用C/C++程序计算n项之和,第n项为 n^2 – (n-1)^2


数学中有许多类型的数列,可以使用C编程轻松求解。此程序旨在用C程序求出其中一种数列的和。

Tn = n2 - (n-1)2

求解如 Sn mod (10^9 + 7)形式的数列的所有项的和,其中

Sn = T1 + T2 + T3 + T4 + ...... + Tn

Input: 229137999
Output: 218194447

说明

Tn 可以表示为 2n-1 求解此表达式

众所周知,

=> Tn = n2 - (n-1)2
=>Tn = n2 - (1 + n2 - 2n)
=>Tn = n2 - 1 - n2 + 2n
=>Tn = 2n - 1.
find ∑Tn.
∑Tn = ∑(2n – 1)
Reduce the above equation to,
=>∑(2n – 1) = 2*∑n – ∑1
=>∑(2n – 1) = 2*∑n – n.
here, ∑n is the sum of first n natural numbers.
As known the sum of n natural number ∑n = n(n+1)/2.
Now the equation is,
∑Tn = (2*(n)*(n+1)/2)-n = n2
The value of n2 can be large. Instead of using n2 and take the mod of the result.
So, using the property of modular multiplication for calculating n2:
(a*b)%k = ((a%k)*(b%k))%k

示例

#include <iostream>
using namespace std;
#define mod 1000000007
int main() {
   long long n = 229137999;
   cout << ((n%mod)*(n%mod))%mod;
   return 0;
}

更新时间:2019-8-20

236次浏览

开启你的职业生涯

完成该课程即可获得认证

开始
广告