If the point $C (-1, 2)$ divides internally the line segment joining the points $A (2, 5)$ and $B (x, y)$ in the ratio $3 : 4$, find the value of $x^2 + y^2$.
Given:
Point $C (-1, 2)$ divides internally the line segment joining the points $A (2, 5)$ and $B (x, y)$ in the ratio $3 : 4$.
To do:
We have to find the value of $x^2 + y^2$.
Solution:
Using the section formula, if a point $( x,\ y)$ divides the line joining the points
$( x_1,\ y_1)$ and $( x_2,\ y_2)$ in the ratio $m:n$, then
$(x,\ y)=( \frac{mx_2+nx_1}{m+n},\ \frac{my_2+ny_1}{m+n})$
This implies,
$C(-1,\ 2)=( \frac{3(x)+4(2)}{3+4},\ \frac{3(y)+4(5)}{3+4})$
On comparing, we get,
$-1=\frac{3x+8}{7}$
$\Rightarrow -1(7)=3x+8$
$\Rightarrow 3x=-7-8$
$\Rightarrow 3x=-15$
$\Rightarrow x=\frac{-15}{3}$
$\Rightarrow x=-5$
$2=\frac{3y+20}{7}$
$\Rightarrow 2(7)=3y+20$
$\Rightarrow 3y=14-20$
$\Rightarrow 3y=-6$
$\Rightarrow y=\frac{-6}{3}$
$\Rightarrow y=-2$
Therefore,
$x^2+y^2=(-5)^2+(-2)^2$
$=25+4$
$=29$
The value of $x^2+y^2$ is $29$.
Related Articles Find the ratio in which the points $(2, y)$ divides the line segment joining the points $A (-2, 2)$ and $B (3, 7)$. Also, find the value of $y$.
Find the point which divides the line segment joining the points $(7,\ –6)$ and $(3,\ 4)$ in ratio 1 : 2 internally.
Find the ratio in which point $P( x,\ 2)$ divides the line segment joining the points $A( 12,\ 5)$ and $B( 4,\ −3)$. Also find the value of $x$.
Find the ratio in which the point $P (x, 2)$ divides the line segment joining the points $A (12, 5)$ and $B (4, -3)$. Also, find the value of $x$.
Determine the ratio, in which the line $2x + y - 4 = 0$ divides the line segment joining the points $A(2, -2)$ and $B(3, 7)$.
If $(x, y)$ be on the line joining the two points $(1, -3)$ and $(-4, 2)$, prove that $x + y + 2 = 0$.
Determine the ratio in which the straight line $x – y – 2 = 0$ divides the line segment joining $(3, -1)$ and $(8, 9)$.
Find the value of$3 x^{2}-2 y^{2}$if x=-2 and y=2
If $x=1,\ y=2$ and $z=5$, find the value of $x^{2}+y^{2}+z^{2}$.
Find the ratio in which the line \( 2 x+3 y-5=0 \) divides the line segment joining the points \( (8,-9) \) and \( (2,1) \). Also find the coordinates of the point of division.
Find the ratio in which the point \( \mathrm{P}\left(\frac{3}{4}, \frac{5}{12}\right) \) divides the line segment joining the points \( A \frac{1}{2}, \frac{3}{2} \) and B \( (2,-5) \).
If $x + y = 4$ and $xy = 2$, find the value of $x^2 + y^2$.
The mid-point $P$ of the line segment joining the points $A (-10, 4)$ and $B (-2, 0)$ lies on the line segment joining the points $C (-9, -4)$ and $D (-4, y)$. Find the ratio in which $P$ divides $CD$. Also, find the value of $y$.
1. Factorize the expression \( 3 x y - 2 + 3 y - 2 x \)A) \( (x+1),(3 y-2) \)B) \( (x+1),(3 y+2) \)C) \( (x-1),(3 y-2) \)D) \( (x-1),(3 y+2) \)2. Factorize the expression \( \mathrm{xy}-\mathrm{x}-\mathrm{y}+1 \)A) \( (x-1),(y+1) \)B) \( (x+1),(y-1) \)C) \( (x-1),(y-1) \)D) \( (x+1),(y+1) \)
In what ratio does the point $( \frac{24}{11} ,\ y)$ divide the line segment joining the points $P( 2,\ -2)$ and $( 3,\ 7)$ ?Also find the value of $y$.
Kickstart Your Career
Get certified by completing the course
Get Started