PyTorch 中的 torch.rsqrt() 方法
torch.rsqrt() 方法计算每个输入张量元素的平方根倒数。它支持实值和复值输入。如果输入张量中的元素为零,则输出张量中的对应元素为 NaN。
语法
torch.rsqrt(input)
参数
input – 输入张量
输出
返回平方根倒数张量。
步骤
导入所需的库。在以下所有示例中,所需的 Python 库为 torch。确保已安装该库。
import torch
创建一个 torch 张量并打印它。
input = torch.randn(3,4) print("Input Tensor:
", input)
使用 torch.rsqrt(input) 计算输入张量中每个元素的平方根倒数。其中 input 为输入张量。
recip = torch.rsqrt(input)
显示具有倒数的计算张量。
print("Reciprocal SQRT Tensor:
", recip)
示例 1
在这个 Python 程序中,我们计算实值和复值输入张量的平方根倒数。
# Import the required library import torch # define an input tensor input = torch.tensor([1.2, 3., 4., 4.2, -3.2]) # print the above defined tensor print("Input Tensor:
", input) # compute the reciprocal of the square root recip = torch.rsqrt(input) # print the above computed tensor print("Reciprocal SQRT Tensor:
", recip) print("............................") # define a complex input tensor input = torch.tensor([1.2+2j, 3.+4.j, 4.2-3.2j]) # print the above defined tensor print("Input Tensor:
", input) # compute the reciprocal of the square root recip = torch.rsqrt(input) # print the above computed tensor print("Reciprocal SQRT Tensor:
", recip)
输出
Input Tensor: tensor([ 1.2000, 3.0000, 4.0000, 4.2000, -3.2000]) Reciprocal SQRT Tensor: tensor([0.9129, 0.5774, 0.5000, 0.4880, nan]) ............................ Input Tensor: tensor([1.2000+2.0000j, 3.0000+4.0000j, 4.2000-3.2000j]) Reciprocal SQRT Tensor: tensor([0.5698-0.3226j, 0.4000-0.2000j, 0.4123+0.1392j])
请注意,输入张量中对应于零的倒数平方根张量元素为 NaN。
示例 2
# Import the required library import torch # define an input tensor input = torch.randn(3,4) # print the above defined tensor print("Input Tensor:
", input) # compute the reciprocal of the square root recip = torch.rsqrt(input) # print the above computed tensor print("Reciprocal SQRT Tensor:
", recip) print("......................................") # define a complex input tensor real = torch.randn(3,3) imag = torch.randn(3,3) input = torch.complex(real, imag) # print the above defined tensor print("Input Tensor:
", input) # compute the reciprocal of the square root recip = torch.rsqrt(input) # print the above computed tensor print("Reciprocal SQRT Tensor:
", recip)
输出
Input Tensor: tensor([[ 7.4712e-01, -1.5884e+00, -9.7091e-01, -2.9538e-01], [ 2.0326e-01, 1.6650e+00, -3.1351e-01, 1.1758e-03], [ 1.6752e+00, 7.2334e-01, -7.4212e-01, 3.6498e-01]]) Reciprocal SQRT Tensor: tensor([[ 1.1569, nan, nan, nan], [ 2.2181, 0.7750, nan, 29.1634], [ 0.7726, 1.1758, nan, 1.6553]]) ...................................... Input Tensor: tensor([[ 1.3595+0.1929j, -0.3348+0.0729j, 2.0567-1.1657j], [ 0.9777-1.4377j, -0.0728+0.7813j, 0.9582+1.3582j], [-0.5014+0.7377j, -0.5462-0.9864j, 1.1664-0.5318j]]) Reciprocal SQRT Tensor: tensor([[0.8513-0.0601j, 0.1827-1.6986j, 0.6289+0.1658j], [0.6703+0.3548j, 0.7603-0.8344j, 0.6886-0.3569j], [0.4954-0.9358j, 0.4782+0.8113j, 0.8631+0.1875j]])
广告