用C/C++程序计算n项之和,第n项为 n^2 – (n-1)^2
数学中有许多类型的数列,可以使用C编程轻松求解。此程序旨在用C程序求出其中一种数列的和。
Tn = n2 - (n-1)2
求解如 Sn mod (10^9 + 7)形式的数列的所有项的和,其中
Sn = T1 + T2 + T3 + T4 + ...... + Tn
Input: 229137999 Output: 218194447
说明
Tn 可以表示为 2n-1 求解此表达式
众所周知,
=> Tn = n2 - (n-1)2 =>Tn = n2 - (1 + n2 - 2n) =>Tn = n2 - 1 - n2 + 2n =>Tn = 2n - 1. find ∑Tn. ∑Tn = ∑(2n – 1) Reduce the above equation to, =>∑(2n – 1) = 2*∑n – ∑1 =>∑(2n – 1) = 2*∑n – n. here, ∑n is the sum of first n natural numbers. As known the sum of n natural number ∑n = n(n+1)/2. Now the equation is, ∑Tn = (2*(n)*(n+1)/2)-n = n2 The value of n2 can be large. Instead of using n2 and take the mod of the result. So, using the property of modular multiplication for calculating n2: (a*b)%k = ((a%k)*(b%k))%k
示例
#include <iostream> using namespace std; #define mod 1000000007 int main() { long long n = 229137999; cout << ((n%mod)*(n%mod))%mod; return 0; }
广告