如何查找图是否是二分图?


当图中的顶点可以分成两个独立的集合,使图中的每条边要么从第一个集合开始并结束于第二个集合,要么从第二个集合开始并连接到第一个集合,换句话说,我们可以说在同一个集合中找不到边,则该图被称为二分图。

可以使用顶点着色来检查二分图。当一个顶点在同一个集合中时,它具有相同的颜色,对于另一个集合,颜色将改变。

输入和输出

Input:
The adjacency matrix.
0 1 1 1 0 0
1 0 0 1 1 0
1 0 0 1 0 1
1 1 1 0 1 1
0 1 0 1 0 1
0 0 1 1 1 0

Output:
The graph is bipartite.

算法

isBipartite(source)

输入 − 源顶点。
输出:当图是二分图时返回 True。

Begin
   define an empty queue qu, and a color list coloArray
   initially any node is not colored with any color
   color the source vertex as color red
   add source in the qu
   when qu is not empty, do
      remove item from the qu and take in u
      if there is any self-loop, then
         return false
      for all vertices v, which is connected with u, do
         if v has no color, then
            if colorArray[u] = red, then
               colorArray[v] := blue
            else if colorArray[u] = blue, then
               colorArray[v] := red
            add v into the queue
         if colorArray[v] = colorArray[u], then
            return false
      done
   done
   return true
End   

示例

#include<iostream>
#include<string>
#include<queue>
#define NODE 6
using namespace std;

/*int graph[NODE][NODE] = {
   {0, 1, 1, 1, 0, 0},
   {1, 0, 0, 1, 1, 0},
   {1, 0, 0, 1, 0, 1},
   {1, 1, 1, 0, 1, 1},
   {0, 1, 0, 1, 0, 1},
   {0, 0, 1, 1, 1, 0}
}; */

int graph[NODE][NODE] = {
   {0, 1, 0, 0, 0, 1},
   {1, 0, 1, 0, 0, 0},
   {0, 1, 0, 1, 0, 0},
   {0, 0, 1, 0, 1, 0},
   {0, 0, 0, 1, 0, 1},
   {1, 0, 0, 0, 1, 0}
};

bool isBipartite(int source) {
   queue<int> qu;
   string colorArray[NODE];

   for(int i = 0; i< NODE; i++)
      colorArray[i] = "No Color";    //initially no color is set for all vertices
   colorArray[source] = "Red";    //assign red with the source vertex
   qu.push(source);             //add source into the queue.

   while(!qu.empty()) {
      int u = qu.front();
      qu.pop();
      if(graph[u][u] == 1)    //there is a self loop
         return false;

      for(int v = 0; v < NODE; v++) {
         if(graph[u][v] != 0 && colorArray[v] == "No Color") {
            if(colorArray[u] == "Red")       //assign adjacent list with alternate color
               colorArray[v] = "Blue";
            else if(colorArray[u] == "Blue")
               colorArray[v] = "Red";
            qu.push(v);          //new adjacent node added to queue
         } else if(graph[u][v] != 0 && colorArray[v] == colorArray[u]) {
            return false;       //when u and adjacent are of same color.  
         }
      }
   }
   return true;
}

int main() {
   bool check;
   check = isBipartite(0);

   if(check)
      cout << "The graph is bipartite." << endl;
   else
      cout << "The graph is not bipartite." << endl;
}   

输出

The graph is bipartite.

更新于: 2020 年 6 月 16 日

4K+ 浏览

开始你的 职业生涯

完成课程并获得认证

开始学习
广告