使用 C++ 程序执行任何矩阵的 LU 分解
矩阵的 LU 分解创建一个矩阵,即其下三角阵和上三角阵的乘积。矩阵 LU 分解中的 LU 代表下三角阵和上三角阵。
下面提供矩阵 LU 分解的一个示例 −
Given matrix is: 1 1 0 2 1 3 3 1 1 The L matrix is: 1 0 0 2 -1 0 3 -2 -5 The U matrix is: 1 1 0 0 1 -3 0 0 1
下面提供一个执行矩阵 LU 分解的程序 −
示例
#include<iostream> using namespace std; void LUdecomposition(float a[10][10], float l[10][10], float u[10][10], int n) { int i = 0, j = 0, k = 0; for (i = 0; i < n; i++) { for (j = 0; j < n; j++) { if (j < i) l[j][i] = 0; else { l[j][i] = a[j][i]; for (k = 0; k < i; k++) { l[j][i] = l[j][i] - l[j][k] * u[k][i]; } } } for (j = 0; j < n; j++) { if (j < i) u[i][j] = 0; else if (j == i) u[i][j] = 1; else { u[i][j] = a[i][j] / l[i][i]; for (k = 0; k < i; k++) { u[i][j] = u[i][j] - ((l[i][k] * u[k][j]) / l[i][i]); } } } } } int main() { float a[10][10], l[10][10], u[10][10]; int n = 0, i = 0, j = 0; cout << "Enter size of square matrix : "<<endl; cin >> n; cout<<"Enter matrix values: "<endl; for (i = 0; i < n; i++) for (j = 0; j < n; j++) cin >> a[i][j]; LUdecomposition(a, l, u, n); cout << "L Decomposition is as follows..."<<endl; for (i = 0; i < n; i++) { for (j = 0; j < n; j++) { cout<<l[i][j]<<" "; } cout << endl; } cout << "U Decomposition is as follows..."<<endl; for (i = 0; i < n; i++) { for (j = 0; j < n; j++) { cout<<u[i][j]<<" "; } cout << endl; } return 0; }
输出
以上程序的输出如下
Enter size of square matrix : 3 Enter matrix values: 1 1 0 2 1 3 3 1 1 L Decomposition is as follows... 1 0 0 2 -1 0 3 -2 -5 U Decomposition is as follows... 1 1 0 0 1 -3 0 0 1
在以上程序中,函数 LU 分解找到给定矩阵的 L 和 U 分解。这是通过使用嵌套 for 循环完成的,该循环计算 L 和 U 分解,并将它们存储在矩阵 a[][] 的 l[][] 和 u[][] 矩阵中。
展示此功能的代码片段如下 −
for (i = 0; i < n; i++) { for (j = 0; j < n; j++) { if (j < i) l[j][i] = 0; else { l[j][i] = a[j][i]; for (k = 0; k < i; k++) { l[j][i] = l[j][i] - l[j][k] * u[k][i]; } } } for (j = 0; j < n; j++) { if (j < i) u[i][j] = 0; else if (j == i) u[i][j] = 1; else { u[i][j] = a[i][j] / l[i][i]; for (k = 0; k < i; k++) { u[i][j] = u[i][j] - ((l[i][k] * u[k][j]) / l[i][i]); } } } }
在 main() 函数中,从用户获取矩阵的大小及其元素。如下所示 −
cout << "Enter size of square matrix : "<<endl; cin >> n; cout<<"Enter matrix values: "<endl; for (i = 0; i < n; i++) for (j = 0; j < n; j++) cin >> a[i][j];
然后调用 LU 分解函数,并显示 L 和 U 分解。如下所示 −
LUdecomposition(a, l, u, n); cout << "L Decomposition is as follows..."<<endl; for (i = 0; i < n; i++) { for (j = 0; j < n; j++) { cout<<l[i][j]<<" "; } cout << endl; } cout << "U Decomposition is as follows..."<<endl; for (i = 0; i < n; i++) { for (j = 0; j < n; j++) { cout<u[i][j]<<" "; } cout << endl; }
广告