- Trending Categories
- Data Structure
- Networking
- RDBMS
- Operating System
- Java
- MS Excel
- iOS
- HTML
- CSS
- Android
- Python
- C Programming
- C++
- C#
- MongoDB
- MySQL
- Javascript
- PHP
- Physics
- Chemistry
- Biology
- Mathematics
- English
- Economics
- Psychology
- Social Studies
- Fashion Studies
- Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Simplify the following:
$(\frac{\sqrt{3}}{\sqrt{2}+1})^2 + (\frac{\sqrt{3}}{\sqrt{2}-1})^2 +(\frac{\sqrt{2}}{\sqrt{3}})^2 $
Given :
The given expression is $(\frac{\sqrt{3}}{\sqrt{2}+1})^2 + (\frac{\sqrt{3}}{\sqrt{2}-1})^2 +(\frac{\sqrt{2}}{\sqrt{3}})^2 $.
To do :
We have to simplify the given expression.
Solution :
$(\frac{\sqrt{3}}{\sqrt{2}+1})^2 + (\frac{\sqrt{3}}{\sqrt{2}-1})^2 +(\frac{\sqrt{2}}{\sqrt{3}})^2 $
We know that,
$(\frac{a}{b})^2 = \frac{a^2}{b^2}$ and $\sqrt{a}^2 = a$.
$\Rightarrow \frac{\sqrt{3}^2}{(\sqrt{2}+1)^2} + \frac{\sqrt{3}^2}{(\sqrt{2}-1)^2} +\frac{\sqrt{2}^2}{\sqrt{3}^2} $
$\Rightarrow \frac{3}{\sqrt{2}^2 + 1^2 + 2.\sqrt{2}.1} + \frac{3}{\sqrt{2}^2 + 1^2 - 2.\sqrt{2}.1} + \frac{2}{3}$ $[(a+b^2)= a^2 + b^2+2ab]$
$\Rightarrow \frac{3}{2 + 1 + 2.\sqrt{2}}+\frac{3}{2 + 1 - 2.\sqrt{2}}+ \frac{2}{3} $
$\Rightarrow \frac{3}{3 + 2\sqrt{2}}+\frac{3}{3 - 2\sqrt{2}}+ \frac{2}{3} $
$\Rightarrow \frac{3(3 - 2\sqrt{2})+3(3 + 2\sqrt{2})}{3^2 - (2\sqrt{2})^2}+ \frac{2}{3} $
$\Rightarrow \frac{9 - 6\sqrt{2}+9 + 6\sqrt{2}}{9 - 8}+ \frac{2}{3} $
$\Rightarrow \frac{18}{1} + \frac{2}{3}$
$\Rightarrow \frac{18 \times 3 + 2\times 1}{3}$
$\Rightarrow \frac{54+2}{3}$
$\Rightarrow \frac {56}{3}$
Therefore, the value of $(\frac{\sqrt{3}}{\sqrt{2}+1})^2 + (\frac{\sqrt{3}}{\sqrt{2}-1})^2 +(\frac{\sqrt{2}}{\sqrt{3}})^2 $ is $ \frac {56}{3}$.