在 NumPy 中逐元素计算一维数组和二维数组的按位异或
要逐元素计算一维数组和二维数组的按位异或,请在 Python NumPy 中使用 **numpy.bitwise_xor()** 方法。
计算输入数组中整数的底层二进制表示的按位异或。此 ufunc 实现 C/Python 运算符 ^。
第一个和第二个参数是数组,只处理整数和布尔类型。如果 x1.shape != x2.shape,则它们必须能够广播到公共形状。
步骤
首先,导入所需的库:
import numpy as np
使用 array() 方法创建两个 NumPy 数组。我们插入了 int 类型的元素:
arr1 = np.array([32, 95, 82, 69, 38, 49]) arr2 = np.array([[28, 60, 81, 55, 89, 43]])
显示数组:
print("Array 1...
", arr1) print("
Array 2...
", arr2)
获取数组的类型:
print("
Our Array 1 type...
", arr1.dtype) print("
Our Array 2 type...
", arr2.dtype)
获取数组的维度:
print("
Our Array 1 Dimensions...
",arr1.ndim) print("
Our Array 2 Dimensions...
",arr2.ndim)
获取数组的形状:
print("
Our Array 1 Shape...
",arr1.shape) print("
Our Array 2 Shape...
",arr2.shape)
要逐元素计算一维数组和二维数组的按位异或,请使用 numpy.bitwise_xor() 方法:
print("
Result...
",np.bitwise_xor(arr1, arr2))
示例
import numpy as np # Creating two numpy arrays using the array() method # We have inserted elements of int type arr1 = np.array([32, 95, 82, 69, 38, 49]) arr2 = np.array([[28, 60, 81, 55, 89, 43]]) # Display the arrays print("Array 1...
", arr1) print("
Array 2...
", arr2) # Get the type of the arrays print("
Our Array 1 type...
", arr1.dtype) print("
Our Array 2 type...
", arr2.dtype) # Get the dimensions of the Arrays print("
Our Array 1 Dimensions...
",arr1.ndim) print("
Our Array 2 Dimensions...
",arr2.ndim) # Get the shape of the Arrays print("
Our Array 1 Shape...
",arr1.shape) print("
Our Array 2 Shape...
",arr2.shape) # To compute the bit-wise XOR of two arrays element-wise, use the numpy.bitwise_xor() method in Python Numpy print("
Result...
",np.bitwise_xor(arr1, arr2))
输出
Array 1... [32 95 82 69 38 49] Array 2... [[28 60 81 55 89 43]] Our Array 1 type... int64 Our Array 2 type... int64 Our Array 1 Dimensions... 1 Our Array 2 Dimensions... 2 Our Array 1 Shape... (6,) Our Array 2 Shape... (1, 6) Result... [[ 60 99 3 114 127 26]]
广告