使用随机边生成来创建随机图的 C++ 程序


在该程序中,为随机顶点和边生成了一个随机图。此程序的时间复杂度为 O(v * e)。其中 v 是顶点数,而 e 是边数。

算法

Begin
   Develop a function GenRandomGraphs(), with ‘e’ as the
   number of edges and ‘v’ as the number of vertexes, in the argument list.
      Assign random values to the number of vertex and edges of the graph,
   using rand() function.
      Print the connections of each vertex, irrespective of the
      direction.
      Print “Isolated vertex” for the vertex having no degree.
End

示例

#include<iostream>
#include<stdlib.h>
using namespace std;
void GenRandomGraphs(int NOEdge, int NOVertex)
{
   int i, j, edge[NOEdge][2], count;
   i = 0;
   //Assign random values to the number of vertex and edges
   of the graph, Using rand().
   while(i < NOEdge)
   {
      edge[i][0] = rand()%NOVertex+1;
      edge[i][1] = rand()%NOVertex+1;
      //Print the connections of each vertex, irrespective of
      the direction.
      if(edge[i][0] == edge[i][1])
         continue;
      else
      {
         for(j = 0; j < i; j++)
         {
            if((edge[i][0] == edge[j][0] &&
            edge[i][1] == edge[j][1]) || (edge[i][0] == edge[j][1] &&
            edge[i][1] == edge[j][0]))
            i--;
         }
      }i
      ++;
   }
   cout<<"\nThe generated random graph is: ";
   for(i = 0; i < NOVertex; i++)
   {
      count = 0;
      cout<<"\n\t"<<i+1<<"-> { ";
      for(j = 0; j < NOEdge; j++)
      {
         if(edge[j][0] == i+1)
         {
            cout<<edge[j][1]<<" ";
            count++;
         } else if(edge[j][1] == i+1)
         {
            cout<<edge[j][0]<<" ";
            count++;
         } else if(j== NOEdge-1 && count == 0)
         cout<<"Isolated Vertex!"; //Print “Isolated vertex” for the vertex having no degree.
      }
      cout<<" }";
   }
}
int main()
{
   int i, e, n;
   cout<<"Random graph generation: ";
   n= 7 + rand()%6;
   cout<<"\nThe graph has "<<n<<" vertices";
   e = rand()%((n*(n-1))/2);
   cout<<"\nand has "<<e<<" edges.";
   GenRandomGraphs(e, n);
}

输出

Random graph generation:
The graph has 8 vertices
and has 18 edges.
The generated random graph is:
1-> { 5 4 2 }
2-> { 4 8 6 3 1 5 }
3-> { 5 4 7 2 }
4-> { 2 3 7 1 8 5 }
5-> { 3 1 7 4 2 8 }
6-> { 2 8 7 }
7-> { 4 3 5 6 }
8-> { 2 6 4 5 }

更新于: 30-Jul-2019

920 浏览

开启您的职业生涯

完成课程,获得认证

立即开始
广告