检查每个单词的字符是否可以重新排列成等差数列 (AP)
在本文中,我们将讨论如何检查给定字符串中每个单词的字符是否可以重新排列成等差数列 (AP)。我们还将用 C++ 实现解决方案,并提供一个示例来说明代码的工作原理。
等差数列 (AP)
等差数列 (AP) 是一串数字,其中除第一个数字外,每个数字都是通过将一个常数 d 加到前一个数字得到的。常数 d 称为公差。
例如,数列 1, 3, 5, 7, 9 是一个公差为 2 的等差数列。
方法
要检查给定字符串中每个单词的字符是否可以重新排列成等差数列,我们将遵循以下方法:
我们将给定字符串分割成单个单词。
对于每个单词,我们将按字母顺序排列字符。
我们将计算排序后的单词中每对相邻字符之间的公差。
如果所有相邻字符对的公差都相同,则该单词的字符可以重新排列成等差数列。
我们将对给定字符串中的所有单词重复步骤 2-4。
如果所有单词都可以重新排列成等差数列,则返回 true。否则,返回 false。
示例
以下是上述方法的程序:
#include <stdio.h> #include <stdbool.h> #include <string.h> bool canFormAP(char *s) { int len = strlen(s); char words[100][100]; // Assuming a maximum of 100 words with 100 characters each int wordCount = 0; int wordLen = 0; for (int i = 0; i <= len; i++) { if (s[i] == ' ' || s[i] == '\0') { words[wordCount][wordLen] = '\0'; // Null-terminate the word wordCount++; wordLen = 0; } else { words[wordCount][wordLen] = s[i]; wordLen++; } } for (int i = 0; i < wordCount; i++) { int n = strlen(words[i]); if (n <= 2) { continue; } char d = words[i][1] - words[i][0]; for (int j = 2; j < n; j++) { if (words[i][j] - words[i][j - 1] != d) { return false; } } } return true; } int main() { char s[] = "abcdefgh"; if (canFormAP(s)) { printf("Characters of each word can be rearranged to form an Arithmetic Progression\n"); } else { printf("Characters of each word cannot be rearranged to form an Arithmetic Progression\n"); } return 0; }
输出
Characters of each word can be rearranged to form an Arithmetic Progression
#include <iostream> #include <vector> #include <string> #include <algorithm> using namespace std; // Function to check if characters of each word can be rearranged to form an Arithmetic Progression bool canFormAP(string s) { vector<string> words; string word = ""; // Split the input string into words using spaces for (char c : s) { if (c == ' ') { words.push_back(word); // Store the word in the vector word = ""; // Reset the word } else { word += c; // Build the word character by character } } words.push_back(word); // Store the last word // Check if characters within each word can form an Arithmetic Progression for (string w : words) { sort(w.begin(), w.end()); int n = w.length(); if (n <= 2) { continue; } int d = w[1] - w[0]; // Calculate the common difference for (int i = 2; i < n; i++) { if (w[i] - w[i-1] != d) { return false; // Not an Arithmetic Progression } } } return true; // All words satisfy the condition } int main() { string s = "abcdefgh"; // Check if characters of each word can be rearranged to form an Arithmetic Progression if (canFormAP(s)) { cout << "Characters of each word can be rearranged to form an Arithmetic Progression\n"; } else { cout << "Characters of each word cannot be rearranged to form an Arithmetic Progression\n"; } return 0; }
输出
Characters of each word can be rearranged to form an Arithmetic Progression
import java.util.Arrays; // Import the Arrays class public class Main { public static boolean canFormAP(String s) { String[] words = s.split(" "); // Split the input string into words for (String w : words) { char[] arr = w.toCharArray(); Arrays.sort(arr); // Sort characters of the word int n = arr.length; if (n <= 2) { continue; } int d = arr[1] - arr[0]; for (int i = 2; i < n; i++) { if (arr[i] - arr[i - 1] != d) { return false; } } } return true; } public static void main(String[] args) { String s = "abcdefgh"; if (canFormAP(s)) { System.out.println("Characters of each word can be rearranged to form an Arithmetic Progression"); } else { System.out.println("Characters of each word cannot be rearranged to form an Arithmetic Progression"); } } }
输出
Characters of each word can be rearranged to form an Arithmetic Progression
def can_form_ap(s): words = s.split() # Split the input string into words for w in words: w = ''.join(sorted(w)) # Sort characters of the word n = len(w) if n <= 2: continue d = ord(w[1]) - ord(w[0]) for i in range(2, n): if ord(w[i]) - ord(w[i - 1]) != d: return False return True s = "abcdefgh" if can_form_ap(s): print("Characters of each word can be rearranged to form an Arithmetic Progression") else: print("Characters of each word cannot be rearranged to form an Arithmetic Progression")
输出
Characters of each word can be rearranged to form an Arithmetic Progression
在这个示例中,给定的字符串是“the quick brown fox jumps over the lazy dog”。字符串中的每个单词都可以重新排列成等差数列。例如,单词“quick”可以重新排列成序列“cikqu”,这是一个公差为 2 的等差数列。正如我们所讨论的,单词“lazy”可以重新排列成序列“alzy”,这是一个公差为 11 的等差数列。
因此,在这个示例中,给定字符串中每个单词的字符都可以重新排列成等差数列,代码的输出是“每个单词的字符都可以重新排列成等差数列”。
结论
在本文中,我们讨论了如何检查给定字符串中每个单词的字符是否可以重新排列成等差数列 (AP)。我们遵循了一个简单的方法,包括排序每个单词的字符并检查每对相邻字符之间的公差是否相同。我们还提供了 C++ 解决方案的实现,并用示例测试用例进行了说明。
这个问题有各种实际应用。例如,在密码学中,重新排列字符串的字符可以用来加密原始消息,检查字符是否可以重新排列成 AP 可以用作解密过程中的验证步骤。