If the point C(1,2) divides internally the line segment joining the points A(2,5) and B(x,y) in the ratio 3:4, find the value of x2+y2.


Given:

Point C(1,2) divides internally the line segment joining the points A(2,5) and B(x,y) in the ratio 3:4.

To do:

We have to find the value of x2+y2.

Solution:

Using the section formula, if a point (x, y) divides the line joining the points

(x1, y1) and (x2, y2) in the ratio m:n, then 

(x, y)=(mx2+nx1m+n, my2+ny1m+n)

This implies,

C(1, 2)=(3(x)+4(2)3+4, 3(y)+4(5)3+4)

On comparing, we get,

1=3x+87

1(7)=3x+8

3x=78

3x=15

x=153

x=5

2=3y+207

2(7)=3y+20

3y=1420

3y=6

y=63

y=2

Therefore,

x2+y2=(5)2+(2)2

=25+4

=29

The value of x2+y2 is 29.

Updated on: 10-Oct-2022

66 Views

Kickstart Your Career

Get certified by completing the course

Get Started
Advertisements