It is given that \( 5 \frac{3}{a} \times b \frac{1}{2}=19 \) (where the two fractions are mixed fractions); then find the value of \( a+b \).
Given :
$5\frac{3}{a}\times b\frac{1}{2}=19$
To find :
We have to find the value of $a+b$
Solution :
$ 5\frac{3}{a} \times b\frac{1}{2} $=19
$\frac{5\times a+3}{a} \times \frac{b\times 2+1}{2}=19$
$ ( 5a+3)( 2b+1) =19\times 2a$
$( 5a+3)( 2b+1) =38\times a$
This implies,
$5a+3=38$ \ or \ $ 5a+3=a$
$5a=38-3$ \ or \ $ 5a-a=-3$
$5a=35$ \ or \ $ 4a=-3$
$a=\frac{35}{5} \ or \ a=\frac{-3}{4}$
which is not correct a=7
Therefore, If $5a+3=38$ then $2b+1=a$
$2b+1=7$
$2b=7-1$
$2b=6$
$b=\frac{6}{2}$ $b=3$
The value of $ a+b \ is \ 7+3=10$
- Related Articles
- Express the following as mixed fractions:(a) \( \frac{20}{3} \)(b) \( \frac{11}{5} \)(c) \( \frac{17}{7} \)(d) \( \frac{28}{5} \)(e) \( \frac{19}{6} \)(f) \( \frac{35}{9} \)
- Subtract the following fractions:(i) $\frac{2}{5} - \frac{1}{5}$; (ii) $\frac{2}{3} - \frac{1}{2}$
- If $\frac{1}{b} \div \frac{b}{a} = \frac{a^2}{b}$, where a, b not equal to 0, then find the value of $\frac{\frac{a}{(\frac{1}{b})} - 1}{\frac{a}{b}}$.
- Write the following fractions as decimals:a. \( \frac{235}{100} \)b. \( 2 \frac{3}{5} \)
- Using appropriate properties find the value of given expression . $\frac{-2}{3}\times\frac{3}{5}+\frac{5}{2}-\frac{3}{5}\times\frac{1}{6}$.
- Find the equivalent fractions of $\frac{1}{3}$
- Find equivalent fractions to the third place of the following.a)$\frac{1}{2}$b)$\frac{2}{3}$c)$\frac{3}{11}$  
- Check whether the given fractions are equivalent. (a) \( \frac{5}{9}, \frac{30}{54} \)(b) \( \frac{3}{10}, \frac{12}{50} \)(c) \( \frac{7}{13}, \frac{5}{11} \)
- Find the value of a and b.$\left(\frac{a}{2} \ +\ 3,\ b\ -\ 1\right) \ =\ (5,\ -3)$
- If the lines given by \( 3 x+2 k y=2 \) and \( 2 x+5 y+1=0 \) are parallel, then the value of \( k \) is(A) \( \frac{-5}{4} \)(B) \( \frac{2}{5} \)(C) \( \frac{15}{4} \),b>(D) \( \frac{3}{2} \)
- If \( 1 \frac{1}{2} \times 2 \frac{2}{3} \times 3 \frac{3}{4} \times \ldots \times 199 \frac{199}{200}=\frac{1}{m}, \) then find the value of \( m \).
- Multiply the following fractions:(i) $\frac{2}{5}\times5\frac{1}{4}$(ii) $6\frac{2}{5}\times\frac{7}{9}$(iii) $\frac{3}{2}\times5\frac{1}{3}$(iv) $\frac{5}{6}\times2\frac{3}{7}$(v) $3\frac{2}{5}\times\frac{4}{7}$(vi) $2\frac{3}{5}\times3$(vii) $3\frac{4}{7}\times\frac{3}{5}$
- Look at the figures and write 's' or ' \( > \) ', '- ' between the given pairs of fractions.(a) \( \frac{1}{6} \square \frac{1}{3} \)(b) \( \frac{3}{4} \square \frac{2}{6} \)(c) \( \frac{2}{3} \square \frac{2}{4} \)(d) \( \frac{6}{6} \square \frac{3}{3} \)(e) \( \frac{5}{6} \square \frac{5}{5} \)"
- Write the following fractions as mixed fractions and arrange them in ascending order:$\frac{11}{8} , \frac{17}{12}, \frac{5}{3}, \frac{8}{6} $
- Convert the following fractions into like fractions : $\frac{3}{5} , \frac{7}{10}, \frac{8}{5} and \frac{11}{30}$
Kickstart Your Career
Get certified by completing the course
Get Started