C++ 程序实现分割筛法以生成给定范围内的素数


这是使用分割筛法生成给定范围内的素数的 C++ 程序。分割筛法首先应用简单筛法找到小于等于 √(n) 的素数。该算法的思路是将范围 [0 ... n-1] 划分为不同的段,然后逐个计算各段中的素数。

算法

Begin
   Create function to find all primes smaller than limit
   using simple sieve of eratosthenes.
   Finds all prime numbers in given range using
   segmented sieve
   A) Compute all primes smaller or equal to square root of high using simple sieve
   B) Count of elements in given range
   C) Declaring boolean only for [low, high]
   D) Find the minimum number in [low ... high] that is a multiple of prime[i] (divisible by prime[i])
   E) Mark multiples of prime[i] in [low … high]
   F) Numbers which are not marked in range, are prime
End

示例代码

#include <bits/stdc++.h>
using namespace std;
void simpleSieve(int lmt, vector<int>& prime) {
   bool mark[lmt + 1];
   memset(mark, false, sizeof(mark));
   for (int i = 2; i <= lmt; ++i) {
      if (mark[i] == false) {
         prime.push_back(i);
         for (int j = i; j <= lmt; j += i)
            mark[j] = true;
      }
   }
}
void PrimeInRange(int low, int high) {
   int lmt = floor(sqrt(high)) + 1;
   vector<int> prime;
   simpleSieve(lmt, prime);
   int n = high - low + 1;
   bool mark[n + 1];
   memset(mark, false, sizeof(mark));
   for (int i = 0; i < prime.size(); i++) {
      int lowLim = floor(low / prime[i]) * prime[i];
      if (lowLim < low)
         lowLim += prime[i];
      for (int j = lowLim; j <= high; j += prime[i])
         mark[j - low] = true;
   }
   for (int i = low; i <= high; i++)
      if (!mark[i - low])
         cout << i << " ";
}
int main() {
   int low = 10, high = 50;
   PrimeInRange(low, high);
   return 0;
}

输出

11 13 17 19 23 29 31 37 41 43 47

更新于: 2019 年 7 月 30 日

870 次浏览

开启你的 职业生涯

完成课程并获得认证

开始
广告