所有后缀的 Trie 树


从文本中,我们可以生成所有后缀以构建树形结构。我们知道文本中出现的每个模式都必须是文本中某个可能后缀的前缀。通过构建所有后缀的 Trie 树,我们可以在线性时间内找到任何子字符串。每个后缀都以字符串终止符号结尾。从每个节点出发,如果存在任何路径,则向前移动,否则返回该模式未找到。

对于此算法,时间复杂度为 O(m+k),其中 m 是字符串的长度,k 是模式在文本中出现的频率。

输入和输出

Input:
Main String: “ABAAABCDBBABCDDEBCABC”. Pattern “ABC”
Output:
Pattern found at position: 4
Pattern found at position: 10
Pattern found at position: 18

算法

在此算法中,我们将使用一个特殊的节点,称为 Trie 节点。它将保存所有后缀的索引以及另一个 Trie 节点的地址作为链接。

createTrie(root: trieNode, text)

输入:一个 trieNode 类型的根节点。

输出:使用主字符串构建的后缀树

Begin
   for i := 0 to length of text, do
      substring from ith position to end as suffix, and add in index i in tire.
   done
End

findPat(pattern, node)

输入:要查找的模式和节点,用于在其后缀子树中进行检查

输出 − 找到模式的索引列表

Begin
   if pattern size is 0, then
      return suffIndex of node
   if node.suff[patten[0]] ≠φ, then
      return node.suff[pattern[0]].findPat(substring from 1 to end o pattern)
   else
      return φ
End

searchPat(pattern)

输入 − 将要搜索的模式

输出 − 文本中找到模式的索引列表

Begin
   define res as list.
   res := findPat(pattern)

   if res ≠φ, then
      patLen := length of pattern
      for i := 0 to end of res list, do
         print all indexes where pattern was found
      done
End

示例

#include<iostream>
#include<list>
#define MAXCHAR 256
using namespace std;

class trieNode {      //node to hold all suffixes
   private:
      trieNode *suff[MAXCHAR];
      list<int> *suffIndex;
   public:
      trieNode() {
         suffIndex = new list<int>;
         for (int i = 0; i < MAXCHAR; i++)
            suff[i] = NULL;       //no child initially
      }

      void addSuffix(string suffix, int sIndex);
      list<int>* searchPattern(string pat);
};

void trieNode::addSuffix(string suffix, int sIndex) {
   suffIndex->push_back(sIndex);        //store index initially

   if (suffix.size() > 0) {
      char cIndex = suffix[0];
      if (suff[cIndex] == NULL)        //if no sub tree present for this character
         suff[cIndex] = new trieNode();     //create new node
      suff[cIndex]->addSuffix(suffix.substr(1), sIndex+1);      //for next suffix
   }
}

list<int>* trieNode::searchPattern(string pattern) {
   if (pattern.size() == 0)
      return suffIndex;
   if (suff[pattern[0]] != NULL)
      return (suff[pattern[0]])->searchPattern(pattern.substr(1));    //follow to next node
   else
      return NULL;       //when no node are there to jump
}

class trieSuffix {      //trie for all suffixes
   trieNode root;
   public:
      trieSuffix(string mainString) {       //add suffixes and make trie
         for (int i = 0; i < mainString.length(); i++)
            root.addSuffix(mainString.substr(i), i);
      }

   void searchPat(string pattern, int *locArray, int *index);
};

void trieSuffix::searchPat(string pattern, int *locArray, int *index) {
   list<int> *res = root.searchPattern(pattern);
   // Check if the list of indexes is empty or not
   if (res != NULL) {
      list<int>::iterator it;
      int patLen = pattern.length();
      for (it = res->begin(); it != res->end(); it++) {
         (*index)++;
         locArray[(*index)] = *it - patLen;
      }
   }
}

int main() {
   string mainString = "ABAAABCDBBABCDDEBCABC";
   string pattern = "ABC";
   int locArray[mainString.size()];
   int index = -1;

   trieSuffix trie(mainString);
   trie.searchPat(pattern, locArray, &index);

   for(int i = 0; i <= index; i++) {
      cout << "Pattern found at position: " << locArray[i]<<endl;
   }

}

输出

Pattern found at position: 4
Pattern found at position: 10
Pattern found at position: 18

更新于: 2020年6月15日

427 次查看

开启你的 职业生涯

完成课程获得认证

开始学习
广告