
- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Express the following linear equations in the form ax+by+c=0 and indicate the values of a,b and c in each case:
(i) 2x+3y=9.3¯5
(ii) x−y5−10=0
(iii) −2x+3y=6
(iv) x=3y
(v) 2x=−5y
(vi) 3x+2=0
(vii) y−2=0
(viii) 5=2x
Problem Statement
Express the following linear equations in the form ax+by+c=0 and indicate the values of a,b and c in each case:
(i) 2x+3y=9.3¯5
(ii) x−y5−10=0
(iii) −2x+3y=6
(iv) x=3y
(v) 2x=−5y
(vi) 3x+2=0
(vii) y−2=0
(viii) 5=2x
Solution
To do:
We have to express the given linear equations in the form ax+by+c=0 and indicate the values of a,b and c in each of the given cases.
Solution:
(i) Given,
2x+3y=9.3¯5
We get,
The linear equation in the form ax+by+c=0 as,
2x+3y−9.3¯5=0
This implies,
2x+3y+(−9.3¯5)=0
Comparing, 2x+3y+(−9.3¯5)=0 with ax+by+c=0
We get,
a=2,
b=3 and
c=−9.3¯5.
(ii) Given,
x−y5−10=0
This implies,
x+(−y5)+(−10)=0
Comparing x+(−y5)+(−10)=0 with ax+by+c=0
We get,
a=1,
b=−15 and
c=−10.
(iii) Given,
−2x+3y=6
We get,
The linear equation in the form ax+by+c=0 as,
−2x+3y−6=0
This implies,
(−2)x+3y+(−6)=0
Comparing (−2)x+3y+(−6)=0 with ax+by+c=0
We get,
a=−2,
b=3 and
c=−6.
(iv) Given,
x=3y
We get,
The linear equation in the form ax+by+c=0 as,
x−3y=0
This implies,
x+(−3y)+(0)c=0
Comparing x+(−3y)+(0)c=0 with ax+by+c=0
We get,
a=1,
b=−3 and
c=0.
(v) Given,
2x=−5y
We get,
The linear equation in the form ax+by+c=0 as,
2x+5y=0
This implies,
2x+5y+(0)c=0
Comparing 2x+5y+(0)c=0 with ax+by+c=0
We get,
a=2,
b=5 and
c=0.
(vi) Given,
3x+2=0
This implies,
3x+(0)y+2=0
Comparing 3x+(0)y+2=0 with ax+by+c=0
We get,
a=3,
b=0 and
c=2.
(vii) Given,
y−2=0
This implies,
(0)x+y+(−2)=0
Comparing (0)x+y+(−2)=0 with ax+by+c=0
We get,
a=0,
b=1 and
c=−2.
(viii) Given,
5=2x
We get,
The linear equation in the form ax+by+c=0 as,
2x−5=0
This implies,
2x+(0)y+(−5)=0
Comparing 2x+(0)y+(−5)=0 with ax+by+c=0
We get,
a=2,
b=0 and
c=−5.