equations:(i) \( \frac{1}{2 x}+\frac{1}{3 y}=2 \)\( \frac{1}{3 x}+\frac{1}{2 y}=\frac{13}{6} \)(ii) \( \frac{2}{\sqrt{x}}+\frac{3}{\sqrt{y}}=2 \)\( \frac{4}{\sqrt{x}}-\frac{9}{\sqrt{y}}=-1 \)(iii) \( \frac{4}{x}+3 y=14 \)\( \frac{3}{x}-4 y=23 \)(iv) \( \frac{5}{x-1}+\frac{1}{y-2}=2 \)\( \frac{6}{x-1}-\frac{3}{y-2}=1 \)(v) \( \frac{7 x-2 y}{x y}=5 \)\( \frac{8 x+7 y}{x y}=15 \),b>(vi) \( 6 x+3 y=6 x y \)\( 2 x+4 y=5 x y \)4(vii) \( \frac{10}{x+y}+\frac{2}{x-y}=4 \)\( \frac{15}{x+y}-\frac{5}{x-y}=-2 \)(viii) \( \frac{1}{3 x+y}+\frac{1}{3 x-y}=\frac{3}{4} \)\( \frac{1}{2(3 x+y)}-\frac{1}{2(3 x-y)}=\frac{-1}{8} \).
\Find $(x +y) \div (x - y)$. if,(i) \( x=\frac{2}{3}, y=\frac{3}{2} \)(ii) \( x=\frac{2}{5}, y=\frac{1}{2} \)(iii) \( x=\frac{5}{4}, y=\frac{-1}{3} \)(iv) \( x=\frac{2}{7}, y=\frac{4}{3} \)(v) \( x=\frac{1}{4}, y=\frac{3}{2} \)
Factorise:(i) \( x^{3}-2 x^{2}-x+2 \)(ii) \( x^{3}-3 x^{2}-9 x-5 \)(iii) \( x^{3}+13 x^{2}+32 x+20 \)(iv) \( 2 y^{3}+y^{2}-2 y-1 \)
Simplify each of the following:\( (2 x-5 y)^{3}-(2 x+5 y)^{3} \)
Verify : (i) \( x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right) \)(ii) \( x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right) \)
Factorize:\( x^{3}-2 x^{2} y+3 x y^{2}-6 y^{3} \)
Factorise the folowing:$3(x+y)^2-5(x+y) +2$
Identify the monomials, binomials and trinomials in the following:(i) \( 2 x+y-z \)(ii) \( -2 x^{3} \)(iii) \( -7-p \)(iv) \( 5 x y z \)(v) \( 5-3 y-y^{2} \)(vi) \( m^{2}-1 \)
Verify the property: $x \times y = y \times x$ by taking:(i) \( x=-\frac{1}{3}, y=\frac{2}{7} \)(ii) \( x=\frac{-3}{5}, y=\frac{-11}{13} \)(iii) \( x=2, y=\frac{7}{-8} \)(iv) \( x=0, y=\frac{-15}{8} \)
Find the product of the following binomials:(i) \( (2 x+y)(2 x+y) \)(ii) \( (a+2 b)(a-2 b) \)(iii) \( \left(a^{2}+b c\right)\left(a^{2}-b c\right) \)(iv) \( \left(\frac{4 x}{5}-\frac{3 y}{4}\right)\left(\frac{4 x}{5}+\frac{3 y}{4}\right) \)(v) \( \left(2 x+\frac{3}{y}\right)\left(2 x-\frac{3}{y}\right) \)(vi) \( \left(2 a^{3}+b^{3}\right)\left(2 a^{3}-b^{3}\right) \)(vii) \( \left(x^{4}+\frac{2}{x^{2}}\right)\left(x^{4}-\frac{2}{x^{2}}\right) \)(viii) \( \left(x^{3}+\frac{1}{x^{3}}\right)\left(x^{3}-\frac{1}{x^{3}}\right) \).
Solve the following pair of linear equations by the substitution method.(i) $x + y = 14, x – y = 4$(ii) $s – t = 3, \frac{s}{3} + \frac{t}{2} = 6$(iii) $3x – y = 3, 9x – 3y = 9$(iv) $0.2x + 0.3y = 1.3, 0.4x + 0.5y = 2.3$(v) \( \sqrt{2} x+\sqrt{3} y=0, \sqrt{3} x-\sqrt{8} y=0 \)(vi) \( \frac{3 x}{2}-\frac{5 y}{3}=-2, \frac{x}{3}+\frac{y}{2}=\frac{13}{6} \).
Kickstart Your Career
Get certified by completing the course
Get Started