If the points $( \frac{2}{5},\ \frac{1}{3}),\ ( \frac{1}{2},\ k)$ and $( \frac{4}{5},\ 0)$ are collinear, then find the value of $k$.
Given: Points $( \frac{2}{5},\ \frac{1}{3}),\ ( \frac{1}{2},\ k)$ and $( \frac{4}{5},\ 0)$ are collinear
To do : To find the value of $k$.
Solution:
When three points A, B and C are collinear, slope of line
joining any two points (say AB) = slope of line joining any other two points (say BC).
Slope of the line passing through points $(x_1, y_1)$ and $(x_2,\ y_2) =\frac{y_2-y_1}{x_2-x_1}$
Slope of the line passing through $( \frac{2}{5},\ \frac{1}{3})$ and $( \frac{1}{2},\ k)=$ Slope of line passing through $( \frac{1}{2},\ k)$ and $( \frac{4}{5},\ 0)$
$\Rightarrow \frac{k-\frac{1}{3}}{\frac{1}{2}-\frac{2}{5}}=\frac{0-k}{\frac{4}{5}-\frac{1}{2}}$
$\Rightarrow \frac{\frac{3k-1}{3}}{\frac{1}{10}}=\frac{-k}{\frac{3}{10}}$
$\Rightarrow \frac{10( 3k-1)}{3}=-\frac{10k}{3}$
$\Rightarrow 30k-10=-10k$
$\Rightarrow 40k=10$
$\Rightarrow k=\frac{10}{40}$
$\Rightarrow k=\frac{1}{4}$
Related Articles If the lines given by \( 3 x+2 k y=2 \) and \( 2 x+5 y+1=0 \) are parallel, then the value of \( k \) is(A) \( \frac{-5}{4} \)(B) \( \frac{2}{5} \)(C) \( \frac{15}{4} \),b>(D) \( \frac{3}{2} \)
Solve(a) \( \frac{2}{3}+\frac{1}{7} \)(b) \( \frac{3}{10}+\frac{7}{15} \)(c) \( \frac{4}{9}+\frac{2}{7} \)(d) \( \frac{5}{7}+\frac{1}{3} \)(e) \( \frac{2}{5}+\frac{1}{6} \)(f) \( \frac{4}{5}+\frac{2}{3} \)(g) \( \frac{3}{4}-\frac{1}{3} \)(h) \( \frac{5}{6}-\frac{1}{3} \)(i) \( \frac{2}{3}+\frac{3}{4}+\frac{1}{2} \)(j) \( \frac{1}{2}+\frac{1}{3}+\frac{1}{6} \)(k) \( 1 \frac{1}{3}+3 \frac{2}{3} \)(l) \( 4 \frac{2}{3}+3 \frac{1}{4} \)(m) \( \frac{16}{5}-\frac{7}{5} \)(n) \( \frac{4}{3}-\frac{1}{2} \)
Verify:$\frac{-2}{5} + [\frac{3}{5} + \frac{1}{2}] = [\frac{-2}{5} + \frac{3}{5}] + \frac{1}{2}$
Simplify:\( 5 \frac{1}{4} \p 2 \frac{1}{3}-4 \frac{2}{3} \p 5 \frac{1}{3} \times 3 \frac{1}{2} \)
Solve the following:$3 \frac{2}{5} \div \frac{4}{5} of \frac{1}{5} + \frac{2}{3} of \frac{3}{4} - 1 \frac{35}{72}$.
Draw number lines and locate the points on them:(a) \( \frac{1}{2}, \frac{1}{4}, \frac{3}{4}, \frac{4}{4} \)(b) \( \frac{1}{8}, \frac{2}{8}, \frac{3}{8}, \frac{7}{8} \)(c) \( \frac{2}{5}, \frac{3}{5}, \frac{8}{5}, \frac{4}{5} \)
Verify the Following by using suitable property: $(\frac{5}{4}+\frac{-1}{2})+\frac{-3}{2}= \frac{5}{4}+(\frac{-1}{2}+\frac{-3}{2})$
Find:(i) $\frac{2}{5}\div\frac{1}{2}$(ii) $\frac{4}{9}\div\frac{2}{3}$(iii) $\frac{3}{7}\div\frac{8}{7}$(iv) $2\frac{1}{3}\div\frac{3}{5}$(v) $3\frac{1}{2}\div\frac{8}{3}$(vi) $\frac{2}{5}\div1\frac{1}{2}$(vii) $3\frac{1}{5}\div1\frac{2}{3}$(viii) $2\frac{1}{5}\div1\frac{1}{5}$
Find the value of \( K \) in \( \left(\frac{3}{5}\right)^{3} \times\left(\frac{3}{5}\right)^{-6}=\left(\frac{5}{3}\right)^{1-2 k} \)
Find the value of $x$$\frac{x+2}{2}- \frac{x+1}{5}=\frac{x-3}{4}-1$
$ 4 \frac{4}{5}+\left\{2 \frac{1}{5}-\frac{1}{2}\left(1 \frac{1}{4}-\frac{1}{4}-\frac{1}{5}\right)\right\} $
Prove that:\( \frac{2^{\frac{1}{2}} \times 3^{\frac{1}{3}} \times 4^{\frac{1}{4}}}{10^{\frac{-1}{5}} \times 5^{\frac{3}{5}}} \p \frac{3^{\frac{4}{3}} \times 5^{\frac{-7}{5}}}{4^{\frac{-3}{5}} \times 6}=10 \)
If the points $(x+1,\ 2),\ (1,\ x+2)$ and $( \frac{1}{x+1},\ \frac{2}{x+1})$ are collinear, then find $x$.
If $\frac{2 x}{5}-\frac{3}{2}=\frac{x}{2}+1$, find the value of $x$.
Find five rational numbers between.(i) \( \frac{2}{3} \) and \( \frac{4}{5} \)(ii) \( \frac{-3}{2} \) and \( \frac{5}{3} \)(iii) \( \frac{1}{4} \) and \( \frac{1}{2} \).
Kickstart Your Career
Get certified by completing the course
Get Started