使用Numpy逐元素计算两个二维数组的按位或
要逐元素计算两个二维数组的按位或,请在Python Numpy中使用**numpy.bitwise_or()**方法。计算输入数组中整数的底层二进制表示的按位或。此ufunc实现C/Python运算符|。
第一个和第二个参数是数组,只处理整数和布尔类型。如果x1.shape != x2.shape,则它们必须能够广播到公共形状。
where参数是在输入上广播的条件。在条件为True的位置,out数组将设置为ufunc结果。在其他位置,out数组将保留其原始值。请注意,如果通过默认的out=None创建未初始化的out数组,则其中条件为False的位置将保持未初始化状态。
步骤
首先,导入所需的库:
import numpy as np
使用array()方法创建两个二维numpy数组。我们插入了int类型的元素:
arr1 = np.array([[34, 78, 47], [82, 69, 29]]) arr2 = np.array([[59, 98, 36], [81, 55, 32]])
显示数组:
print("Array 1...
", arr1) print("
Array 2...
", arr2)
获取数组的类型:
print("
Our Array 1 type...
", arr1.dtype) print("
Our Array 2 type...
", arr2.dtype)
获取数组的维度:
print("
Our Array 1 Dimensions...
",arr1.ndim) print("
Our Array 2 Dimensions...
",arr2.ndim)
获取数组的形状:
print("
Our Array 1 Shape...
",arr1.shape) print("
Our Array 2 Shape...
",arr2.shape)
要逐元素计算两个二维数组的按位或,请使用numpy.bitwise_or()方法:
print("
Result...
",np.bitwise_or(arr1, arr2))
示例
import numpy as np # Creating two 2D numpy arrays using the array() method # We have inserted elements of int type arr1 = np.array([[34, 78, 47], [82, 69, 29]]) arr2 = np.array([[59, 98, 36], [81, 55, 32]]) # Display the arrays print("Array 1...
", arr1) print("
Array 2...
", arr2) # Get the type of the arrays print("
Our Array 1 type...
", arr1.dtype) print("
Our Array 2 type...
", arr2.dtype) # Get the dimensions of the Arrays print("
Our Array 1 Dimensions...
",arr1.ndim) print("
Our Array 2 Dimensions...
",arr2.ndim) # Get the shape of the Arrays print("
Our Array 1 Shape...
",arr1.shape) print("
Our Array 2 Shape...
",arr2.shape) # To compute the bit-wise OR of two arrays element-wise, use the numpy.bitwise_or() method in Python Numpy print("
Result...
",np.bitwise_or(arr1, arr2))
输出
Array 1... [[34 78 47] [82 69 29]] Array 2... [[59 98 36] [81 55 32]] Our Array 1 type... int64 Our Array 2 type... int64 Our Array 1 Dimensions... 2 Our Array 2 Dimensions... 2 Our Array 1 Shape... (2, 3) Our Array 2 Shape... (2, 3) Result... [[ 59 110 47] [ 83 119 61]]
广告