C 库 - cacos() 函数



C 的复数cacos()函数执行给定复数的复数反正弦或反余弦运算。此函数在 <complex.h> 头文件中定义,自 C99 起可用。

语法

以下是cacos() 函数的 C 库语法:

double complex cacos(double complex z);

参数

此函数仅接受单个参数:

  • z:这是我们要对其进行反正弦运算的复数。

返回值

如果没有发生错误,则该函数返回复数反正弦值 (z)。

示例 1

以下是显示 cacos() 函数用法的 C 库程序。

#include <stdio.h>
#include <complex.h>
#include <math.h>

int main() {
   double complex z = 1.0 + 2.0 * I; 
   double complex result = cacos(z);
   printf("cacos(%lf + %lfi) = %lf + %lfi\n", creal(z), cimag(z), creal(result), cimag(result));
   return 0;
}

输出

执行上述代码后,我们将得到以下结果:

cacos(1.000000 + 2.000000i) = 1.143718 + -1.528571i

示例 2

下面的程序使用循环迭代器在递归函数中实现级数公式term = -(z * z) * (2 * i - 1) / (2 * i)

#include <stdio.h>
#include <complex.h>

double complex cacos_sol(double complex z, int n) {
   double complex sum = z;
   double complex term = z;

   for (int i = 1; i <= n; ++i) {
      term *= -(z * z) * (2 * i - 1) / (2 * i);
      sum += term;
   }

   return sum;
}

int main() {
   double complex z = 1.0 + 2.0 * I; 
   int terms = 10; 
   double complex result = cacos_sol(z, terms);
   printf("cacos(%lf + %lfi) = %lf + %lfi (approximated with %d terms)\n", creal(z), cimag(z), creal(result), cimag(result), terms);
   return 0;
}

输出

执行上述代码后,我们将得到以下结果:

cacos(1.000000 + 2.000000i) = -522414.418148 + -4291552.656029i (approximated with 10 terms)

示例 3

自定义函数 cacos_recursive() 接受两个参数 z 和 n 来计算项数。当第 n 项达到 0 时,函数返回结果值 z(复数)。

#include <stdio.h>
#include <complex.h>

double complex cacos_recursive(double complex z, int n) {
   if (n == 0) {
       return z;
   }
   double complex term = -(z * z) * (2 * n - 1) / (2 * n) * cacos_recursive(z, n - 1);
   return term;
}

int main() {

   double complex z = 1.0 + 2.0 * I; 
   int terms = 10; 
   double complex result = cacos_recursive(z, terms);
   printf("cacos(%lf + %lfi) = %lf + %lfi (approximated with %d terms)\n", creal(z), cimag(z), creal(result), cimag(result), terms);
   return 0;
}

输出

上述代码产生以下结果:

cacos(1.000000 + 2.000000i) = -522414.418148 + -4291552.656029i (approximated with 10 terms)
c_library_complex_h.htm
广告